SPRUIU1C July   2020  – February 2024 DRA821U , DRA821U-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Related Documentation From Texas Instruments
    3.     Support Resources
    4.     Glossary
    5.     Export Control Notice
    6.     Trademarks
  3. Introduction
    1. 1.1 Device Overview
    2. 1.2 Device Block Diagram
    3. 1.3 Device Main Domain
      1. 1.3.1  Arm Cortex-A72 Subsystem
      2. 1.3.2  Arm Cortex-R5F Processor
      3. 1.3.3  Navigator Subsystem
      4. 1.3.4  Region-based Address Translation Module
      5. 1.3.5  Multicore Shared Memory Controller
      6. 1.3.6  DDR Subsystem
      7. 1.3.7  General Purpose Input/Output Interface
      8. 1.3.8  Inter-Integrated Circuit Interface
      9. 1.3.9  Improved Inter-Integrated Circuit Interface
      10. 1.3.10 Multi-channel Serial Peripheral Interface
      11. 1.3.11 Universal Asynchronous Receiver/Transmitter
      12. 1.3.12 Gigabit Ethernet Switch
      13. 1.3.13 Peripheral Component Interconnect Express Subsystem
      14. 1.3.14 Universal Serial Bus (USB) Subsystem
      15. 1.3.15 SerDes
      16. 1.3.16 General Purpose Memory Controller with Error Location Module
      17. 1.3.17 Multimedia Card/Secure Digital Interface
      18. 1.3.18 Enhanced Capture Module
      19. 1.3.19 Enhanced Pulse-Width Modulation Module
      20. 1.3.20 Enhanced Quadrature Encoder Pulse Module
      21. 1.3.21 Controller Area Network
      22. 1.3.22 Audio Tracking Logic
      23. 1.3.23 Multi-channel Audio Serial Port
      24. 1.3.24 Timers
      25. 1.3.25 Internal Diagnostics Modules
    4. 1.4 Device MCU Domain
      1. 1.4.1  MCU Arm Cortex-R5F Processor
      2. 1.4.2  MCU Region-based Address Translation Module
      3. 1.4.3  MCU Navigator Subsystem
      4. 1.4.4  MCU Analog-to-Digital Converter
      5. 1.4.5  MCU Inter-Integrated Circuit Interface
      6. 1.4.6  MCU Improved Inter-Integrated Circuit Interface
      7. 1.4.7  MCU Multi-channel Serial Peripheral Interface
      8. 1.4.8  MCU Universal Asynchronous Receiver/Transmitter
      9. 1.4.9  MCU Gigabit Ethernet Switch
      10. 1.4.10 MCU Octal Serial Peripheral Interface and HyperBus Memory Controller as a Flash Subsystem
      11. 1.4.11 MCU Controller Area Network
      12. 1.4.12 MCU Timers
      13. 1.4.13 MCU Internal Diagnostics Modules
    5. 1.5 Device WKUP Domain
      1. 1.5.1 WKUP Device Management and Security Controller
      2. 1.5.2 WKUP General Purpose Input/Output Interface
      3. 1.5.3 WKUP Inter-Integrated Circuit Interface
      4. 1.5.4 WKUP Universal Asynchronous Receiver/Transmitter
      5. 1.5.5 WKUP Internal Diagnostics Modules
    6. 1.6 Device Identification
  4. Memory Map
    1. 2.1 MAIN Domain Memory Map
    2. 2.2 MCU Domain Memory Map
    3. 2.3 WKUP Domain Memory Map
    4. 2.4 Processors View Memory Map
    5. 2.5 Region-based Address Translation
  5. System Interconnect
    1. 3.1 System Interconnect Overview
    2. 3.2 System Interconnect Integration
      1. 3.2.1 Interconnect Integration in WKUP Domain
      2. 3.2.2 Interconnect Integration in MCU Domain
      3. 3.2.3 Interconnect Integration in MAIN Domain
    3. 3.3 System Interconnect Functional Description
      1. 3.3.1 Master-Slave Connections
      2. 3.3.2 Quality of Service (QoS)
      3. 3.3.3 Route ID
      4. 3.3.4 Initiator-Side Security Controls and Firewalls
        1. 3.3.4.1 Initiator-Side Security Controls (ISC)
          1. 3.3.4.1.1 Special System Level Priv-ID
          2. 3.3.4.1.2 Priv ID and ISC Assignment
        2. 3.3.4.2 Firewalls (FW)
          1. 3.3.4.2.1 Peripheral Firewalls (FW)
          2. 3.3.4.2.2 Memory or Region-based Firewalls
            1. 3.3.4.2.2.1 Region Based Firewall Functional Description
          3. 3.3.4.2.3 Channelized Firewalls
            1. 3.3.4.2.3.1 Channelized Firewall Functional Description
      5. 3.3.5 Null Error Reporting
      6. 3.3.6 VBUSM_TIMEOUT_GASKET (MCU_TIMEOUT_64B2)
        1. 3.3.6.1 Overview and Feature List
          1. 3.3.6.1.1 Features Supported
          2. 3.3.6.1.2 Features Not Supported
        2. 3.3.6.2 Functional Description
          1. 3.3.6.2.1 Functional Operation
            1. 3.3.6.2.1.1  Overview
            2. 3.3.6.2.1.2  FIFOs
            3. 3.3.6.2.1.3  ID Allocator
            4. 3.3.6.2.1.4  Timer
            5. 3.3.6.2.1.5  Timeout Queue
            6. 3.3.6.2.1.6  Write Scoreboard
            7. 3.3.6.2.1.7  Read Scoreboard
            8. 3.3.6.2.1.8  Flush Mode
            9. 3.3.6.2.1.9  Flushing
            10. 3.3.6.2.1.10 Timeout Error Reporting
            11. 3.3.6.2.1.11 Command Timeout Error Reporting
            12. 3.3.6.2.1.12 Unexpected Response Reporting
            13. 3.3.6.2.1.13 Latency and Stalls
            14. 3.3.6.2.1.14 Bypass
            15. 3.3.6.2.1.15 Safety
        3. 3.3.6.3 Interrupt Conditions
          1. 3.3.6.3.1 Transaction Error Interrupt
            1. 3.3.6.3.1.1 Transaction Timeout
            2. 3.3.6.3.1.2 Unexpected Response
            3. 3.3.6.3.1.3 Command Timeout
        4. 3.3.6.4 Memory Map
          1. 3.3.6.4.1  Revision Register (Base Address + 0x00)
          2. 3.3.6.4.2  Configuration Register (Base Address + 0x04)
          3. 3.3.6.4.3  Info Register (Base Address + 0x08)
          4. 3.3.6.4.4  Enable Register (Base Address + 0x0C)
          5. 3.3.6.4.5  Flush Register (Base Address + 0x10)
          6. 3.3.6.4.6  Timeout Value Register (Base Address + 0x14)
          7. 3.3.6.4.7  Timer Register (Base Address + 0x18)
          8. 3.3.6.4.8  Error Interrupt Raw Status/Set Register (Base Address + 0x20)
          9. 3.3.6.4.9  Error Interrupt Enabled Status/Clear Register (Base Address + 0x24)
          10. 3.3.6.4.10 Error Interrupt Mask Set Register (Base Address + 0x28)
          11. 3.3.6.4.11 Error Interrupt Mask Clear Register (Base Address + 0x2C)
          12. 3.3.6.4.12 Timeout Error Info Register (Base Address + 0x30)
          13. 3.3.6.4.13 Unexpected Response Info Register (Base Address + 0x34)
          14. 3.3.6.4.14 Error Transaction Valid/Dir/RouteID Register (Base Address + 0x38)
          15. 3.3.6.4.15 Error Transaction Tag/CommandID Register (Base Address + 0x3C)
          16. 3.3.6.4.16 Error Transaction Bytecnt Register (Base Address + 0x40)
          17. 3.3.6.4.17 Error Transaction Upper Address Register (Base Address + 0x44)
          18. 3.3.6.4.18 Error Transaction Lower Address Register (Base Address + 0x48)
        5. 3.3.6.5 Integration Overview
          1. 3.3.6.5.1 Parameterization Requirements
        6. 3.3.6.6 I/O Description
          1. 3.3.6.6.1 Clockstop Idle
          2. 3.3.6.6.2 Flush
          3. 3.3.6.6.3 Module I/O
        7. 3.3.6.7 User’s Guide
          1. 3.3.6.7.1 Programmer’s Guide
            1. 3.3.6.7.1.1 Initialization
            2. 3.3.6.7.1.2 Software Flush
      7. 3.3.7 Timeout Gasket (TOG)
    4. 3.4 System Interconnect Registers
      1. 3.4.1 QoS Registers
      2. 3.4.2 Firewall Exception Registers
      3. 3.4.3 Firewall Region Registers
      4. 3.4.4 Null Error Reporting Registers
  6. Initialization
    1. 4.1 Initialization Overview
      1. 4.1.1 ROM Code Overview
      2. 4.1.2 Bootloader Modes
      3. 4.1.3 Terminology
    2. 4.2 Boot Process
      1. 4.2.1 MCU ROM Code Architecture
        1. 4.2.1.1 Main Module
        2. 4.2.1.2 X509 Module
        3. 4.2.1.3 Buffer Manager Module
        4. 4.2.1.4 Log and Trace Module
        5. 4.2.1.5 System Module
        6. 4.2.1.6 Protocol Module
        7. 4.2.1.7 Driver Module
      2. 4.2.2 DMSC ROM Description
      3. 4.2.3 Boot Process Flow
      4. 4.2.4 MCU Only vs Normal Boot
    3. 4.3 Boot Mode Pins
      1. 4.3.1  MCU_BOOTMODE Pin Mapping
      2. 4.3.2  BOOTMODE Pin Mapping
        1. 4.3.2.1 Primary Boot Mode Selection
        2. 4.3.2.2 Backup Boot Mode Selection When MCU Only = 0
        3. 4.3.2.3 Primary Boot Mode Configuration
        4. 4.3.2.4 Backup Boot Mode Configuration
      3. 4.3.3  No-boot/Dev-boot Configuration
      4. 4.3.4  Hyperflash Boot Device Configuration
      5. 4.3.5  OSPI Boot Device Configuration
      6. 4.3.6  QSPI Boot Device Configuration
      7. 4.3.7  SPI Boot Device Configuration
      8. 4.3.8  xSPI Boot Device Configuration
      9. 4.3.9  I2C Boot Device Configuration
      10. 4.3.10 MMC/SD Card Boot Device Configuration
      11. 4.3.11 eMMC Boot Device Configuration
      12. 4.3.12 Ethernet Boot Device Configuration
      13. 4.3.13 USB Boot Device Configuration
      14. 4.3.14 PCIe Boot Device Configuration
      15. 4.3.15 UART Boot Device Configuration
      16. 4.3.16 PLL Configuration
        1. 4.3.16.1 MCU_PLL0, MCU_PLL2, Main PLL0, and Main PLL3
        2. 4.3.16.2 MCU_PLL1
        3. 4.3.16.3 Main PLL1
        4. 4.3.16.4 Main PLL2
        5. 4.3.16.5 HSDIV Values
        6. 4.3.16.6 190
    4. 4.4 Boot Parameter Tables
      1. 4.4.1  Common Header
      2. 4.4.2  PLL Setup
      3. 4.4.3  PCIe Boot Parameter Table
      4. 4.4.4  I2C Boot Parameter Table
      5. 4.4.5  OSPI/QSPI/SPI Boot Parameter Table
      6. 4.4.6  Ethernet Boot Parameter Table
      7. 4.4.7  USB Boot Parameter Table
      8. 4.4.8  MMCSD Boot Parameter Table
      9. 4.4.9  UART Boot Parameter Table
      10. 4.4.10 Hyperflash Boot Parameter Table
    5. 4.5 Boot Image Format
      1. 4.5.1 Overall Structure
      2. 4.5.2 X.509 Certificate
      3. 4.5.3 Organizational Identifier (OID)
      4. 4.5.4 X.509 Extensions Specific to Boot
        1. 4.5.4.1 Boot Info (OID 1.3.6.1.4.1.294.1.1)
        2. 4.5.4.2 Image Integrity (OID 1.3.6.1.4.1.294.1.2)
      5. 4.5.5 Extended Boot Info Extension
        1. 4.5.5.1 Impact on HS Device
        2. 4.5.5.2 Extended Boot Info Details
        3. 4.5.5.3 Certificate / Component Types
        4. 4.5.5.4 Extended Boot Encryption Info
        5. 4.5.5.5 Component Ordering
        6. 4.5.5.6 Memory Load Sections Overlap with Executable Components
        7. 4.5.5.7 Device Type and Extended Boot Extension
      6. 4.5.6 Generating X.509 Certificates
        1. 4.5.6.1 Key Generation
          1. 4.5.6.1.1 Degenerate RSA Keys
        2. 4.5.6.2 Configuration Script
      7. 4.5.7 Image Data
    6. 4.6 Boot Modes
      1. 4.6.1 I2C Bootloader Operation
        1. 4.6.1.1 I2C Initialization Process
          1. 4.6.1.1.1 Block Size
          2. 4.6.1.1.2 226
        2. 4.6.1.2 I2C Loading Process
          1. 4.6.1.2.1 Loading a Boot Image From EEPROM
      2. 4.6.2 SPI Bootloader Operation
        1. 4.6.2.1 SPI Initialization Process
        2. 4.6.2.2 SPI Loading Process
      3. 4.6.3 QSPI Bootloader Operation
        1. 4.6.3.1 QSPI Initialization Process
        2. 4.6.3.2 QSPI Loading Process
      4. 4.6.4 OSPI Bootloader Operation
        1. 4.6.4.1 OSPI Initialization Process
        2. 4.6.4.2 OSPI Loading Process
      5. 4.6.5 PCIe Bootloader Operation
        1. 4.6.5.1 PCIe Initialization Process
        2. 4.6.5.2 PCIe Loading Process
      6. 4.6.6 Ethernet Bootloader Operation
        1. 4.6.6.1 Ethernet Initialization Process
        2. 4.6.6.2 Ethernet Loading Process
          1. 4.6.6.2.1 Ethernet Boot Data Formats
            1. 4.6.6.2.1.1 Limitations
            2. 4.6.6.2.1.2 BOOTP Request
              1. 4.6.6.2.1.2.1 MAC Header (DIX)
              2. 4.6.6.2.1.2.2 IPv4 Header
              3. 4.6.6.2.1.2.3 UDP Header
              4. 4.6.6.2.1.2.4 BOOTP Payload
              5. 4.6.6.2.1.2.5 TFTP
        3. 4.6.6.3 Ethernet Hand Over Process
      7. 4.6.7 USB Bootloader Operation
        1. 4.6.7.1 USB-Specific Attributes
          1. 4.6.7.1.1 DFU Device Mode
      8. 4.6.8 MMCSD Bootloader Operation
      9. 4.6.9 UART Bootloader Operation
        1. 4.6.9.1 Initialization Process
        2. 4.6.9.2 UART Loading Process
          1. 4.6.9.2.1 UART XMODEM
        3. 4.6.9.3 UART Hand-Over Process
    7. 4.7 Boot Memory Maps
      1. 4.7.1 Memory Layout/MPU
      2. 4.7.2 Global Memory Addresses Used by ROM Code
      3. 4.7.3 Memory Reserved by ROM Code
  7. Device Configuration
    1. 5.1 Control Module (CTRL_MMR)
      1. 5.1.1 WKUP_CTRL_MMR0
        1. 5.1.1.1 WKUP_CTRL_MMR0 Overview
        2. 5.1.1.2 WKUP_CTRL_MMR0 Integration
        3. 5.1.1.3 WKUP_CTRL_MMR0 Functional Description
          1. 5.1.1.3.1 Description for WKUP_CTRL_MMR0 Register Types
            1. 5.1.1.3.1.1  Pad Configuration Registers
            2. 5.1.1.3.1.2  Kick Protection Registers
            3. 5.1.1.3.1.3  WKUP_CTRL_MMR0 Module Interrupts
            4. 5.1.1.3.1.4  Clock Selection Registers
            5. 5.1.1.3.1.5  Device Feature Registers
            6. 5.1.1.3.1.6  POK Module Registers
            7. 5.1.1.3.1.7  Power and Reset Related Registers
            8. 5.1.1.3.1.8  PRG Related Registers
            9. 5.1.1.3.1.9  Voltage Glitch Detect Control and Status Registers
            10. 5.1.1.3.1.10 I/O Debounce Control Registers
        4. 5.1.1.4 WKUP_CTRL_MMR0 Registers
      2. 5.1.2 MCU_CTRL_MMR0
        1. 5.1.2.1 MCU_CTRL_MMR0 Overview
        2. 5.1.2.2 MCU_CTRL_MMR0 Integration
        3. 5.1.2.3 MCU_CTRL_MMR0 Functional Description
          1. 5.1.2.3.1 Description for MCU_CTRL_MMR0 Register Types
            1. 5.1.2.3.1.1 Kick Protection Registers
            2. 5.1.2.3.1.2 MCU_CTRL_MMR0 Module Interrupts
            3. 5.1.2.3.1.3 Inter-processor Communication Registers
            4. 5.1.2.3.1.4 Timer I/O Muxing Control Registers
            5. 5.1.2.3.1.5 Clock Muxing and Division Registers
            6. 5.1.2.3.1.6 MCU_CPSW0 MAC Address Registers
        4. 5.1.2.4 MCU_CTRL_MMR0 Registers
        5. 5.1.2.5 MCU_SEC_MMR0_DBG_CTRL Registers
        6. 5.1.2.6 MCU_SEC_MMR0_BOOT_CTRL Registers
      3. 5.1.3 CTRL_MMR0
        1. 5.1.3.1 CTRL_MMR0 Overview
        2. 5.1.3.2 CTRL_MMR0 Integration
        3. 5.1.3.3 CTRL_MMR0 Functional Description
          1. 5.1.3.3.1 Description for CTRL_MMR0 Register Types
            1. 5.1.3.3.1.1  Pad Configuration Registers
            2. 5.1.3.3.1.2  Kick Protection Registers
            3. 5.1.3.3.1.3  CTRL_MMR0 Module Interrupts
            4. 5.1.3.3.1.4  Inter-processor Communication Registers
            5. 5.1.3.3.1.5  Timer I/O Muxing Control Registers
            6. 5.1.3.3.1.6  EHRPWM/EQEP Control and Status Registers
            7. 5.1.3.3.1.7  Clock Muxing and Division Registers
            8. 5.1.3.3.1.8  Ethernet Port Operation Control Registers
            9. 5.1.3.3.1.9  SERDES Lane Function Control Registers
            10. 5.1.3.3.1.10 DDRSS Dynamic Frequency Change Registers
        4. 5.1.3.4 CTRL_MMR0 Registers
        5. 5.1.3.5 SEC_MMR0_DBG_CTRL Registers
        6. 5.1.3.6 SEC_MMR0_BOOT_CTRL Registers
    2. 5.2 Power
      1. 5.2.1 Power Management Overview
      2. 5.2.2 Power Management Subsystems
        1. 5.2.2.1 Power Subsystems Overview
          1. 5.2.2.1.1 POK Overview
          2. 5.2.2.1.2 PRG / PRG_PP Overview
          3. 5.2.2.1.3 POR Overview
          4. 5.2.2.1.4 POK / PRG(_PP) /POR Overview
          5. 5.2.2.1.5 Timing
          6. 5.2.2.1.6 Restrictions
        2. 5.2.2.2 Power System Modules
          1. 5.2.2.2.1 Power OK (POK) Modules
            1. 5.2.2.2.1.1 POK Programming Model
              1. 5.2.2.2.1.1.1 POK Threshold Setting Programming Sequence
          2. 5.2.2.2.2 Power on Reset (POR) Module
            1. 5.2.2.2.2.1 POR Overview
            2. 5.2.2.2.2.2 POR Integration
            3. 5.2.2.2.2.3 POR Programming Model
          3. 5.2.2.2.3 PoR/Reset Generator (PRG_PP) Modules
            1. 5.2.2.2.3.1 PRG_PP Overview
            2. 5.2.2.2.3.2 PRG_PP Integration
            3. 5.2.2.2.3.3 PRG_PP Programming Model
          4. 5.2.2.2.4 Power Glitch Detect (PGD) Modules
          5. 5.2.2.2.5 Voltage and Thermal Manager (VTM)
            1. 5.2.2.2.5.1 VTM Overview
              1. 5.2.2.2.5.1.1 VTM Features
              2. 5.2.2.2.5.1.2 VTM Not Supported Features
            2. 5.2.2.2.5.2 VTM Integration
            3. 5.2.2.2.5.3 VTM Functional Description
              1. 5.2.2.2.5.3.1 VTM Temperature Status and Thermal Management
                1. 5.2.2.2.5.3.1.1 10-bit Temperature Values Versus Temperature
              2. 5.2.2.2.5.3.2 VTM Temperature Driven Alerts and Interrupts
              3. 5.2.2.2.5.3.3 VTM VID Voltage Domains
              4. 5.2.2.2.5.3.4 VTM Clocking
              5. 5.2.2.2.5.3.5 VTM Retention Interface
              6. 5.2.2.2.5.3.6 VTM ECC Aggregator
              7. 5.2.2.2.5.3.7 VTM Programming Model
                1. 5.2.2.2.5.3.7.1 VTM Maximum Temperature Outrange Alert
                2. 5.2.2.2.5.3.7.2 Temperature Monitor during Low Power Modes
                3. 5.2.2.2.5.3.7.3 Sensors Programming Sequences
              8. 5.2.2.2.5.3.8 AVS-Class0
          6. 5.2.2.2.6 Distributed Power Clock and Reset Controller (DPCR)
        3. 5.2.2.3 Power Control Modules
          1. 5.2.2.3.1 Power Sleep Controller and Local Power Sleep Controllers
            1. 5.2.2.3.1.1 PSC Terminology
            2. 5.2.2.3.1.2 PSC Features
            3. 5.2.2.3.1.3 PSC: Device Power-Management Layout
              1. 5.2.2.3.1.3.1 WKUP_PSC0 Device-Specific Information
              2. 5.2.2.3.1.3.2 PSC0 Device-Specific Information
              3. 5.2.2.3.1.3.3 LPSC Dependences Overview
            4. 5.2.2.3.1.4 PSC: Power Domain and Module States
              1. 5.2.2.3.1.4.1 Power Domain States
              2. 5.2.2.3.1.4.2 Module States
              3. 5.2.2.3.1.4.3 Local Reset
            5. 5.2.2.3.1.5 PSC: Executing State Transitions
              1. 5.2.2.3.1.5.1 Power Domain State Transitions
              2. 5.2.2.3.1.5.2 Module State Transitions
              3. 5.2.2.3.1.5.3 Concurrent Power Domain/Module State Transitions
              4. 5.2.2.3.1.5.4 Recommendations for Power Domain/Module Sequencing
            6. 5.2.2.3.1.6 PSC: Emulation Support in the PSC
            7. 5.2.2.3.1.7 PSC: A72SS, MSMC, MCU Cortex-R5F, C71SS0, and C66SS Subsystem Power-Up and Power-Down Sequences
              1. 5.2.2.3.1.7.1 ARMi_COREn Power State Transition
              2. 5.2.2.3.1.7.2 A72SS Power State Transition
              3. 5.2.2.3.1.7.3 GIC0 Sequencing to Support A72SS Power Management
              4. 5.2.2.3.1.7.4 MSMC0 Clkstop/Powerdown/Disconnect Sequencing
              5. 5.2.2.3.1.7.5 MCU Cortex-R5F Power Modes
          2. 5.2.2.3.2 Integrated Power Management (DMSC)
            1. 5.2.2.3.2.1 DMSC Power Management Overview
              1. 5.2.2.3.2.1.1 DMSC Power Management Features
      3. 5.2.3 Device Power States
        1. 5.2.3.1 Overview of Device Low-Power Modes
        2. 5.2.3.2 Voltage Domains
        3. 5.2.3.3 Power Domains
        4. 5.2.3.4 Clock Sources States
        5. 5.2.3.5 Wake-up Sources
        6. 5.2.3.6 Device Power States and Transitions
          1. 5.2.3.6.1 LPM Entry Sequences
          2. 5.2.3.6.2 LPM Exit Sequences
          3. 5.2.3.6.3 IO Retention
          4. 5.2.3.6.4 DDRSS Self-Refresh
      4. 5.2.4 Dynamic Power Management
        1. 5.2.4.1 AVS Support
        2. 5.2.4.2 Dynamic Frequency Scaling (DFS) Operations
      5. 5.2.5 Thermal Management
      6. 5.2.6 Registers
        1. 5.2.6.1 WKUP_VTM0 Registers
        2. 5.2.6.2 PSC Registers
    3. 5.3 Reset
      1. 5.3.1 Reset Overview
      2. 5.3.2 Reset Sources
      3. 5.3.3 Reset Status
      4. 5.3.4 Reset Control
      5. 5.3.5 BOOTMODE Pins
      6. 5.3.6 Reset Sequences
        1. 5.3.6.1 MCU_PORz Overview
        2. 5.3.6.2 MCU_PORz Sequence
        3. 5.3.6.3 MCU_RESETz Sequence
        4. 5.3.6.4 PORz Sequence
        5. 5.3.6.5 RESET_REQz Sequence
      7. 5.3.7 PLL Behavior on Reset
    4. 5.4 Clocking
      1. 5.4.1 Overview
      2. 5.4.2 Clock Inputs
        1. 5.4.2.1 Overview
        2. 5.4.2.2 Mapping of Clock Inputs
      3. 5.4.3 Clock Outputs
        1. 5.4.3.1 Observation Clock Pins
          1. 5.4.3.1.1 MCU_OBSCLK0 Pin
          2. 5.4.3.1.2 424
          3. 5.4.3.1.3 OBSCLK0, OBSCLK1, and OBSCLK2 Pins
        2. 5.4.3.2 System Clock Pins
          1. 5.4.3.2.1 MCU_SYSCLKOUT0
          2. 5.4.3.2.2 SYSCLKOUT0
      4. 5.4.4 Device Oscillators
        1. 5.4.4.1 Device Oscillators Integration
          1. 5.4.4.1.1 Oscillators with External Crystal
          2. 5.4.4.1.2 Internal RC Oscillator
        2. 5.4.4.2 Oscillator Clock Loss Detection
      5. 5.4.5 PLLs
        1. 5.4.5.1 WKUP and MCU Domains PLL Overview
        2. 5.4.5.2 MAIN Domain PLLs Overview
        3. 5.4.5.3 PLL Reference Clocks
          1. 5.4.5.3.1 PLLs in MCU Domain
          2. 5.4.5.3.2 PLLs in MAIN Domain
        4. 5.4.5.4 Generic PLL Overview
          1. 5.4.5.4.1 PLLs Output Clocks Parameters
            1. 5.4.5.4.1.1 PLLs Input Clocks
            2. 5.4.5.4.1.2 PLL Output Clocks
              1. 5.4.5.4.1.2.1 PLLTS16FFCLAFRAC2 Type Output Clocks
              2. 5.4.5.4.1.2.2 PLLTS16FFCLAFRACF Type Output Clocks
              3. 5.4.5.4.1.2.3 PLL Lock
              4. 5.4.5.4.1.2.4 HSDIVIDER
              5. 5.4.5.4.1.2.5 ICG Module
              6. 5.4.5.4.1.2.6 PLL Power Down
              7. 5.4.5.4.1.2.7 PLL Calibration
          2. 5.4.5.4.2 PLL Spread Spectrum Modulation Module
            1. 5.4.5.4.2.1 Definition of SSMOD
            2. 5.4.5.4.2.2 SSMOD Configuration
        5. 5.4.5.5 PLLs Device-Specific Information
          1. 5.4.5.5.1 SSMOD Related Bitfields Table
          2. 5.4.5.5.2 Clock Synthesis Inputs to the PLLs
          3. 5.4.5.5.3 Clock Output Parameter
          4. 5.4.5.5.4 Calibration Related Bitfields
        6. 5.4.5.6 PLL and PLL Controller Connection
        7. 5.4.5.7 PLL, PLLCTRL, and HSDIV Controllers Programming Guide
          1. 5.4.5.7.1 PLL Initialization
            1. 5.4.5.7.1.1 Kick Protection Mechanism
            2. 5.4.5.7.1.2 PLL Initialization to PLL Mode
            3. 5.4.5.7.1.3 PLL Programming Requirements
          2. 5.4.5.7.2 HSDIV PLL Programming
          3. 5.4.5.7.3 PLL Controllers Programming - Dividers PLLDIVn and GO Operation
            1. 5.4.5.7.3.1 GO Operation
            2. 5.4.5.7.3.2 Software Steps to Modify PLLDIV Ratios
          4. 5.4.5.7.4 Entire Sequence for Programming PLLCTRL, HSDIV, and PLL
      6. 5.4.6 Registers
        1. 5.4.6.1 MCU_PLL0_CFG Registers
        2. 5.4.6.2 PLL0_CFG Registers
        3. 5.4.6.3 PLLCTRL0 Registers
  8. Processors and Accelerators
    1. 6.1 Compute Cluster
      1. 6.1.1 Compute Cluster Overview
      2. 6.1.2 Compute Cluster Functional Description
        1. 6.1.2.1 Compute Cluster Memory Regions
        2. 6.1.2.2 Compute Cluster Firewalls
        3. 6.1.2.3 Compute Cluster ECC Aggregators
      3. 6.1.3 Compute Cluster Registers
    2. 6.2 Dual-A72 MPU Subsystem
      1. 6.2.1 A72SS Overview
        1. 6.2.1.1 A72SS Introduction
        2. 6.2.1.2 A72SS Features
      2. 6.2.2 A72SS Integration
      3. 6.2.3 A72SS Functional Description
        1. 6.2.3.1  A72SS Block Diagram
        2. 6.2.3.2  A72SS A72 Cluster
        3. 6.2.3.3  A72SS Interfaces and Async Bridges
        4. 6.2.3.4  A72SS Interrupts
          1. 6.2.3.4.1 A72SS Interrupt Inputs
          2. 6.2.3.4.2 A72SS Interrupt Outputs
        5. 6.2.3.5  A72SS Power Management, Clocking and Reset
          1. 6.2.3.5.1 A72SS Power Management
          2. 6.2.3.5.2 A72SS Clocking
        6. 6.2.3.6  A72SS Debug Support
        7. 6.2.3.7  A72SS Timestamps
        8. 6.2.3.8  A72SS Watchdog
        9. 6.2.3.9  A72SS Internal Diagnostics
          1. 6.2.3.9.1 A72SS ECC Aggregators During Low Power States
          2. 6.2.3.9.2 A72SS CBASS Diagnostics
          3. 6.2.3.9.3 A72SS SRAM Diagnostics
          4. 6.2.3.9.4 A72SS SRAM ECC Aggregator Configurations
        10. 6.2.3.10 A72SS Cache Pre-Warming
        11. 6.2.3.11 A72SS Boot
        12. 6.2.3.12 A72SS IPC with Other CPUs
      4. 6.2.4 A72SS Registers
        1. 6.2.4.1 Arm A72 Cluster Registers
        2. 6.2.4.2 A72SS ECC Aggregator Registers
          1. 6.2.4.2.1 A72SS CLUSTER ECC Registers
          2. 6.2.4.2.2 A72SS CORE0 ECC Registers
          3. 6.2.4.2.3 A72SS CORE1 ECC Registers
    3. 6.3 Dual-R5F MCU Subsystem
      1. 6.3.1 R5FSS Overview
        1. 6.3.1.1 R5FSS Features
        2. 6.3.1.2 R5FSS Not Supported Features
      2. 6.3.2 R5FSS Integration
        1. 6.3.2.1 R5FSS Integration in MCU Domain
        2. 6.3.2.2 R5FSS Integration in MAIN Domain
      3. 6.3.3 R5FSS Functional Description
        1. 6.3.3.1  R5FSS Block Diagram
        2. 6.3.3.2  R5FSS Cortex-R5F Core
          1. 6.3.3.2.1 L1 Caches
          2. 6.3.3.2.2 Tightly-Coupled Memories (TCMs)
          3. 6.3.3.2.3 R5FSS Special Signals
        3. 6.3.3.3  R5FSS Interfaces
          1. 6.3.3.3.1 R5FSS Master Interfaces
          2. 6.3.3.3.2 R5FSS Slave Interfaces
        4. 6.3.3.4  R5FSS Power, Clocking and Reset
          1. 6.3.3.4.1 R5FSS Power
          2. 6.3.3.4.2 R5FSS Clocking
            1. 6.3.3.4.2.1 Changing MCU_R5FSS0 CPU Clock Frequency
          3. 6.3.3.4.3 R5FSS Reset
        5. 6.3.3.5  R5FSS Lockstep Error Detection Logic
          1. 6.3.3.5.1 CPU Output Compare Block
            1. 6.3.3.5.1.1 Operating Modes
            2. 6.3.3.5.1.2 Compare Block Active Mode
            3. 6.3.3.5.1.3 Self Test Mode
            4. 6.3.3.5.1.4 Compare Match Test
            5. 6.3.3.5.1.5 Compare Mismatch Test
            6. 6.3.3.5.1.6 Error Forcing Mode
            7. 6.3.3.5.1.7 Self Test Error Forcing Mode
          2. 6.3.3.5.2 Inactivity Monitor Block
            1. 6.3.3.5.2.1 Operating Modes
            2. 6.3.3.5.2.2 Compare Block Active Mode
            3. 6.3.3.5.2.3 Self Test Mode
            4. 6.3.3.5.2.4 Compare Match Test
            5. 6.3.3.5.2.5 Compare Mismatch Test
            6. 6.3.3.5.2.6 Error Forcing Mode
            7. 6.3.3.5.2.7 Self Test Error Forcing Mode
          3. 6.3.3.5.3 Polarity Inversion Logic
        6. 6.3.3.6  R5FSS Vectored Interrupt Manager (VIM)
          1. 6.3.3.6.1 VIM Overview
          2. 6.3.3.6.2 VIM Interrupt Inputs
          3. 6.3.3.6.3 VIM Interrupt Outputs
          4. 6.3.3.6.4 VIM Interrupt Vector Table (VIM RAM)
          5. 6.3.3.6.5 VIM Interrupt Prioritization
          6. 6.3.3.6.6 VIM ECC Support
          7. 6.3.3.6.7 VIM Lockstep Mode
          8. 6.3.3.6.8 VIM IDLE State
          9. 6.3.3.6.9 VIM Interrupt Handling
            1. 6.3.3.6.9.1 Servicing IRQ Through Vector Interface
            2. 6.3.3.6.9.2 Servicing IRQ Through MMR Interface
            3. 6.3.3.6.9.3 Servicing IRQ Through MMR Interface (Alternative)
            4. 6.3.3.6.9.4 Servicing FIQ
            5. 6.3.3.6.9.5 Servicing FIQ (Alternative)
        7. 6.3.3.7  R5FSS Region Address Translation (RAT)
          1. 6.3.3.7.1 RAT Overview
          2. 6.3.3.7.2 RAT Operation
          3. 6.3.3.7.3 RAT Error Logging
          4. 6.3.3.7.4 RAT Protection
        8. 6.3.3.8  R5FSS ECC Support
        9. 6.3.3.9  R5FSS Memory View
        10. 6.3.3.10 R5FSS Debug and Trace
        11. 6.3.3.11 R5FSS Boot Options
        12. 6.3.3.12 R5FSS Core Memory ECC Events
      4. 6.3.4 R5FSS Registers
        1. 6.3.4.1 R5FSS_CCMR5 Registers
        2. 6.3.4.2 R5FSS_CPU0_ECC_AGGR_CFG_REGS Registers
        3. 6.3.4.3 R5FSS_CPU1_ECC_AGGR_CFG_REGS Registers
        4. 6.3.4.4 R5FSS_VIM Registers
        5. 6.3.4.5 R5FSS_RAT Registers
        6. 6.3.4.6 R5FSS_EVNT_BUS_VBUSP_MMRS Registers
  9. Interprocessor Communication
    1. 7.1 Mailbox
      1. 7.1.1 Mailbox Overview
        1. 7.1.1.1 Mailbox Features
        2. 7.1.1.2 Mailbox Parameters
        3. 7.1.1.3 Mailbox Not Supported Features
      2. 7.1.2 Mailbox Integration
        1. 7.1.2.1 System Mailbox Integration
      3. 7.1.3 Mailbox Functional Description
        1. 7.1.3.1 Mailbox Block Diagram
        2. 7.1.3.2 Mailbox Software Reset
        3. 7.1.3.3 Mailbox Power Management
        4. 7.1.3.4 Mailbox Interrupt Requests
        5. 7.1.3.5 Mailbox Assignment
          1. 7.1.3.5.1 Description
        6. 7.1.3.6 Sending and Receiving Messages
          1. 7.1.3.6.1 Description
        7. 7.1.3.7 Example of Communication
      4. 7.1.4 Mailbox Programming Guide
        1. 7.1.4.1 Mailbox Low-level Programming Models
          1. 7.1.4.1.1 Global Initialization
            1. 7.1.4.1.1.1 Surrounding Modules Global Initialization
            2. 7.1.4.1.1.2 Mailbox Global Initialization
              1. 7.1.4.1.1.2.1 Main Sequence - Mailbox Global Initialization
          2. 7.1.4.1.2 Mailbox Operational Modes Configuration
            1. 7.1.4.1.2.1 Mailbox Processing modes
              1. 7.1.4.1.2.1.1 Main Sequence - Sending a Message (Polling Method)
              2. 7.1.4.1.2.1.2 Main Sequence - Sending a Message (Interrupt Method)
              3. 7.1.4.1.2.1.3 Main Sequence - Receiving a Message (Polling Method)
              4. 7.1.4.1.2.1.4 Main Sequence - Receiving a Message (Interrupt Method)
          3. 7.1.4.1.3 Mailbox Events Servicing
            1. 7.1.4.1.3.1 Events Servicing in Sending Mode
            2. 7.1.4.1.3.2 Events Servicing in Receiving Mode
    2. 7.2 Spinlock
      1. 7.2.1 Spinlock Overview
        1. 7.2.1.1 Spinlock Not Supported Features
      2. 7.2.2 Spinlock Integration
      3. 7.2.3 Spinlock Functional Description
        1. 7.2.3.1 Spinlock Software Reset
        2. 7.2.3.2 Spinlock Power Management
        3. 7.2.3.3 About Spinlocks
        4. 7.2.3.4 Spinlock Functional Operation
      4. 7.2.4 Spinlock Programming Guide
        1. 7.2.4.1 Spinlock Low-level Programming Models
          1. 7.2.4.1.1 Surrounding Modules Global Initialization
          2. 7.2.4.1.2 Basic Spinlock Operations
            1. 7.2.4.1.2.1 Spinlocks Clearing After a System Bug Recovery
            2. 7.2.4.1.2.2 Take and Release Spinlock
  10. Memory Controllers
    1. 8.1 Multicore Shared Memory Controller (MSMC)
      1. 8.1.1 MSMC Overview
        1. 8.1.1.1 MSMC Not Supported Features
      2. 8.1.2 MSMC Integration
        1. 8.1.2.1 MSMC Integration in MAIN Domain
        2. 8.1.2.2 639
      3. 8.1.3 MSMC Functional Description
        1. 8.1.3.1  MSMC Block Diagram
        2. 8.1.3.2  MSMC On-Chip Memory Banking
        3. 8.1.3.3  MSMC Snoop Filter and Data Cache
          1. 8.1.3.3.1 Way Partitioning
          2. 8.1.3.3.2 Cache Size Configuration and Associativity
        4. 8.1.3.4  MSMC Access Protection Checks
        5. 8.1.3.5  MSMC Null Slave
        6. 8.1.3.6  MSMC Resource Arbitration
        7. 8.1.3.7  MSMC Error Detection and Correction
          1. 8.1.3.7.1 On-chip SRAM and Pipeline Data Protection
          2. 8.1.3.7.2 On-chip SRAM L3 Cache Tag and Snoop Filter Protection
          3. 8.1.3.7.3 On-chip SRAM Memory Mapped SRAM Snoop Filter Protection
          4. 8.1.3.7.4 Background Parity Refresh (Scrubbing)
        8. 8.1.3.8  MSMC Interrupts
          1. 8.1.3.8.1 Raw Interrupt Registers
          2. 8.1.3.8.2 Interrupt Enable Registers
          3. 8.1.3.8.3 Triggered and Enabled Interrupts
        9. 8.1.3.9  MSMC Memory Regions
        10. 8.1.3.10 MSMC Hardware Coherence
          1. 8.1.3.10.1 Snoop Filter Broadcast Mode
        11. 8.1.3.11 MSMC Quality-of-Service
        12. 8.1.3.12 MSMC Memory Regions Protection
        13. 8.1.3.13 MSMC Cache Tag View
      4. 8.1.4 MSMC Registers
    2. 8.2 DDR Subsystem (DDRSS)
      1. 8.2.1 DDRSS Overview
        1. 8.2.1.1 DDRSS Not Supported Features
      2. 8.2.2 DDRSS Environment
      3. 8.2.3 DDRSS Integration
        1. 8.2.3.1 DDRSS Integration in MAIN Domain
      4. 8.2.4 DDRSS Functional Description
        1. 8.2.4.1 DDRSS MSMC2DDR Bridge
          1. 8.2.4.1.1 VBUSM.C Threads
          2. 8.2.4.1.2 Class of Service (CoS)
          3. 8.2.4.1.3 AXI Write Data All-Strobes
          4. 8.2.4.1.4 Inline ECC for SDRAM Data
            1. 8.2.4.1.4.1 ECC Cache
            2. 8.2.4.1.4.2 ECC Statistics
          5. 8.2.4.1.5 Opcode Checking
          6. 8.2.4.1.6 Address Alias Prevention
          7. 8.2.4.1.7 Data Error Detection and Correction
          8. 8.2.4.1.8 AXI Bus Timeout
        2. 8.2.4.2 DDRSS Interrupts
        3. 8.2.4.3 DDRSS Memory Regions
        4. 8.2.4.4 DDRSS ECC Support
        5. 8.2.4.5 DDRSS Dynamic Frequency Change Interface
        6. 8.2.4.6 DDR Controller Functional Description
          1. 8.2.4.6.1  DDR PHY Interface (DFI)
          2. 8.2.4.6.2  Command Queue
            1. 8.2.4.6.2.1 Placement Logic
            2. 8.2.4.6.2.2 Command Selection Logic
          3. 8.2.4.6.3  Low Power Control
          4. 8.2.4.6.4  Transaction Processing
          5. 8.2.4.6.5  BIST Engine
          6. 8.2.4.6.6  ECC Engine
          7. 8.2.4.6.7  Address Mapping
          8. 8.2.4.6.8  Paging Policy
          9. 8.2.4.6.9  DDR Controller Initialization
          10. 8.2.4.6.10 Programming LPDDR4 Memories
            1. 8.2.4.6.10.1 Frequency Set Point (FSP)
              1. 8.2.4.6.10.1.1 FSP Mode Register Programming During Initialization
              2. 8.2.4.6.10.1.2 FSP Mode Register Programming During Normal Operation
              3. 8.2.4.6.10.1.3 FSP Mode Register Programming During Dynamic Frequency Scaling
            2. 8.2.4.6.10.2 Data Bus Inversion (DBI)
            3. 8.2.4.6.10.3 On-Die Termination
              1. 8.2.4.6.10.3.1 LPDDR4 DQ ODT
              2. 8.2.4.6.10.3.2 LPDDR4 CA ODT
            4. 8.2.4.6.10.4 Byte Lane Swapping
            5. 8.2.4.6.10.5 DQS Interval Oscillator
              1. 8.2.4.6.10.5.1 Oscillator State Machine
            6. 8.2.4.6.10.6 Per-Bank Refresh (PBR)
              1. 8.2.4.6.10.6.1 Normal Operation
              2. 8.2.4.6.10.6.2 Continuous Refresh Request Mode
        7. 8.2.4.7 DDR PHY Functional Description
          1. 8.2.4.7.1  Data Slice
          2. 8.2.4.7.2  Address Slice
            1. 8.2.4.7.2.1 Address Swapping
          3. 8.2.4.7.3  Address/Control Slice
          4. 8.2.4.7.4  Clock Slice
          5. 8.2.4.7.5  DDR PHY Initialization
          6. 8.2.4.7.6  DDR PHY Dynamic Frequency Scaling (DFS)
          7. 8.2.4.7.7  Chip Select and Frequency Based Register Settings
          8. 8.2.4.7.8  Low-Power Modes
          9. 8.2.4.7.9  Training Support
            1. 8.2.4.7.9.1 Write Leveling
            2. 8.2.4.7.9.2 Read Gate Training
            3. 8.2.4.7.9.3 Read Data Eye Training
            4. 8.2.4.7.9.4 Write DQ Training
            5. 8.2.4.7.9.5 CA Training
            6. 8.2.4.7.9.6 CS Training
          10. 8.2.4.7.10 Data Bus Inversion (DBI)
          11. 8.2.4.7.11 I/O Pad Calibration
          12. 8.2.4.7.12 DQS Error
        8. 8.2.4.8 PI Functional Description
          1. 8.2.4.8.1 PI Initialization
      5. 8.2.5 DDRSS Registers
        1. 8.2.5.1 DDR Subsystem Registers
        2. 8.2.5.2 DDR Controller Registers
        3. 8.2.5.3 PI Registers
        4. 8.2.5.4 DDR PHY Registers
        5. 8.2.5.5 DDRSS0_ECC_AGGR_CTL Registers
        6. 8.2.5.6 DDRSS0_ECC_AGGR_VBUS Registers
        7. 8.2.5.7 DDRSS0_ECC_AGGR_CFG Registers
    3. 8.3 Peripheral Virtualization Unit (PVU)
      1. 8.3.1 PVU Overview
        1. 8.3.1.1 PVU Features
        2. 8.3.1.2 PVU Parameters
        3. 8.3.1.3 PVU Not Supported Features
      2. 8.3.2 PVU Integration
      3. 8.3.3 PVU Functional Description
        1. 8.3.3.1  Functional Operation Overview
        2. 8.3.3.2  PVU Channels
        3. 8.3.3.3  TLB
        4. 8.3.3.4  TLB Entry
        5. 8.3.3.5  TLB Selection
        6. 8.3.3.6  DMA Classes
        7. 8.3.3.7  General virtIDs
        8. 8.3.3.8  TLB Lookup
        9. 8.3.3.9  TLB Miss
        10. 8.3.3.10 Multiple Matching Entries
        11. 8.3.3.11 TLB Disable
        12. 8.3.3.12 TLB Chaining
        13. 8.3.3.13 TLB Permissions
        14. 8.3.3.14 Translation
        15. 8.3.3.15 Memory Attributes
        16. 8.3.3.16 Faulted Transactions
        17. 8.3.3.17 Non-Virtual Transactions
        18. 8.3.3.18 Allowed virtIDs
        19. 8.3.3.19 Software Control
        20. 8.3.3.20 Fault Logging
        21. 8.3.3.21 Alignment Restrictions
      4. 8.3.4 PVU Registers
        1. 8.3.4.1 NAVSS_PVU_CFG Registers
        2. 8.3.4.2 NAVSS0_PVU_CFG_TLBIF Registers
    4. 8.4 Region-based Address Translation (RAT) Module
      1. 8.4.1 RAT Functional Description
        1. 8.4.1.1 RAT Availability
        2. 8.4.1.2 RAT Operation
        3. 8.4.1.3 RAT Error Logging
      2. 8.4.2 RAT Registers
  11. Interrupts
    1. 9.1 Interrupt Architecture
    2. 9.2 Interrupt Controllers
      1. 9.2.1 Generic Interrupt Controller (GIC)
        1. 9.2.1.1 GIC Overview
          1. 9.2.1.1.1 GIC Features
          2. 9.2.1.1.2 GIC Not Supported Features
        2. 9.2.1.2 GIC Integration
        3. 9.2.1.3 GIC Functional Description
          1. 9.2.1.3.1 GIC Block Diagram
          2. 9.2.1.3.2 Arm GIC-500
          3. 9.2.1.3.3 GIC Interrupt Types
          4. 9.2.1.3.4 GIC Interfaces
          5. 9.2.1.3.5 GIC Interrupt Outputs
          6. 9.2.1.3.6 GIC ECC Support
          7. 9.2.1.3.7 GIC AXI2VBUSM and VBUSM2AXI Bridges
        4. 9.2.1.4 GIC Registers
          1. 9.2.1.4.1 Arm GIC-500 Registers
          2. 9.2.1.4.2 GIC_ECC_AGGR Registers
      2. 9.2.2 Other Interrupt Controllers
    3. 9.3 Interrupt Routers
      1. 9.3.1 INTRTR Overview
      2. 9.3.2 INTRTR Integration
        1. 9.3.2.1 WKUP_GPIOMUX_INTRTR0 Integration
        2. 9.3.2.2 GPIOMUX_INTRTR0 Integration
        3. 9.3.2.3 MAIN2MCU_LVL_INTRTR0 Integration
        4. 9.3.2.4 MAIN2MCU_PLS_INTRTR0 Integration
      3. 9.3.3 INTRTR Registers
        1. 9.3.3.1 WKUP_GPIOMUX_INTRTR0 Registers
        2. 9.3.3.2 GPIOMUX_INTRTR0 Registers
        3. 9.3.3.3 MAIN2MCU_LVL_INTRTR0 Registers
        4. 9.3.3.4 MAIN2MCU_PLS_INTRTR0 Registers
    4. 9.4 Interrupt Sources
      1. 9.4.1 WKUP Domain Interrupt Maps
        1. 9.4.1.1 WKUP_DMSC0 Interrupt Map
        2. 9.4.1.2 WKUP_GPIOMUX_INTRTR0 Interrupt Map
        3. 9.4.1.3 WKUP_GPIO0_VIRT Interrupt Map
        4. 9.4.1.4 WKUP_ESM0 Interrupt Map
      2. 9.4.2 MCU Domain Interrupt Maps
        1. 9.4.2.1 MCU_R5FSS0_CORE0 Interrupt Map
        2. 9.4.2.2 MCU_R5FSS0_CORE1 Interrupt Map
        3. 9.4.2.3 MCU_ESM0 Interrupt Map
      3. 9.4.3 MAIN Domain Interrupt Maps
        1. 9.4.3.1 COMPUTE_CLUSTER0 Interrupt Map
          1. 9.4.3.1.1 GIC500 PPI Interrupt Map
          2. 9.4.3.1.2 GIC500 SPI Interrupt Map
          3. 9.4.3.1.3 SoC Event Output Interrupt Map
        2. 9.4.3.2 R5FSS0_CORE0 Interrupt Map
        3. 9.4.3.3 R5FSS0_CORE1 Interrupt Map
        4. 9.4.3.4 MAIN2MCU_LVL_INTRTR0 Interrupt Map
        5. 9.4.3.5 MAIN2MCU_PLS_INTRTR0 Interrupt Map
        6. 9.4.3.6 GPIOMUX_INTRTR0 Interrupt Map
        7. 9.4.3.7 GPIO0_VIRT Interrupt Map
        8. 9.4.3.8 ESM0 Interrupt Map
  12. 10Data Movement Architecture (DMA)
    1. 10.1 DMA Architecture
      1. 10.1.1 Overview
        1. 10.1.1.1  Navigator Subsystem
        2. 10.1.1.2  Ring Accelerator (RA)
        3. 10.1.1.3  Proxy
        4. 10.1.1.4  Secure Proxy
        5. 10.1.1.5  Interrupt Aggregator (INTA)
        6. 10.1.1.6  Interrupt Router (IR)
        7. 10.1.1.7  Unified DMA – Third Party Channel Controller (UDMA-C)
        8. 10.1.1.8  Unified Transfer Controller (UTC)
        9. 10.1.1.9  Data Routing Unit (DRU)
        10. 10.1.1.10 Unified DMA – Peripheral Root Complex (UDMA-P)
          1. 10.1.1.10.1 Channel Classes
        11. 10.1.1.11 Peripheral DMA (PDMA)
        12. 10.1.1.12 Embedded DMA
        13. 10.1.1.13 Definition of Terms
      2. 10.1.2 UDMA Hardware/Software Interface
        1. 10.1.2.1 Data Buffers
        2. 10.1.2.2 Descriptors
          1. 10.1.2.2.1 Host Packet Descriptor
          2. 10.1.2.2.2 Host Buffer Descriptor
          3. 10.1.2.2.3 Monolithic Packet Descriptor
          4. 10.1.2.2.4 Transfer Request Descriptor
        3. 10.1.2.3 Transfer Request Record
          1. 10.1.2.3.1 Overview
          2. 10.1.2.3.2 Addressing Algorithm
            1. 10.1.2.3.2.1 Linear Addressing (Forward)
          3. 10.1.2.3.3 Transfer Request Formats
          4. 10.1.2.3.4 Flags Field Definition
            1. 10.1.2.3.4.1 Type: TR Type Field
            2. 10.1.2.3.4.2 STATIC: Static Field Definition
            3. 10.1.2.3.4.3 EVENT_SIZE: Event Generation Definition
            4. 10.1.2.3.4.4 TRIGGER INFO: TR Triggers
            5. 10.1.2.3.4.5 TRIGGERX_TYPE: Trigger Type
            6. 10.1.2.3.4.6 TRIGGERX: Trigger Selection
            7. 10.1.2.3.4.7 CMD ID: Command ID Field Definition
            8. 10.1.2.3.4.8 Configuration Specific Flags Definition
          5. 10.1.2.3.5 TR Address and Size Attributes
            1. 10.1.2.3.5.1  ICNT0
            2. 10.1.2.3.5.2  ICNT1
            3. 10.1.2.3.5.3  ADDR
            4. 10.1.2.3.5.4  DIM1
            5. 10.1.2.3.5.5  ICNT2
            6. 10.1.2.3.5.6  ICNT3
            7. 10.1.2.3.5.7  DIM2
            8. 10.1.2.3.5.8  DIM3
            9. 10.1.2.3.5.9  DDIM1
            10. 10.1.2.3.5.10 DADDR
            11. 10.1.2.3.5.11 DDIM2
            12. 10.1.2.3.5.12 DDIM3
            13. 10.1.2.3.5.13 DICNT0
            14. 10.1.2.3.5.14 DICNT1
            15. 10.1.2.3.5.15 DICNT2
            16. 10.1.2.3.5.16 DICNT3
          6. 10.1.2.3.6 FMTFLAGS
            1. 10.1.2.3.6.1 AMODE: Addressing Mode Definition
              1. 10.1.2.3.6.1.1 Linear Addressing
              2. 10.1.2.3.6.1.2 Circular Addressing
            2. 10.1.2.3.6.2 DIR: Addressing Mode Direction Definition
            3. 10.1.2.3.6.3 ELTYPE: Element Type Definition
            4. 10.1.2.3.6.4 DFMT: Data Formatting Algorithm Definition
            5. 10.1.2.3.6.5 SECTR: Secondary Transfer Request Definition
              1. 10.1.2.3.6.5.1 Secondary TR Formats
              2. 10.1.2.3.6.5.2 Secondary TR FLAGS
                1. 10.1.2.3.6.5.2.1 SEC_TR_TYPE: Secondary TR Type Field
                2. 10.1.2.3.6.5.2.2 Multiple Buffer Interleave
            6. 10.1.2.3.6.6 AMODE SPECIFIC: Addressing Mode Field
              1. 10.1.2.3.6.6.1 Circular Address Mode Specific Flags
                1. 10.1.2.3.6.6.1.1 CBK0 and CBK1: Circular Block Size Selection
                2. 10.1.2.3.6.6.1.2 Amx: Addressing Mode Selection
            7. 10.1.2.3.6.7 Cache Flags
        4. 10.1.2.4 Transfer Response Record
          1. 10.1.2.4.1 STATUS Field Definition
            1. 10.1.2.4.1.1 STATUS_TYPE Definition
              1. 10.1.2.4.1.1.1 Transfer Error
              2. 10.1.2.4.1.1.2 Aborted Error
              3. 10.1.2.4.1.1.3 Submission Error
              4. 10.1.2.4.1.1.4 Unsupported Feature
              5. 10.1.2.4.1.1.5 Transfer Exception
              6. 10.1.2.4.1.1.6 Teardown Flush
        5. 10.1.2.5 Queues
          1. 10.1.2.5.1 Queue Types
            1. 10.1.2.5.1.1 Transmit Queues (Pass By Reference)
            2. 10.1.2.5.1.2 Transmit Queues (Pass By Value)
            3. 10.1.2.5.1.3 Transmit Completion Queues (Pass By Reference)
            4. 10.1.2.5.1.4 Transmit Completion Queues (Pass By Value)
            5. 10.1.2.5.1.5 Receive Queues
            6. 10.1.2.5.1.6 Free Descriptor Queues
            7. 10.1.2.5.1.7 Free Descriptor/Buffer Queues
          2. 10.1.2.5.2 Ring Accelerator Queues Implementation
      3. 10.1.3 Operational Description
        1. 10.1.3.1  Resource Allocation
        2. 10.1.3.2  Ring Accelerator Operation
          1. 10.1.3.2.1 Queue Initialization
          2. 10.1.3.2.2 Queuing packets (Exposed Ring Mode)
          3. 10.1.3.2.3 De-queuing packets (Exposed Ring Mode)
          4. 10.1.3.2.4 Queuing packets (Queue Mode)
          5. 10.1.3.2.5 De-queuing packets (Queue Mode)
        3. 10.1.3.3  UDMA Internal Transmit Channel Setup (All Packet Types)
        4. 10.1.3.4  UDMA Internal Transmit Channel Teardown (All Packet Types)
        5. 10.1.3.5  UDMA External Transmit Channel Setup
        6. 10.1.3.6  UDMA Transmit External Channel Teardown
        7. 10.1.3.7  UDMA-P Transmit Channel Pause
        8. 10.1.3.8  UDMA-P Transmit Operation (Host Packet Type)
        9. 10.1.3.9  UDMA-P Transmit Operation (Monolithic Packet)
        10. 10.1.3.10 UDMA Transmit Operation (TR Packet)
        11. 10.1.3.11 UDMA Transmit Operation (Direct TR)
        12. 10.1.3.12 UDMA Transmit Error/Exception Handling
          1. 10.1.3.12.1 Null Icnt0 Error
          2. 10.1.3.12.2 Unsupported TR Type
          3. 10.1.3.12.3 Bus Errors
        13. 10.1.3.13 UDMA Receive Channel Setup (All Packet Types)
        14. 10.1.3.14 UDMA Receive Channel Teardown
        15. 10.1.3.15 UDMA-P Receive Channel Pause
        16. 10.1.3.16 UDMA-P Receive Free Descriptor/Buffer Queue Setup (Host Packets)
        17. 10.1.3.17 UDMA-P Receive FlowID Firewall Operation
        18. 10.1.3.18 UDMA-P Receive Operation (Host Packet)
        19. 10.1.3.19 UDMA-P Receive Operation (Monolithic Packet)
        20. 10.1.3.20 UDMA Receive Operation (TR Packet)
        21. 10.1.3.21 UDMA Receive Operation (Direct TR)
        22. 10.1.3.22 UDMA Receive Error/Exception Handling
          1. 10.1.3.22.1 Error Conditions
            1. 10.1.3.22.1.1 Bus Errors
            2. 10.1.3.22.1.2 Null Icnt0 Error
            3. 10.1.3.22.1.3 Unsupported TR Type
          2. 10.1.3.22.2 Exception Conditions Exception Conditions
            1. 10.1.3.22.2.1 Descriptor Starvation
            2. 10.1.3.22.2.2 Protocol Errors
            3. 10.1.3.22.2.3 Dropped Packets
            4. 10.1.3.22.2.4 Reception of EOL Delimiter
            5. 10.1.3.22.2.5 EOP Asserted Prematurely (Short Packet)
            6. 10.1.3.22.2.6 EOP Asserted Late (Long Packets)
        23. 10.1.3.23 UTC Operation
        24. 10.1.3.24 UTC Receive Error/Exception Handling
          1. 10.1.3.24.1 Error Handling
            1. 10.1.3.24.1.1 Null Icnt0 Error
            2. 10.1.3.24.1.2 Unsupported TR Type
          2. 10.1.3.24.2 Exception Conditions
            1. 10.1.3.24.2.1 Reception of EOL Delimiter
            2. 10.1.3.24.2.2 EOP Asserted Prematurely (Short Packet)
            3. 10.1.3.24.2.3 EOP Asserted Late (Long Packets)
    2. 10.2 Navigator Subsystem (NAVSS)
      1. 10.2.1  Main Navigator Subsystem (NAVSS)
        1. 10.2.1.1 NAVSS Overview
        2. 10.2.1.2 NAVSS Integration
          1. 10.2.1.2.1 NAVSS Interrupt Router Configuration
          2. 10.2.1.2.2 Global Event Map
          3. 10.2.1.2.3 PSI-L System Thread Map (All NAVSS)
          4. 10.2.1.2.4 NAVSS VBUSM Route ID Table
        3. 10.2.1.3 NAVSS Functional Description
        4. 10.2.1.4 NAVSS Interrupt Configuration
          1. 10.2.1.4.1 NAVSS Event and Interrupt Flow
            1. 10.2.1.4.1.1 NAVSS Interrupts Description
            2. 10.2.1.4.1.2 Application Example
        5. 10.2.1.5 NAVSS Top-level Registers
          1. 10.2.1.5.1 NAVSS0_CFG Registers
          2. 10.2.1.5.2 INTR0_INTR_ROUTER_CFG Registers
          3. 10.2.1.5.3 VIRTID_CFG_MMRS Registers
      2. 10.2.2  MCU Navigator Subsystem (MCU NAVSS)
        1. 10.2.2.1 MCU NAVSS Overview
        2. 10.2.2.2 MCU NAVSS Integration
          1. 10.2.2.2.1  MCU NAVSS Interrupt Router Configuration
          2. 10.2.2.2.2  MCU NAVSS UDMASS Interrupt Aggregator Configuration
          3. 10.2.2.2.3  MCU NAVSS UDMA Configuration
          4. 10.2.2.2.4  MCU NAVSS Ring Accelerator Configuration
          5. 10.2.2.2.5  MCU NAVSS Proxy Configuration
          6. 10.2.2.2.6  MCU NAVSS Secure Proxy Configuration
          7. 10.2.2.2.7  Global Event Map
          8. 10.2.2.2.8  PSI-L System Thread Map (All NAVSS)
          9. 10.2.2.2.9  MCU NAVSS VBUSM Route ID Table
          10. 10.2.2.2.10 1006
        3. 10.2.2.3 MCU NAVSS Functional Description
        4. 10.2.2.4 MCU NAVSS Top-Level Registers
          1. 10.2.2.4.1 MCU_NAVSS0_CFG Registers
          2. 10.2.2.4.2 MCU_NAVSS0_UDMASS_ECCAGGR0 Registers
      3. 10.2.3  Unified DMA Controller (UDMA)
        1. 10.2.3.1 UDMA Overview
          1. 10.2.3.1.1 UDMA Features
          2. 10.2.3.1.2 UDMA Parameters
        2. 10.2.3.2 UDMA Integration
        3. 10.2.3.3 UDMA Functional Description
          1. 10.2.3.3.1 Block Diagram
          2. 10.2.3.3.2 General Functionality
            1. 10.2.3.3.2.1  Operational States
            2. 10.2.3.3.2.2  Tx Channel Allocation
            3. 10.2.3.3.2.3  Rx Channel Allocation
            4. 10.2.3.3.2.4  Tx Teardown
            5. 10.2.3.3.2.5  Rx Teardown
            6. 10.2.3.3.2.6  Tx Clock Stop
            7. 10.2.3.3.2.7  Rx Clock Stop
            8. 10.2.3.3.2.8  Rx Thread Enables
            9. 10.2.3.3.2.9  Events
              1. 10.2.3.3.2.9.1 Local Event Inputs
              2. 10.2.3.3.2.9.2 Inbound Tx PSI-L Events
              3. 10.2.3.3.2.9.3 Outbound Rx PSI-L Events
            10. 10.2.3.3.2.10 Emulation Control
          3. 10.2.3.3.3 Packet Oriented Transmit Operation
            1. 10.2.3.3.3.1 Packet Mode VBUSM Master Interface Command ID Selection
          4. 10.2.3.3.4 Packet Oriented Receive Operation
            1. 10.2.3.3.4.1 Rx Packet Drop
            2. 10.2.3.3.4.2 Rx Starvation and the Starvation Timer
          5. 10.2.3.3.5 Third Party Mode Operation
            1. 10.2.3.3.5.1 Events and Flow Control
              1. 10.2.3.3.5.1.1 Channel Triggering
              2. 10.2.3.3.5.1.2 Internal TR Completion Events
            2. 10.2.3.3.5.2 Transmit Operation
              1. 10.2.3.3.5.2.1 Transfer Request
              2. 10.2.3.3.5.2.2 Transfer Response
              3. 10.2.3.3.5.2.3 Data Transfer
              4. 10.2.3.3.5.2.4 Memory Interface Transactions
              5. 10.2.3.3.5.2.5 Error Handling
            3. 10.2.3.3.5.3 Receive Operation
              1. 10.2.3.3.5.3.1 Transfer Request
              2. 10.2.3.3.5.3.2 Transfer Response
              3. 10.2.3.3.5.3.3 Error Handling
            4. 10.2.3.3.5.4 Data Transfer
              1. 10.2.3.3.5.4.1 Memory Interface Transactions
              2. 10.2.3.3.5.4.2 Rx Packet Drop
        4. 10.2.3.4 UDMA Registers
          1. 10.2.3.4.1 UDMASS_UDMAP0_CFG Registers
          2. 10.2.3.4.2 UDMASS_UDMAP0_CFG_TCHAN Registers
          3. 10.2.3.4.3 UDMASS_UDMAP0_CFG_RCHAN Registers
          4. 10.2.3.4.4 UDMASS_UDMAP0_CFG_RFLOW Registers
          5. 10.2.3.4.5 UDMASS_UDMAP0_CFG_RCHANRT Registers
          6. 10.2.3.4.6 UDMASS_UDMAP0_CFG_TCHANRT Registers
      4. 10.2.4  Ring Accelerator (RINGACC)
        1. 10.2.4.1 RINGACC Overview
          1. 10.2.4.1.1 RINGACC Features
          2. 10.2.4.1.2 RINGACC Not Supported Features
          3. 10.2.4.1.3 RINGACC Parameters
        2. 10.2.4.2 RINGACC Integration
        3. 10.2.4.3 RINGACC Functional Description
          1. 10.2.4.3.1 Block Diagram
            1. 10.2.4.3.1.1  Configuration Registers
            2. 10.2.4.3.1.2  Source Command FIFO
            3. 10.2.4.3.1.3  Source Write Data FIFO
            4. 10.2.4.3.1.4  Source Read Data FIFO
            5. 10.2.4.3.1.5  Source Write Status FIFO
            6. 10.2.4.3.1.6  Main State Machine
            7. 10.2.4.3.1.7  Destination Command FIFO
            8. 10.2.4.3.1.8  Destination Write Data FIFO
            9. 10.2.4.3.1.9  Destination Read Data FIFO
            10. 10.2.4.3.1.10 Destination Write Status FIFO
          2. 10.2.4.3.2 RINGACC Functional Operation
            1. 10.2.4.3.2.1 Queue Modes
              1. 10.2.4.3.2.1.1 Ring Mode
              2. 10.2.4.3.2.1.2 Messaging Mode
              3. 10.2.4.3.2.1.3 Credentials Mode
              4. 10.2.4.3.2.1.4 Queue Manager Mode
              5. 10.2.4.3.2.1.5 Peek Support
              6. 10.2.4.3.2.1.6 Index Register Operation
            2. 10.2.4.3.2.2 VBUSM Slave Ring Operations
            3. 10.2.4.3.2.3 VBUSM Master Interface Command ID Selection
            4. 10.2.4.3.2.4 Ring Push Operation (VBUSM Write to Source Interface)
            5. 10.2.4.3.2.5 Ring Pop Operation (VBUSM Read from Source Interface)
            6. 10.2.4.3.2.6 Host Doorbell Access
            7. 10.2.4.3.2.7 Queue Push Operation (VBUSM Write to Source Interface)
            8. 10.2.4.3.2.8 Queue Pop Operation (VBUSM Read from Source Interface)
            9. 10.2.4.3.2.9 Mismatched Element Size Handling
          3. 10.2.4.3.3 Events
          4. 10.2.4.3.4 Bus Error Handling
          5. 10.2.4.3.5 Monitors
            1. 10.2.4.3.5.1 Threshold Monitor
            2. 10.2.4.3.5.2 Watermark Monitor
            3. 10.2.4.3.5.3 Starvation Monitor
            4. 10.2.4.3.5.4 Statistics Monitor
            5. 10.2.4.3.5.5 Overflow
            6. 10.2.4.3.5.6 Ring Update Port
            7. 10.2.4.3.5.7 Tracing
        4. 10.2.4.4 RINGACC Registers
          1. 10.2.4.4.1 NAVSS0_UDMASS_RINGACC0_CFG Registers
          2. 10.2.4.4.2 NAVSS0_UDMASS_RINGACC0_GCFG Registers
          3. 10.2.4.4.3 NAVSS0_UDMASS_RINGACC0_CFG_MON Registers
          4. 10.2.4.4.4 NAVSS0_UDMASS_RINGACC0_CFG_RT Registers
          5. 10.2.4.4.5 NAVSS0_UDMASS_RINGACC0_SRC_FIFOS Registers
      5. 10.2.5  Proxy
        1. 10.2.5.1 Proxy Overview
          1. 10.2.5.1.1 Proxy Features
          2. 10.2.5.1.2 Proxy Parameters
          3. 10.2.5.1.3 Proxy Not Supported Features
        2. 10.2.5.2 Proxy Integration
        3. 10.2.5.3 Proxy Functional Description
          1. 10.2.5.3.1  Targets
            1. 10.2.5.3.1.1 Ring Accelerator
          2. 10.2.5.3.2  Proxy Sizes
          3. 10.2.5.3.3  Proxy Interleaving
          4. 10.2.5.3.4  Proxy Host States
          5. 10.2.5.3.5  Proxy Host Channel Selection
          6. 10.2.5.3.6  Proxy Host Access
            1. 10.2.5.3.6.1 Proxy Host Writes
            2. 10.2.5.3.6.2 Proxy Host Reads
          7. 10.2.5.3.7  Permission Inheritance
          8. 10.2.5.3.8  Buffer Size
          9. 10.2.5.3.9  Error Events
          10. 10.2.5.3.10 Debug Reads
        4. 10.2.5.4 Proxy Registers
          1. 10.2.5.4.1 NAVSS0_PROXY0_CFG_BUF_CFG Registers
          2. 10.2.5.4.2 NAVSS0_PROXY0_BUF_CFG Registers
          3. 10.2.5.4.3 NAVSS0_PROXY_BUF Registers
          4. 10.2.5.4.4 NAVSS0_PROXY_TARGET0_DATA Registers
      6. 10.2.6  Secure Proxy
        1. 10.2.6.1 Secure Proxy Overview
          1. 10.2.6.1.1 Secure Proxy Features
          2. 10.2.6.1.2 Secure Proxy Parameters
          3. 10.2.6.1.3 Secure Proxy Not Supported Features
        2. 10.2.6.2 Secure Proxy Integration
        3. 10.2.6.3 Secure Proxy Functional Description
          1. 10.2.6.3.1  Targets
            1. 10.2.6.3.1.1 Ring Accelerator
          2. 10.2.6.3.2  Buffers
            1. 10.2.6.3.2.1 Proxy Credits
            2. 10.2.6.3.2.2 Proxy Private Word
            3. 10.2.6.3.2.3 Completion Byte
          3. 10.2.6.3.3  Proxy Thread Sizes
          4. 10.2.6.3.4  Proxy Thread Interleaving
          5. 10.2.6.3.5  Proxy States
          6. 10.2.6.3.6  Proxy Host Access
            1. 10.2.6.3.6.1 Proxy Host Writes
            2. 10.2.6.3.6.2 Proxy Host Reads
            3. 10.2.6.3.6.3 Buffer Accesses
            4. 10.2.6.3.6.4 Target Access
            5. 10.2.6.3.6.5 Error State
          7. 10.2.6.3.7  Permission Inheritance
          8. 10.2.6.3.8  Resource Association
          9. 10.2.6.3.9  Direction
          10. 10.2.6.3.10 Threshold Events
          11. 10.2.6.3.11 Error Events
          12. 10.2.6.3.12 Bus Errors and Credits
          13. 10.2.6.3.13 Debug
        4. 10.2.6.4 Secure Proxy Registers
          1. 10.2.6.4.1 NAVSS0_SEC_PROXY0_CFG_MMRS Registers
          2. 10.2.6.4.2 NAVSS0_SEC_PROXY0_CFG_RT Registers
          3. 10.2.6.4.3 NAVSS0_SEC_PROXY0_CFG_SCFG Registers
          4. 10.2.6.4.4 NAVSS0_SEC_PROXY0_SRC_TARGET_DATA Registers
      7. 10.2.7  Interrupt Aggregator (INTR_AGGR)
        1. 10.2.7.1 INTR_AGGR Overview
          1. 10.2.7.1.1 INTR_AGGR Features
          2. 10.2.7.1.2 INTR_AGGR Parameters
        2. 10.2.7.2 INTR_AGGR Integration
        3. 10.2.7.3 INTR_AGGR Functional Description
          1. 10.2.7.3.1 Submodule Descriptions
            1. 10.2.7.3.1.1 Status/Mask Registers
            2. 10.2.7.3.1.2 Interrupt Mapping Block
            3. 10.2.7.3.1.3 Global Event Input (GEVI) Counters
            4. 10.2.7.3.1.4 Local Event Input (LEVI) to Global Event Conversion
            5. 10.2.7.3.1.5 Global Event Multicast
          2. 10.2.7.3.2 General Functionality
            1. 10.2.7.3.2.1 Event to Interrupt Bit Steering
            2. 10.2.7.3.2.2 Interrupt Status
            3. 10.2.7.3.2.3 Interrupt Masked Status
            4. 10.2.7.3.2.4 Enabling/Disabling Individual Interrupt Source Bits
            5. 10.2.7.3.2.5 Interrupt Output Generation
            6. 10.2.7.3.2.6 Global Event Counting
            7. 10.2.7.3.2.7 Local Event to Global Event Conversion
            8. 10.2.7.3.2.8 Global Event Multicast
        4. 10.2.7.4 INTR_AGGR Registers
          1. 10.2.7.4.1  MODSS_INTA_CFG Registers
          2. 10.2.7.4.2  MODSS_INTA_CFG_IMAP Registers
          3. 10.2.7.4.3  MODSS_INTA_CFG_INTR Registers
          4. 10.2.7.4.4  UDMASS_INTA0_CFG Registers
          5. 10.2.7.4.5  UDMASS_INTA0_CFG_INTR Registers
          6. 10.2.7.4.6  UDMASS_INTA0_CFG_IMAP Registers
          7. 10.2.7.4.7  UDMASS_INTA0_CFG_L2G Registers
          8. 10.2.7.4.8  UDMASS_INTA0_CFG_MCAST Registers
          9. 10.2.7.4.9  UDMASS_INTA0_CFG_GCNTCFG Registers
          10. 10.2.7.4.10 UDMASS_INTA0_CFG_GCNTRTI Registers
      8. 10.2.8  Packet Streaming Interface Link (PSI-L)
        1. 10.2.8.1 PSI-L Overview
        2. 10.2.8.2 PSI-L Functional Description
          1. 10.2.8.2.1 PSI-L Introduction
          2. 10.2.8.2.2 PSI-L Operation
            1. 10.2.8.2.2.1 Event Transport
            2. 10.2.8.2.2.2 Threads
            3. 10.2.8.2.2.3 Arbitration Protocol
            4. 10.2.8.2.2.4 Thread Configuration
              1. 10.2.8.2.2.4.1 Thread Pairing
                1. 10.2.8.2.2.4.1.1 Configuration Transaction Pairing
              2. 10.2.8.2.2.4.2 Configuration Registers Region
        3. 10.2.8.3 PSI-L Configuration Registers
        4. 10.2.8.4 PSI-L CFG_PROXY Registers
      9. 10.2.9  PSIL Subsystem (PSILSS)
        1. 10.2.9.1 PSILSS Overview
          1. 10.2.9.1.1 PSILSS Features
        2. 10.2.9.2 PSILSS Functional Description
          1. 10.2.9.2.1 PSILSS Basic Operation
          2. 10.2.9.2.2 PSILSS Event Routing
          3. 10.2.9.2.3 PSILSS Link Down Detection
          4. 10.2.9.2.4 PSILSS Configuration
        3. 10.2.9.3 PSILSS Registers
          1. 10.2.9.3.1 PDMA_USART_PSILSS0 Registers
          2. 10.2.9.3.2 PDMA_SPI_PSILSS0 Registers
      10. 10.2.10 NAVSS North Bridge (NB)
        1. 10.2.10.1 NB Overview
          1. 10.2.10.1.1 Features Supported
          2. 10.2.10.1.2 NB Parameters
            1. 10.2.10.1.2.1 Compliance to Standards
            2. 10.2.10.1.2.2 Features Not Supported
        2. 10.2.10.2 NB Functional Description
          1. 10.2.10.2.1  VBUSM Slave Interfaces
          2. 10.2.10.2.2  VBUSM Master Interface
          3. 10.2.10.2.3  VBUSM.C Interfaces
            1. 10.2.10.2.3.1 Multi-Threading
            2. 10.2.10.2.3.2 Write Command Crediting
            3. 10.2.10.2.3.3 Early Credit Response
            4. 10.2.10.2.3.4 Priority Escalation
          4. 10.2.10.2.4  Source M2M Bridges
          5. 10.2.10.2.5  Destination M2M Bridge
          6. 10.2.10.2.6  M2C Bridge
          7. 10.2.10.2.7  Memory Attribute Tables
          8. 10.2.10.2.8  Outstanding Read Data Limiter
          9. 10.2.10.2.9  Ordering
          10. 10.2.10.2.10 Quality of Service
          11. 10.2.10.2.11 IDLE Behavior
          12. 10.2.10.2.12 Clock Power Management
        3. 10.2.10.3 NB Registers
          1. 10.2.10.3.1 NAVSS0_NBSS_CFG_REGS0_MMRS Registers
          2. 10.2.10.3.2 NAVSS0_NBSS_NB_CFG_MMRS Registers
    3. 10.3 Peripheral DMA (PDMA)
      1. 10.3.1 PDMA Controller
        1. 10.3.1.1 PDMA Overview
          1. 10.3.1.1.1 PDMA Features
            1. 10.3.1.1.1.1  MCU_PDMA0 (MCU_PDMA_MISC_G0) Features
            2. 10.3.1.1.1.2  MCU_PDMA1 (MCU_PDMA_MISC_G1) Features
            3. 10.3.1.1.1.3  MCU_PDMA2 (MCU_PDMA_MISC_G2) Features
            4. 10.3.1.1.1.4  MCU_PDMA3 (MCU_PDMA_ADC) Features
            5. 10.3.1.1.1.5  PDMA2 (PDMA_DEBUG_CCMCU) Features
            6. 10.3.1.1.1.6  PDMA5 (PDMA_MCAN) Features
            7. 10.3.1.1.1.7  PDMA6 (PDMA_MCASP_G0) Features
            8. 10.3.1.1.1.8  PDMA9 (PDMA_SPI_G0) Features
            9. 10.3.1.1.1.9  PDMA10 (PDMA_SPI_G1) Features
            10. 10.3.1.1.1.10 PDMA13 (PDMA_USART_G0) Features
            11. 10.3.1.1.1.11 PDMA14 (PDMA_USART_G1) Features
            12. 10.3.1.1.1.12 PDMA15 (PDMA_USART_G2) Features
        2. 10.3.1.2 PDMA Integration
          1. 10.3.1.2.1 PDMA Integration in MCU Domain
          2. 10.3.1.2.2 PDMA Integration in MAIN Domain
        3. 10.3.1.3 PDMA Functional Description
          1. 10.3.1.3.1 PDMA Functional Blocks
            1. 10.3.1.3.1.1 Scheduler
            2. 10.3.1.3.1.2 Tx Per-Channel Buffers (TCP FIFO)
            3. 10.3.1.3.1.3 Tx DMA Unit (Tx Engine)
            4. 10.3.1.3.1.4 Rx Per-Channel Buffers (RCP FIFO)
            5. 10.3.1.3.1.5 Rx DMA Unit (Rx Engine)
          2. 10.3.1.3.2 PDMA General Functionality
            1. 10.3.1.3.2.1 Operational States
            2. 10.3.1.3.2.2 Clock Stop
            3. 10.3.1.3.2.3 Emulation Control
          3. 10.3.1.3.3 PDMA Events and Flow Control
            1. 10.3.1.3.3.1 Channel Types
              1. 10.3.1.3.3.1.1 X-Y FIFO Mode
              2. 10.3.1.3.3.1.2 MCAN Mode
              3. 10.3.1.3.3.1.3 AASRC Mode
              4. 10.3.1.3.3.1.4 1288
            2. 10.3.1.3.3.2 Channel Triggering
            3. 10.3.1.3.3.3 Completion Events
          4. 10.3.1.3.4 PDMA Transmit Operation
            1. 10.3.1.3.4.1 Destination (Tx) Channel Allocation
            2. 10.3.1.3.4.2 Destination (Tx) Channel Out-of-Band Signals
            3. 10.3.1.3.4.3 Destination Channel Initialization
              1. 10.3.1.3.4.3.1 PSI-L Destination Thread Pairing
              2. 10.3.1.3.4.3.2 Static Transfer Request Setup
              3. 10.3.1.3.4.3.3 1297
              4. 10.3.1.3.4.3.4 PSI-L Destination Thread Enables
            4. 10.3.1.3.4.4 Data Transfer
              1. 10.3.1.3.4.4.1 X-Y FIFO Mode Channel
                1. 10.3.1.3.4.4.1.1 X-Y FIFO Burst Mode
              2. 10.3.1.3.4.4.2 MCAN Mode Channel
                1. 10.3.1.3.4.4.2.1 MCAN Burst Mode
              3. 10.3.1.3.4.4.3 AASRC Mode Channel
            5. 10.3.1.3.4.5 Tx Pause
            6. 10.3.1.3.4.6 Tx Teardown
            7. 10.3.1.3.4.7 Tx Channel Reset
            8. 10.3.1.3.4.8 Tx Debug/State Registers
          5. 10.3.1.3.5 PDMA Receive Operation
            1. 10.3.1.3.5.1 Source (Rx) Channel Allocation
            2. 10.3.1.3.5.2 Source Channel Initialization
              1. 10.3.1.3.5.2.1 PSI-L Source Thread Pairing
              2. 10.3.1.3.5.2.2 Static Transfer Request Setup
              3. 10.3.1.3.5.2.3 PSI-L Source Thread Enables
            3. 10.3.1.3.5.3 Data Transfer
              1. 10.3.1.3.5.3.1 X-Y FIFO Mode Channel
              2. 10.3.1.3.5.3.2 MCAN Mode Channel
                1. 10.3.1.3.5.3.2.1 MCAN Burst Mode
              3. 10.3.1.3.5.3.3 AASRC Mode Channel
            4. 10.3.1.3.5.4 Rx Pause
            5. 10.3.1.3.5.5 Rx Teardown
            6. 10.3.1.3.5.6 Rx Channel Reset
            7. 10.3.1.3.5.7 Rx Debug/State Register
          6. 10.3.1.3.6 PDMA ECC Support
        4. 10.3.1.4 PDMA Registers
          1. 10.3.1.4.1 PDMA5 ECC Registers
          2. 10.3.1.4.2 PDMA9 ECC Registers
          3. 10.3.1.4.3 PDMA10 ECC Registers
          4. 10.3.1.4.4 PDMA PSI-L TX Configuration Registers
          5. 10.3.1.4.5 PDMA PSI-L RX Configuration Registers
      2. 10.3.2 PDMA Sources
        1. 10.3.2.1 MCU Domain PDMA Event Maps
          1. 10.3.2.1.1 MCU_PDMA_MISC_G0 Event Map
          2. 10.3.2.1.2 MCU_PDMA_MISC_G1 Event Map
          3. 10.3.2.1.3 MCU_PDMA_MISC_G2 Event Map
          4. 10.3.2.1.4 MCU_PDMA_ADC Event Map
        2. 10.3.2.2 MAIN Domain PDMA Event Maps
          1. 10.3.2.2.1 PDMA_DEBUG_CCMCU Event Map
          2. 10.3.2.2.2 PDMA_MCAN Event Map
          3. 10.3.2.2.3 PDMA_MCASP_G0 Event Map
          4. 10.3.2.2.4 PDMA_SPI_G0 Event Map
          5. 10.3.2.2.5 PDMA_SPI_G1 Event Map
          6. 10.3.2.2.6 PDMA_USART_G0 Event Map
          7. 10.3.2.2.7 PDMA_USART_G1 Event Map
          8. 10.3.2.2.8 PDMA_USART_G2 Event Map
  13. 11Time Sync
    1. 11.1 Time Sync Module (CPTS)
      1. 11.1.1 CPTS Overview
        1. 11.1.1.1 CPTS Features
        2. 11.1.1.2 CPTS Not Supported Features
      2. 11.1.2 CPTS Integration
      3. 11.1.3 CPTS Functional Description
        1. 11.1.3.1  CPTS Architecture
        2. 11.1.3.2  CPTS Initialization
        3. 11.1.3.3  32-bit Time Stamp Value
        4. 11.1.3.4  64-bit Time Stamp Value
          1. 11.1.3.4.1 64-Bit Timestamp Nudge
          2. 11.1.3.4.2 64-bit Timestamp PPM
        5. 11.1.3.5  Event FIFO
        6. 11.1.3.6  Timestamp Compare Output
          1. 11.1.3.6.1 Non-Toggle Mode
          2. 11.1.3.6.2 Toggle Mode
        7. 11.1.3.7  Timestamp Sync Output
        8. 11.1.3.8  Timestamp GENF Output
          1. 11.1.3.8.1 GENFn Nudge
          2. 11.1.3.8.2 GENFn PPM
        9. 11.1.3.9  Time Sync Events
          1. 11.1.3.9.1 Time Stamp Push Event
          2. 11.1.3.9.2 Time Stamp Counter Rollover Event (32-bit mode only)
          3. 11.1.3.9.3 Time Stamp Counter Half-rollover Event (32-bit mode only)
          4. 11.1.3.9.4 Hardware Time Stamp Push Event
        10. 11.1.3.10 Timestamp Compare Event
        11. 11.1.3.11 CPTS Interrupt Handling
      4. 11.1.4 CPTS Registers
    2. 11.2 Timer Manager
      1. 11.2.1 Timer Manager Overview
        1. 11.2.1.1 Timer Manager Features
        2. 11.2.1.2 Timer Manager Not Supported Features
      2. 11.2.2 Timer Manager Integration
      3. 11.2.3 Timer Manager Functional Description
        1. 11.2.3.1 Timer Manager Function Overview
        2. 11.2.3.2 Timer Counter
          1. 11.2.3.2.1 Timer Counter Rollover
        3. 11.2.3.3 Timer Control Module (FSM)
        4. 11.2.3.4 Timer Reprogramming
          1. 11.2.3.4.1 Periodic Hardware Timers
        5. 11.2.3.5 Event FIFO
        6. 11.2.3.6 Output Event Lookup (OES RAM)
      4. 11.2.4 Timer Manager Programming Guide
        1. 11.2.4.1 Timer Manager Low-level Programming Models
          1. 11.2.4.1.1 Surrounding Modules Global Initialization
          2. 11.2.4.1.2 Initialization Sequence
          3. 11.2.4.1.3 Real-time Operating Requirements
            1. 11.2.4.1.3.1 Timer Touch
            2. 11.2.4.1.3.2 Timer Disable
            3. 11.2.4.1.3.3 Timer Enable
          4. 11.2.4.1.4 Power Up/Power Down Sequence
      5. 11.2.5 Timer Manager Registers
        1. 11.2.5.1 TIMERMGR_CFG_CFG Registers
        2. 11.2.5.2 TIMERMGR_CFG_OES Registers
        3. 11.2.5.3 TIMERMGR_CFG_TIMERS Registers
    3. 11.3 Time Sync and Compare Events
      1. 11.3.1 Time Sync Architecture
        1. 11.3.1.1 Time Sync Architecture Overview
      2. 11.3.2 Time Sync Routers
        1. 11.3.2.1 Time Sync Routers Overview
        2. 11.3.2.2 Time Sync Routers Integration
          1. 11.3.2.2.1 TIMESYNC_INTRTR0 Integration
          2. 11.3.2.2.2 CMPEVT_INTRTR0 Integration
        3. 11.3.2.3 Time Sync Routers Registers
          1. 11.3.2.3.1 TIMESYNC_INTRTR0 Registers
          2. 11.3.2.3.2 CMPEVT_INTRTR0 Registers
      3. 11.3.3 Time Sync Event Sources
        1. 11.3.3.1 CMPEVT_INTRTR0 Event Map
        2. 11.3.3.2 TIMESYNC_INTRTR0 Event Map
        3. 11.3.3.3 DMSS0 Sync Event Map
        4. 11.3.3.4 PCIE1 Sync Event Map
        5. 11.3.3.5 MCU_CPSW0 Sync Event Map
        6. 11.3.3.6 CPSW0 Sync Event Map
        7. 11.3.3.7 I/O Sync Event Map
  14. 12Peripherals
    1. 12.1 General Connectivity Peripherals
      1. 12.1.1 Analog-to-Digital Converter (ADC)
        1. 12.1.1.1 ADC Overview
          1. 12.1.1.1.1 ADC Features
          2. 12.1.1.1.2 ADC Not Supported Features
        2. 12.1.1.2 ADC Environment
          1. 12.1.1.2.1 ADC Interface Signals
        3. 12.1.1.3 ADC Integration
          1. 12.1.1.3.1 ADC Integration in MCU Domain
        4. 12.1.1.4 ADC Functional Description
          1. 12.1.1.4.1 ADC FSM Sequencer Functional Description
            1. 12.1.1.4.1.1 Step Enable
            2. 12.1.1.4.1.2 Step Configuration
              1. 12.1.1.4.1.2.1 One-Shot (Single) or Continuous Mode
              2. 12.1.1.4.1.2.2 Software- or Hardware-Enabled Steps
              3. 12.1.1.4.1.2.3 Averaging of Samples
              4. 12.1.1.4.1.2.4 Analog Multiplexer Input Select
              5. 12.1.1.4.1.2.5 Differential Control
              6. 12.1.1.4.1.2.6 FIFO Select
              7. 12.1.1.4.1.2.7 Range Check Interrupt Enable
            3. 12.1.1.4.1.3 Open Delay and Sample Delay
              1. 12.1.1.4.1.3.1 Open Delay
              2. 12.1.1.4.1.3.2 Sample Delay
            4. 12.1.1.4.1.4 Interrupts
            5. 12.1.1.4.1.5 Power Management
            6. 12.1.1.4.1.6 DMA Requests
          2. 12.1.1.4.2 ADC AFE Functional Description
            1. 12.1.1.4.2.1 AFE Functional Block Diagram
            2. 12.1.1.4.2.2 ADC GPI Integration
          3. 12.1.1.4.3 ADC FIFOs and DMA
            1. 12.1.1.4.3.1 FIFOs
            2. 12.1.1.4.3.2 DMA
          4. 12.1.1.4.4 ADC Error Correcting Code (ECC)
            1. 12.1.1.4.4.1 Testing ECC Error Injection
          5. 12.1.1.4.5 ADC Functional Internal Diagnostic Debug Mode
        5. 12.1.1.5 ADC Programming Guide
          1. 12.1.1.5.1 ADC Low-Level Programming Models
            1. 12.1.1.5.1.1 Global Initialization
              1. 12.1.1.5.1.1.1 Surrounding Modules Global Initialization
              2. 12.1.1.5.1.1.2 General Programming Model
            2. 12.1.1.5.1.2 During Operation
        6. 12.1.1.6 ADC Registers
      2. 12.1.2 General-Purpose Interface (GPIO)
        1. 12.1.2.1 GPIO Overview
          1. 12.1.2.1.1 GPIO Features
          2. 12.1.2.1.2 GPIO Not Supported Features
        2. 12.1.2.2 GPIO Environment
          1. 12.1.2.2.1 GPIO Interface Signals
        3. 12.1.2.3 GPIO Integration
          1. 12.1.2.3.1 GPIO Integration in WKUP Domain
          2. 12.1.2.3.2 GPIO Integration in MAIN Domain
        4. 12.1.2.4 GPIO Functional Description
          1. 12.1.2.4.1 GPIO Block Diagram
          2. 12.1.2.4.2 GPIO Function
          3. 12.1.2.4.3 GPIO Interrupt and Event Generation
            1. 12.1.2.4.3.1 Interrupt Enable (per Bank)
            2. 12.1.2.4.3.2 Trigger Configuration (per Bit)
            3. 12.1.2.4.3.3 Interrupt Status and Clear (per Bit)
          4. 12.1.2.4.4 GPIO Interrupt Connectivity
          5. 12.1.2.4.5 GPIO DeepSleep Mode
          6. 12.1.2.4.6 GPIO Emulation Halt Operation
        5. 12.1.2.5 GPIO Programming Guide
          1. 12.1.2.5.1 GPIO Low-Level Programming Models
            1. 12.1.2.5.1.1 Global Initialization
              1. 12.1.2.5.1.1.1 Surrounding Modules Global Initialization
              2. 12.1.2.5.1.1.2 GPIO Module Global Initialization
            2. 12.1.2.5.1.2 GPIO Operational Modes Configuration
              1. 12.1.2.5.1.2.1 GPIO Read Input Register
              2. 12.1.2.5.1.2.2 GPIO Set Bit Function
              3. 12.1.2.5.1.2.3 GPIO Clear Bit Function
        6. 12.1.2.6 GPIO Registers
      3. 12.1.3 Inter-Integrated Circuit (I2C) Interface
        1. 12.1.3.1 I2C Overview
          1. 12.1.3.1.1 I2C Features
          2. 12.1.3.1.2 I2C Not Supported Features
        2. 12.1.3.2 I2C Environment
          1. 12.1.3.2.1 I2C Typical Application
            1. 12.1.3.2.1.1 I2C Pins for Typical Connections in I2C Mode
            2. 12.1.3.2.1.2 I2C Interface Typical Connections
            3. 12.1.3.2.1.3 1501
          2. 12.1.3.2.2 I2C Typical Connection Protocol and Data Format
            1. 12.1.3.2.2.1  I2C Serial Data Format
            2. 12.1.3.2.2.2  I2C Data Validity
            3. 12.1.3.2.2.3  I2C Start and Stop Conditions
            4. 12.1.3.2.2.4  I2C Addressing
              1. 12.1.3.2.2.4.1 Data Transfer Formats in F/S Mode
              2. 12.1.3.2.2.4.2 Data Transfer Format in HS Mode
            5. 12.1.3.2.2.5  I2C Controller Transmitter
            6. 12.1.3.2.2.6  I2C Controller Receiver
            7. 12.1.3.2.2.7  I2C Target Transmitter
            8. 12.1.3.2.2.8  I2C Target Receiver
            9. 12.1.3.2.2.9  I2C Bus Arbitration
            10. 12.1.3.2.2.10 I2C Clock Generation and Synchronization
        3. 12.1.3.3 I2C Integration
          1. 12.1.3.3.1 I2C Integration in WKUP Domain
          2. 12.1.3.3.2 I2C Integration in MCU Domain
          3. 12.1.3.3.3 I2C Integration in MAIN Domain
        4. 12.1.3.4 I2C Functional Description
          1. 12.1.3.4.1 I2C Block Diagram
          2. 12.1.3.4.2 I2C Clocks
            1. 12.1.3.4.2.1 I2C Clocking
            2. 12.1.3.4.2.2 I2C Automatic Blocking of the I2C Clock Feature
          3. 12.1.3.4.3 I2C Software Reset
          4. 12.1.3.4.4 I2C Power Management
          5. 12.1.3.4.5 I2C Interrupt Requests
          6. 12.1.3.4.6 I2C Programmable Multitarget Channel Feature
          7. 12.1.3.4.7 I2C FIFO Management
            1. 12.1.3.4.7.1 I2C FIFO Interrupt Mode
            2. 12.1.3.4.7.2 I2C FIFO Polling Mode
            3. 12.1.3.4.7.3 I2C Draining Feature
          8. 12.1.3.4.8 I2C Noise Filter
          9. 12.1.3.4.9 I2C System Test Mode
        5. 12.1.3.5 I2C Programming Guide
          1. 12.1.3.5.1 I2C Low-Level Programming Models
            1. 12.1.3.5.1.1 I2C Programming Model
              1. 12.1.3.5.1.1.1 Main Program
                1. 12.1.3.5.1.1.1.1 Configure the Module Before Enabling the I2C Controller
                2. 12.1.3.5.1.1.1.2 Initialize the I2C Controller
                3. 12.1.3.5.1.1.1.3 Configure Target Address and the Data Control Register
                4. 12.1.3.5.1.1.1.4 Initiate a Transfer
                5. 12.1.3.5.1.1.1.5 Receive Data
                6. 12.1.3.5.1.1.1.6 Transmit Data
              2. 12.1.3.5.1.1.2 Interrupt Subroutine Sequence
              3. 12.1.3.5.1.1.3 Programming Flow-Diagrams
        6. 12.1.3.6 I2C Registers
      4. 12.1.4 Improved Inter-Integrated Circuit (I3C) Interface
        1. 12.1.4.1 I3C Overview
          1. 12.1.4.1.1 I3C Features
          2. 12.1.4.1.2 I3C Not Supported Features
        2. 12.1.4.2 I3C Environment
          1. 12.1.4.2.1 I3C Typical Application
            1. 12.1.4.2.1.1 I3C Pins for Typical Connections
            2. 12.1.4.2.1.2 I3C Interface Typical Connections
            3. 12.1.4.2.1.3 1555
        3. 12.1.4.3 I3C Integration
          1. 12.1.4.3.1 I3C Integration in MCU Domain
          2. 12.1.4.3.2 I3C Integration in MAIN Domain
        4. 12.1.4.4 I3C Functional Description
          1. 12.1.4.4.1  I3C Block Diagram
          2. 12.1.4.4.2  I3C Clock Configuration
            1. 12.1.4.4.2.1 Setting Base Frequencies
            2. 12.1.4.4.2.2 Asymmetric Push-Pull SCL Timing
            3. 12.1.4.4.2.3 Open-Drain SCL Timing
            4. 12.1.4.4.2.4 Changing Programmed Frequencies
          3. 12.1.4.4.3  I3C Interrupt Requests
          4. 12.1.4.4.4  I3C Power Configuration
          5. 12.1.4.4.5  I3C Dynamic Address Management
          6. 12.1.4.4.6  I3C Retaining Registers Space
          7. 12.1.4.4.7  I3C Dynamic Address Assignment Procedure
          8. 12.1.4.4.8  I3C Sending CCC Messages
          9. 12.1.4.4.9  I3C In-Band Interrupt
            1. 12.1.4.4.9.1 Regular I3C Slave In-Band Interrupt
            2. 12.1.4.4.9.2 Current Master Takeover In-Band Interrupt
          10. 12.1.4.4.10 I3C Hot-Join Request
          11. 12.1.4.4.11 I3C Immediate Commands
          12. 12.1.4.4.12 I3C Host Commands
          13. 12.1.4.4.13 I3C Sending Private Data in SDR Messages
            1. 12.1.4.4.13.1 SDR Private Write Message
            2. 12.1.4.4.13.2 SDR Private Read Message
            3. 12.1.4.4.13.3 SDR Payload Length Adjustment
        5. 12.1.4.5 I3C Programming Guide
          1. 12.1.4.5.1 I3C Power-On Programming Model
          2. 12.1.4.5.2 I3C Static Devices Programming
          3. 12.1.4.5.3 I3C DAA Procedure Initiation
          4. 12.1.4.5.4 I3C SDR Write Message Programming Model
          5. 12.1.4.5.5 I3C SDR Read Message Programming Model
          6. 12.1.4.5.6 I3C DDR Write Message Programming Model
          7. 12.1.4.5.7 I3C DDR Read Message Programming Model
        6. 12.1.4.6 I3C Registers
      5. 12.1.5 Multichannel Serial Peripheral Interface (MCSPI)
        1. 12.1.5.1 MCSPI Overview
          1. 12.1.5.1.1 SPI Features
          2. 12.1.5.1.2 MCSPI Not Supported Features
        2. 12.1.5.2 MCSPI Environment
          1. 12.1.5.2.1 Basic MCSPI Pins for Master Mode
          2. 12.1.5.2.2 Basic MCSPI Pins for Slave Mode
          3. 12.1.5.2.3 MCSPI Internal Connectivity
          4. 12.1.5.2.4 MCSPI Protocol and Data Format
            1. 12.1.5.2.4.1 Transfer Format
          5. 12.1.5.2.5 MCSPI in Controller Mode
          6. 12.1.5.2.6 MCSPI in Peripheral Mode
        3. 12.1.5.3 MCSPI Integration
          1. 12.1.5.3.1 MCSPI Integration in MCU Domain
          2. 12.1.5.3.2 MCSPI Integration in MAIN Domain
        4. 12.1.5.4 MCSPI Functional Description
          1. 12.1.5.4.1 SPI Block Diagram
          2. 12.1.5.4.2 MCSPI Reset
          3. 12.1.5.4.3 MCSPI Controller Mode
            1. 12.1.5.4.3.1 Controller Mode Features
            2. 12.1.5.4.3.2 Controller Transmit-and-Receive Mode (Full Duplex)
            3. 12.1.5.4.3.3 Controller Transmit-Only Mode (Half Duplex)
            4. 12.1.5.4.3.4 Controller Receive-Only Mode (Half Duplex)
            5. 12.1.5.4.3.5 Single-Channel Controller Mode
              1. 12.1.5.4.3.5.1 Programming Tips When Switching to Another Channel
              2. 12.1.5.4.3.5.2 Force SPIEN[i] Mode
              3. 12.1.5.4.3.5.3 Turbo Mode
            6. 12.1.5.4.3.6 Start-Bit Mode
            7. 12.1.5.4.3.7 Chip-Select Timing Control
            8. 12.1.5.4.3.8 Programmable MCSPI Clock (SPICLK)
              1. 12.1.5.4.3.8.1 Clock Ratio Granularity
          4. 12.1.5.4.4 MCSPI Peripheral Mode
            1. 12.1.5.4.4.1 Dedicated Resources
            2. 12.1.5.4.4.2 Peripheral Transmit-and-Receive Mode
            3. 12.1.5.4.4.3 Peripheral Transmit-Only Mode
            4. 12.1.5.4.4.4 Peripheral Receive-Only Mode
          5. 12.1.5.4.5 MCSPI 3-Pin or 4-Pin Mode
          6. 12.1.5.4.6 MCSPI FIFO Buffer Management
            1. 12.1.5.4.6.1 Buffer Almost Full
            2. 12.1.5.4.6.2 Buffer Almost Empty
            3. 12.1.5.4.6.3 End of Transfer Management
            4. 12.1.5.4.6.4 Multiple MCSPI Word Access
            5. 12.1.5.4.6.5 First MCSPI Word Delay
          7. 12.1.5.4.7 MCSPI Interrupts
            1. 12.1.5.4.7.1 Interrupt Events in Controller Mode
              1. 12.1.5.4.7.1.1 TXx_EMPTY
              2. 12.1.5.4.7.1.2 TXx_UNDERFLOW
              3. 12.1.5.4.7.1.3 RXx_ FULL
              4. 12.1.5.4.7.1.4 End Of Word Count
            2. 12.1.5.4.7.2 Interrupt Events in Peripheral Mode
              1. 12.1.5.4.7.2.1 TXx_EMPTY
              2. 12.1.5.4.7.2.2 TXx_UNDERFLOW
              3. 12.1.5.4.7.2.3 RXx_FULL
              4. 12.1.5.4.7.2.4 RX0_OVERFLOW
              5. 12.1.5.4.7.2.5 End Of Word Count
            3. 12.1.5.4.7.3 Interrupt-Driven Operation
            4. 12.1.5.4.7.4 Polling
          8. 12.1.5.4.8 MCSPI DMA Requests
          9. 12.1.5.4.9 MCSPI Power Saving Management
            1. 12.1.5.4.9.1 Normal Mode
            2. 12.1.5.4.9.2 Idle Mode
              1. 12.1.5.4.9.2.1 Force-Idle Mode
        5. 12.1.5.5 MCSPI Programming Guide
          1. 12.1.5.5.1 MCSPI Global Initialization
            1. 12.1.5.5.1.1 Surrounding Modules Global Initialization
            2. 12.1.5.5.1.2 MCSPI Global Initialization
              1. 12.1.5.5.1.2.1 Main Sequence – MCSPI Global Initialization
          2. 12.1.5.5.2 MCSPI Operational Mode Configuration
            1. 12.1.5.5.2.1 MCSPI Operational Modes
              1. 12.1.5.5.2.1.1 Common Transfer Sequence
              2. 12.1.5.5.2.1.2 End of Transfer Sequences
              3. 12.1.5.5.2.1.3 Transmit-and-Receive (Controller and Peripheral)
              4. 12.1.5.5.2.1.4 Transmit-Only (Controller and Peripheral)
                1. 12.1.5.5.2.1.4.1 Based on Interrupt Requests
                2. 12.1.5.5.2.1.4.2 Based on DMA Write Requests
              5. 12.1.5.5.2.1.5 Controller Normal Receive-Only
                1. 12.1.5.5.2.1.5.1 Based on Interrupt Requests
                2. 12.1.5.5.2.1.5.2 Based on DMA Read Requests
              6. 12.1.5.5.2.1.6 Controller Turbo Receive-Only
                1. 12.1.5.5.2.1.6.1 Based on Interrupt Requests
                2. 12.1.5.5.2.1.6.2 Based on DMA Read Requests
              7. 12.1.5.5.2.1.7 Peripheral Receive-Only
              8. 12.1.5.5.2.1.8 Transfer Procedures With FIFO
                1. 12.1.5.5.2.1.8.1 Common Transfer Sequence in FIFO Mode
                2. 12.1.5.5.2.1.8.2 End of Transfer Sequences in FIFO Mode
                3. 12.1.5.5.2.1.8.3 Transmit-and-Receive With Word Count
                4. 12.1.5.5.2.1.8.4 Transmit-and-Receive Without Word Count
                5. 12.1.5.5.2.1.8.5 Transmit-Only
                6. 12.1.5.5.2.1.8.6 Receive-Only With Word Count
                7. 12.1.5.5.2.1.8.7 Receive-Only Without Word Count
              9. 12.1.5.5.2.1.9 Common Transfer Procedures Without FIFO – Polling Method
                1. 12.1.5.5.2.1.9.1 Receive-Only Procedure – Polling Method
                2. 12.1.5.5.2.1.9.2 Receive-Only Procedure – Interrupt Method
                3. 12.1.5.5.2.1.9.3 Transmit-Only Procedure – Polling Method
                4. 12.1.5.5.2.1.9.4 Transmit-and-Receive Procedure – Polling Method
        6. 12.1.5.6 MCSPI Registers
      6. 12.1.6 Universal Asynchronous Receiver/Transmitter (UART)
        1. 12.1.6.1 UART Overview
          1. 12.1.6.1.1 UART Features
          2. 12.1.6.1.2 IrDA Features
          3. 12.1.6.1.3 CIR Features
          4. 12.1.6.1.4 UART Not Supported Features
        2. 12.1.6.2 UART Environment
          1. 12.1.6.2.1 UART Functional Interfaces
            1. 12.1.6.2.1.1 System Using UART Communication With Hardware Handshake
            2. 12.1.6.2.1.2 UART Interface Description
            3. 12.1.6.2.1.3 UART Protocol and Data Format
            4. 12.1.6.2.1.4 UART 9-bit Mode Data Format
          2. 12.1.6.2.2 RS-485 Functional Interfaces
            1. 12.1.6.2.2.1 System Using RS-485 Communication
            2. 12.1.6.2.2.2 RS-485 Interface Description
          3. 12.1.6.2.3 IrDA Functional Interfaces
            1. 12.1.6.2.3.1 System Using IrDA Communication Protocol
            2. 12.1.6.2.3.2 IrDA Interface Description
            3. 12.1.6.2.3.3 IrDA Protocol and Data Format
              1. 12.1.6.2.3.3.1 SIR Mode
                1. 12.1.6.2.3.3.1.1 Frame Format
                2. 12.1.6.2.3.3.1.2 Asynchronous Transparency
                3. 12.1.6.2.3.3.1.3 Abort Sequence
                4. 12.1.6.2.3.3.1.4 Pulse Shaping
                5. 12.1.6.2.3.3.1.5 Encoder
                6. 12.1.6.2.3.3.1.6 Decoder
                7. 12.1.6.2.3.3.1.7 IR Address Checking
              2. 12.1.6.2.3.3.2 SIR Free-Format Mode
              3. 12.1.6.2.3.3.3 MIR Mode
                1. 12.1.6.2.3.3.3.1 MIR Encoder/Decoder
                2. 12.1.6.2.3.3.3.2 SIP Generation
              4. 12.1.6.2.3.3.4 FIR Mode
          4. 12.1.6.2.4 CIR Functional Interfaces
            1. 12.1.6.2.4.1 System Using CIR Communication Protocol With Remote Control
            2. 12.1.6.2.4.2 CIR Interface Description
            3. 12.1.6.2.4.3 CIR Protocol and Data Format
              1. 12.1.6.2.4.3.1 Carrier Modulation
              2. 12.1.6.2.4.3.2 Pulse Duty Cycle
              3. 12.1.6.2.4.3.3 Consumer IR Encoding/Decoding
        3. 12.1.6.3 UART Integration
          1. 12.1.6.3.1 UART Integration in WKUP Domain
          2. 12.1.6.3.2 UART Integration in MCU Domain
          3. 12.1.6.3.3 UART Integration in MAIN Domain
        4. 12.1.6.4 UART Functional Description
          1. 12.1.6.4.1 UART Block Diagram
          2. 12.1.6.4.2 UART Clock Configuration
          3. 12.1.6.4.3 UART Software Reset
            1. 12.1.6.4.3.1 Independent TX/RX
          4. 12.1.6.4.4 UART Power Management
            1. 12.1.6.4.4.1 UART Mode Power Management
              1. 12.1.6.4.4.1.1 Module Power Saving
              2. 12.1.6.4.4.1.2 System Power Saving
            2. 12.1.6.4.4.2 IrDA Mode Power Management
              1. 12.1.6.4.4.2.1 Module Power Saving
              2. 12.1.6.4.4.2.2 System Power Saving
            3. 12.1.6.4.4.3 CIR Mode Power Management
              1. 12.1.6.4.4.3.1 Module Power Saving
              2. 12.1.6.4.4.3.2 System Power Saving
            4. 12.1.6.4.4.4 Local Power Management
          5. 12.1.6.4.5 UART Interrupt Requests
            1. 12.1.6.4.5.1 UART Mode Interrupt Management
              1. 12.1.6.4.5.1.1 UART Interrupts
              2. 12.1.6.4.5.1.2 Wake-Up Interrupt
            2. 12.1.6.4.5.2 IrDA Mode Interrupt Management
              1. 12.1.6.4.5.2.1 IrDA Interrupts
              2. 12.1.6.4.5.2.2 Wake-Up Interrupts
            3. 12.1.6.4.5.3 CIR Mode Interrupt Management
              1. 12.1.6.4.5.3.1 CIR Interrupts
              2. 12.1.6.4.5.3.2 Wake-Up Interrupts
          6. 12.1.6.4.6 UART FIFO Management
            1. 12.1.6.4.6.1 FIFO Trigger
              1. 12.1.6.4.6.1.1 Transmit FIFO Trigger
              2. 12.1.6.4.6.1.2 Receive FIFO Trigger
            2. 12.1.6.4.6.2 FIFO Interrupt Mode
            3. 12.1.6.4.6.3 FIFO Polled Mode Operation
            4. 12.1.6.4.6.4 FIFO DMA Mode Operation
              1. 12.1.6.4.6.4.1 DMA sequence to disable TX DMA
              2. 12.1.6.4.6.4.2 DMA Transfers (DMA Mode 1, 2, or 3)
              3. 12.1.6.4.6.4.3 DMA Transmission
              4. 12.1.6.4.6.4.4 DMA Reception
          7. 12.1.6.4.7 UART Mode Selection
            1. 12.1.6.4.7.1 Register Access Modes
              1. 12.1.6.4.7.1.1 Operational Mode and Configuration Modes
              2. 12.1.6.4.7.1.2 Register Access Submode
              3. 12.1.6.4.7.1.3 Registers Available for the Register Access Modes
            2. 12.1.6.4.7.2 UART/RS-485/IrDA (SIR, MIR, FIR)/CIR Mode Selection
              1. 12.1.6.4.7.2.1 Registers Available for the UART Function
              2. 12.1.6.4.7.2.2 Registers Available for the IrDA Function
              3. 12.1.6.4.7.2.3 Registers Available for the CIR Function
          8. 12.1.6.4.8 UART Protocol Formatting
            1. 12.1.6.4.8.1 UART Mode
              1. 12.1.6.4.8.1.1 UART Clock Generation: Baud Rate Generation
              2. 12.1.6.4.8.1.2 Choosing the Appropriate Divisor Value
              3. 12.1.6.4.8.1.3 UART Data Formatting
                1. 12.1.6.4.8.1.3.1 Frame Formatting
                2. 12.1.6.4.8.1.3.2 Hardware Flow Control
                3. 12.1.6.4.8.1.3.3 Software Flow Control
                  1. 1.6.4.8.1.3.3.1 Receive (RX)
                  2. 1.6.4.8.1.3.3.2 Transmit (TX)
                4. 12.1.6.4.8.1.3.4 Autobauding Modes
                5. 12.1.6.4.8.1.3.5 Error Detection
                6. 12.1.6.4.8.1.3.6 Overrun During Receive
                7. 12.1.6.4.8.1.3.7 Time-Out and Break Conditions
                  1. 1.6.4.8.1.3.7.1 Time-Out Counter
                  2. 1.6.4.8.1.3.7.2 Break Condition
            2. 12.1.6.4.8.2 RS-485 Mode
              1. 12.1.6.4.8.2.1 RS-485 External Transceiver Direction Control
            3. 12.1.6.4.8.3 IrDA Mode
              1. 12.1.6.4.8.3.1 IrDA Clock Generation: Baud Generator
              2. 12.1.6.4.8.3.2 Choosing the Appropriate Divisor Value
              3. 12.1.6.4.8.3.3 IrDA Data Formatting
                1. 12.1.6.4.8.3.3.1  IR RX Polarity Control
                2. 12.1.6.4.8.3.3.2  IrDA Reception Control
                3. 12.1.6.4.8.3.3.3  IR Address Checking
                4. 12.1.6.4.8.3.3.4  Frame Closing
                5. 12.1.6.4.8.3.3.5  Store and Controlled Transmission
                6. 12.1.6.4.8.3.3.6  Error Detection
                7. 12.1.6.4.8.3.3.7  Underrun During Transmission
                8. 12.1.6.4.8.3.3.8  Overrun During Receive
                9. 12.1.6.4.8.3.3.9  Status FIFO
                10. 12.1.6.4.8.3.3.10 Multi-drop Parity Mode with Address Match
                11. 12.1.6.4.8.3.3.11 Time-guard
              4. 12.1.6.4.8.3.4 SIR Mode Data Formatting
                1. 12.1.6.4.8.3.4.1 Abort Sequence
                2. 12.1.6.4.8.3.4.2 Pulse Shaping
                3. 12.1.6.4.8.3.4.3 SIR Free Format Programming
              5. 12.1.6.4.8.3.5 MIR and FIR Mode Data Formatting
            4. 12.1.6.4.8.4 CIR Mode
              1. 12.1.6.4.8.4.1 CIR Mode Clock Generation
              2. 12.1.6.4.8.4.2 CIR Data Formatting
                1. 12.1.6.4.8.4.2.1 IR RX Polarity Control
                2. 12.1.6.4.8.4.2.2 CIR Transmission
                3. 12.1.6.4.8.4.2.3 CIR Reception
        5. 12.1.6.5 UART Programming Guide
          1. 12.1.6.5.1 UART Global Initialization
            1. 12.1.6.5.1.1 Surrounding Modules Global Initialization
            2. 12.1.6.5.1.2 UART Module Global Initialization
          2. 12.1.6.5.2 UART Mode selection
          3. 12.1.6.5.3 UART Submode selection
          4. 12.1.6.5.4 UART Load FIFO trigger and DMA mode settings
            1. 12.1.6.5.4.1 DMA mode Settings
            2. 12.1.6.5.4.2 FIFO Trigger Settings
          5. 12.1.6.5.5 UART Protocol, Baud rate and interrupt settings
            1. 12.1.6.5.5.1 Baud rate settings
            2. 12.1.6.5.5.2 Interrupt settings
            3. 12.1.6.5.5.3 Protocol settings
            4. 12.1.6.5.5.4 UART/RS-485/IrDA(SIR/MIR/FIR)/CIR
            5. 12.1.6.5.5.5 UART Multi-drop Parity Address Match Mode Configuration
          6. 12.1.6.5.6 UART Hardware and Software Flow Control Configuration
            1. 12.1.6.5.6.1 Hardware Flow Control Configuration
            2. 12.1.6.5.6.2 Software Flow Control Configuration
          7. 12.1.6.5.7 IrDA Programming Model
            1. 12.1.6.5.7.1 SIR mode
              1. 12.1.6.5.7.1.1 Receive
              2. 12.1.6.5.7.1.2 Transmit
            2. 12.1.6.5.7.2 MIR mode
              1. 12.1.6.5.7.2.1 Receive
              2. 12.1.6.5.7.2.2 Transmit
            3. 12.1.6.5.7.3 FIR mode
              1. 12.1.6.5.7.3.1 Receive
              2. 12.1.6.5.7.3.2 Transmit
        6. 12.1.6.6 UART Registers
    2. 12.2 High-speed Serial Interfaces
      1. 12.2.1 Gigabit Ethernet MAC (MCU_CPSW0)
        1. 12.2.1.1 MCU_CPSW0 Overview
          1. 12.2.1.1.1 MCU_CPSW0 Features
          2. 12.2.1.1.2 MCU_CPSW0 Not Supported Features
          3. 12.2.1.1.3 Terminology
        2. 12.2.1.2 MCU_CPSW0 Environment
          1. 12.2.1.2.1 MCU_CPSW0 RMII Interface
          2. 12.2.1.2.2 MCU_CPSW0 RGMII Interface
        3. 12.2.1.3 MCU_CPSW0 Integration
        4. 12.2.1.4 MCU_CPSW0 Functional Description
          1. 12.2.1.4.1 Functional Block Diagram
          2. 12.2.1.4.2 CPSW Ports
            1. 12.2.1.4.2.1 Interface Mode Selection
          3. 12.2.1.4.3 Clocking
            1. 12.2.1.4.3.1 Subsystem Clocking
            2. 12.2.1.4.3.2 Interface Clocking
              1. 12.2.1.4.3.2.1 RGMII Interface Clocking
              2. 12.2.1.4.3.2.2 RMII Interface Clocking
              3. 12.2.1.4.3.2.3 MDIO Clocking
          4. 12.2.1.4.4 Software IDLE
          5. 12.2.1.4.5 Interrupt Functionality
            1. 12.2.1.4.5.1 EVNT_PEND Interrupt
            2. 12.2.1.4.5.2 Statistics Interrupt (STAT_PEND0)
            3. 12.2.1.4.5.3 ECC DED Level Interrupt (ECC_DED_INT)
            4. 12.2.1.4.5.4 ECC SEC Level Interrupt (ECC_SEC_INT)
            5. 12.2.1.4.5.5 MDIO Interrupts
          6. 12.2.1.4.6 CPSW_2G
            1. 12.2.1.4.6.1  Address Lookup Engine (ALE)
              1. 12.2.1.4.6.1.1  Error Handling
              2. 12.2.1.4.6.1.2  Bypass Operations
              3. 12.2.1.4.6.1.3  OUI Deny or Accept
              4. 12.2.1.4.6.1.4  Statistics Counting
              5. 12.2.1.4.6.1.5  Automotive Security Features
              6. 12.2.1.4.6.1.6  CPSW Switching Solutions
                1. 12.2.1.4.6.1.6.1 Basics of 2-port Switch Type
              7. 12.2.1.4.6.1.7  VLAN Routing and OAM Operations
                1. 12.2.1.4.6.1.7.1 InterVLAN Routing
                2. 12.2.1.4.6.1.7.2 OAM Operations
              8. 12.2.1.4.6.1.8  Supervisory packets
              9. 12.2.1.4.6.1.9  Address Table Entry
                1. 12.2.1.4.6.1.9.1 Free Table Entry
                2. 12.2.1.4.6.1.9.2 Multicast Address Table Entry
                3. 12.2.1.4.6.1.9.3 VLAN/Multicast Address Table Entry
                4. 12.2.1.4.6.1.9.4 Unicast Address Table Entry
                5. 12.2.1.4.6.1.9.5 OUI Unicast Address Table Entry
                6. 12.2.1.4.6.1.9.6 VLAN/Unicast Address Table Entry
                7. 12.2.1.4.6.1.9.7 VLAN Table Entry
              10. 12.2.1.4.6.1.10 ALE Policing and Classification
                1. 12.2.1.4.6.1.10.1 ALE Classification
                  1. 2.1.4.6.1.10.1.1 Classifier to CPPI Transmit Flow ID Mapping
              11. 12.2.1.4.6.1.11 DSCP
              12. 12.2.1.4.6.1.12 Packet Forwarding Processes
                1. 12.2.1.4.6.1.12.1 Ingress Filtering Process
                2. 12.2.1.4.6.1.12.2 VLAN_Aware Lookup Process
                3. 12.2.1.4.6.1.12.3 Egress Process
                4. 12.2.1.4.6.1.12.4 Learning/Updating/Touching Processes
                  1. 2.1.4.6.1.12.4.1 Learning Process
                  2. 2.1.4.6.1.12.4.2 Updating Process
                  3. 2.1.4.6.1.12.4.3 Touching Process
              13. 12.2.1.4.6.1.13 VLAN Aware Mode
              14. 12.2.1.4.6.1.14 VLAN Unaware Mode
            2. 12.2.1.4.6.2  Packet Priority Handling
              1. 12.2.1.4.6.2.1 Priority Mapping and Transmit VLAN Priority
            3. 12.2.1.4.6.3  CPPI Port Ingress
            4. 12.2.1.4.6.4  Packet CRC Handling
              1. 12.2.1.4.6.4.1 Transmit VLAN Processing
                1. 12.2.1.4.6.4.1.1 Untagged Packets (No VLAN or Priority Tag Header)
                2. 12.2.1.4.6.4.1.2 Priority Tagged Packets (VLAN VID == 0 && EN_VID0_MODE ==0h)
                3. 12.2.1.4.6.4.1.3 VLAN Tagged Packets (VLAN VID != 0 || (EN_VID0_MODE ==1h && VLAN VID ==0))
              2. 12.2.1.4.6.4.2 Ethernet Port Ingress Packet CRC
              3. 12.2.1.4.6.4.3 Ethernet Port Egress Packet CRC
              4. 12.2.1.4.6.4.4 CPPI Port Ingress Packet CRC
              5. 12.2.1.4.6.4.5 CPPI Port Egress Packet CRC
            5. 12.2.1.4.6.5  FIFO Memory Control
            6. 12.2.1.4.6.6  FIFO Transmit Queue Control
              1. 12.2.1.4.6.6.1 CPPI Port Receive Rate Limiting
              2. 12.2.1.4.6.6.2 Ethernet Port Transmit Rate Limiting
            7. 12.2.1.4.6.7  Intersperced Express Traffic (IET – P802.3br/D2.0)
              1. 12.2.1.4.6.7.1 IET Configuration
            8. 12.2.1.4.6.8  Enhanced Scheduled Traffic (EST – P802.1Qbv/D2.2)
              1. 12.2.1.4.6.8.1 Enhanced Scheduled Traffic Overview
              2. 12.2.1.4.6.8.2 Enhanced Scheduled Traffic Fetch RAM
              3. 12.2.1.4.6.8.3 Enhanced Scheduled Traffic Time Interval
              4. 12.2.1.4.6.8.4 Enhanced Scheduled Traffic Fetch Values
              5. 12.2.1.4.6.8.5 Enhanced Scheduled Traffic Packet Fill
              6. 12.2.1.4.6.8.6 Enhanced Scheduled Traffic Time Stamp
              7. 12.2.1.4.6.8.7 Enhanced Scheduled Traffic Packets Per Priority
            9. 12.2.1.4.6.9  Audio Video Bridging
              1. 12.2.1.4.6.9.1 IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks (Precision Time Protocol (PTP))
                1. 12.2.1.4.6.9.1.1 IEEE 1722: "Layer 2 Transport Protocol for Time-Sensitive Streams"
                  1. 2.1.4.6.9.1.1.1 Cross-timestamping and Presentation Timestamps
                2. 12.2.1.4.6.9.1.2 IEEE 1733: Extends RTCP for RTP Streaming over AVB-supported Networks
              2. 12.2.1.4.6.9.2 IEEE 802.1Qav: "Virtual Bridged Local Area Networks: Forwarding and Queuing for Time-Sensitive Streams"
                1. 12.2.1.4.6.9.2.1 Configuring the Device for 802.1Qav Operation
            10. 12.2.1.4.6.10 Ethernet MAC Sliver
              1. 12.2.1.4.6.10.1 1945
                1. 12.2.1.4.6.10.1.1 1946
                  1. 2.1.4.6.10.1.1.1 CRC Insertion
                  2. 2.1.4.6.10.1.1.2 MTXER
                  3. 2.1.4.6.10.1.1.3 Adaptive Performance Optimization (APO)
                  4. 2.1.4.6.10.1.1.4 Inter-Packet-Gap Enforcement
                  5. 2.1.4.6.10.1.1.5 Back Off
                  6. 2.1.4.6.10.1.1.6 Programmable Transmit Inter-Packet Gap
                  7. 2.1.4.6.10.1.1.7 Speed, Duplex and Pause Frame Support Negotiation
              2. 12.2.1.4.6.10.2 RMII Interface
                1. 12.2.1.4.6.10.2.1 Features
                2. 12.2.1.4.6.10.2.2 RMII Receive (RX)
                3. 12.2.1.4.6.10.2.3 RMII Transmit (TX)
              3. 12.2.1.4.6.10.3 RGMII Interface
                1. 12.2.1.4.6.10.3.1 Features
                2. 12.2.1.4.6.10.3.2 RGMII Receive (RX)
                3. 12.2.1.4.6.10.3.3 In-Band Mode of Operation
                4. 12.2.1.4.6.10.3.4 Forced Mode of Operation
                5. 12.2.1.4.6.10.3.5 RGMII Transmit (TX)
              4. 12.2.1.4.6.10.4 Frame Classification
              5. 12.2.1.4.6.10.5 Receive FIFO Architecture
            11. 12.2.1.4.6.11 Embedded Memories
            12. 12.2.1.4.6.12 Memory Error Detection and Correction
              1. 12.2.1.4.6.12.1 Packet Header ECC
              2. 12.2.1.4.6.12.2 Packet Protect CRC
              3. 12.2.1.4.6.12.3 Aggregator RAM Control
            13. 12.2.1.4.6.13 Ethernet Port Flow Control
              1. 12.2.1.4.6.13.1 Ethernet Receive Flow Control
                1. 12.2.1.4.6.13.1.1 Collision Based Receive Buffer Flow Control
                2. 12.2.1.4.6.13.1.2 IEEE 802.3X Based Receive Flow Control
              2. 12.2.1.4.6.13.2 Flow Control Trigger
              3. 12.2.1.4.6.13.3 Ethernet Transmit Flow Control
            14. 12.2.1.4.6.14 Energy Efficient Ethernet Support (802.3az)
            15. 12.2.1.4.6.15 Ethernet Switch Latency
            16. 12.2.1.4.6.16 MAC Emulation Control
            17. 12.2.1.4.6.17 MAC Command IDLE
            18. 12.2.1.4.6.18 CPSW Network Statistics
              1. 12.2.1.4.6.18.1  Rx-only Statistics Descriptions
                1. 12.2.1.4.6.18.1.1  Good Rx Frames (Offset = 3A000h - Port 0 or Offset = 3A200h - Port 1)
                2. 12.2.1.4.6.18.1.2  Broadcast Rx Frames (Offset = 3A004h - Port 0 or Offset = 3A204h - Port 1)
                3. 12.2.1.4.6.18.1.3  Multicast Rx Frames (Offset = 3A008h - Port 0 or Offset = 3A208h - Port 1)
                4. 12.2.1.4.6.18.1.4  Pause Rx Frames (Offset = 3A20Ch - Port 1)
                5. 12.2.1.4.6.18.1.5  Rx CRC Errors (Offset = 3A010h - Port 0 or Offset = 3A210h - Port 1)
                6. 12.2.1.4.6.18.1.6  Rx Align/Code Errors (Offset = 3A214h - Port 1)
                7. 12.2.1.4.6.18.1.7  Oversize Rx Frames (Offset = 3A018h - Port 0 or Offset = 3A218h - Port 1)
                8. 12.2.1.4.6.18.1.8  Rx Jabbers (Offset = 3A21Ch - Port 1)
                9. 12.2.1.4.6.18.1.9  Undersize (Short) Rx Frames (Offset = 3A020h- Port 0 or Offset = 3A220h - Port 1)
                10. 12.2.1.4.6.18.1.10 Rx Fragments (Offset = 3A024h - Port 0 or Offset = 3A224h - Port 1)
                11. 12.2.1.4.6.18.1.11 RX IPG Error (Offset = 3A25Ch - Port 1)
                12. 12.2.1.4.6.18.1.12 ALE Drop (Offset = 3A028h - Port 0 or Offset = 3A228h - Port 1)
                13. 12.2.1.4.6.18.1.13 ALE Overrun Drop (Offset = 3A02Ch - Port 0 or Offset = 3A22Ch - Port 1)
                14. 12.2.1.4.6.18.1.14 Rx Octets (Offset = 3A030h - Port 0 or Offset = 3A230h - Port 1)
                15. 12.2.1.4.6.18.1.15 Rx Bottom of FIFO Drop (Offset = 3A084h - Port 0 or Offset = 3A284h - Port 1)
                16. 12.2.1.4.6.18.1.16 Portmask Drop (Offset = 3A088h - Port 0 or Offset = 3A288h - Port 1)
                17. 12.2.1.4.6.18.1.17 Rx Top of FIFO Drop (Offset = 3A08Ch - Port 0 or Offset = 3A28Ch - Port 1)
                18. 12.2.1.4.6.18.1.18 ALE Rate Limit Drop (Offset = 3A090h - Port 0 or Offset = 3A290h - Port 1)
                19. 12.2.1.4.6.18.1.19 ALE VLAN Ingress Check Drop (Offset = 3A094h - Port 0 or Offset = 3A294h - Port 1)
                  1. 2.1.4.6.18.1.19.1  ALE DA=SA Drop (Offset = 3A098h - Port 0 or Offset = 3A298h - Port 1)
                  2. 2.1.4.6.18.1.19.2  Block Address Drop (Offset = 3A09Ch - Port 0 or Offset = 3A29Ch - Port 1)
                  3. 2.1.4.6.18.1.19.3  ALE Secure Drop (Offset = 3A0A0h - Port 0 or Offset = 3A2A0h - Port 1)
                  4. 2.1.4.6.18.1.19.4  ALE Authentication Drop (Offset = 3A0A4h - Port 0 or Offset = 3A2A4h - Port 1)
                  5. 2.1.4.6.18.1.19.5  ALE Unknown Unicast (Offset = 3A0A8h - Port 0 or Offset = 3A2A8h - Port 1)
                  6. 2.1.4.6.18.1.19.6  ALE Unknown Unicast Bytecount (Offset = 3A0ACh - Port 0 or Offset = 3A2ACh - Port 1)
                  7. 2.1.4.6.18.1.19.7  ALE Unknown Multicast (Offset = 3A0B0h - Port 0 or Offset = 3A2B0h - Port 1)
                  8. 2.1.4.6.18.1.19.8  ALE Unknown Multicast Bytecount (Offset = 3A0B4h - Port 0 or Offset = 3A2B4h - Port 1)
                  9. 2.1.4.6.18.1.19.9  ALE Unknown Broadcast (Offset = 3A0B8h - Port 0 or Offset = 3A2B8h - Port 1)
                  10. 2.1.4.6.18.1.19.10 ALE Unknown Broadcast Bytecount (Offset = 3A0BCh - Port 0 or Offset = 3A2BCh - Port 1)
                  11. 2.1.4.6.18.1.19.11 ALE Policer/Classifier Match (Offset = 3A0C0h - Port 0 or Offset = 3A2C0h - Port 1)
              2. 12.2.1.4.6.18.2  ALE Policer Match Red (Offset = 3A0C4h - Port 0 or Offset = 3A2C4h - Port 1)
              3. 12.2.1.4.6.18.3  ALE Policer Match Yellow (Offset = 3A0C8h - Port 0 or Offset = 3A2C8h - Port 1)
              4. 12.2.1.4.6.18.4  IET Receive Assembly Error (Offset = 3A140h - Port 0 or Offset = 3A340h - Port 1)
              5. 12.2.1.4.6.18.5  IET Receive Assembly OK (Offset = 3A144h - Port 0 or Offset = 3A344h - Port 1)
              6. 12.2.1.4.6.18.6  IET Receive SMD Error (Offset = 3A148h - Port 0 or Offset = 3A348h - Port 1)
              7. 12.2.1.4.6.18.7  IET Receive Merge Fragment Count (Offset = 3A14Ch - Port 0 or Offset = 3A34Ch - Port 1)
              8. 12.2.1.4.6.18.8  Tx-only Statistics Descriptions
                1. 12.2.1.4.6.18.8.1  Good Tx Frames (Offset = 3A034h - Port 0 or Offset = 3A234h - Port 1)
                2. 12.2.1.4.6.18.8.2  Broadcast Tx Frames (Offset = 3A038h - Port 0 or Offset = 3A238h - Port 1)
                3. 12.2.1.4.6.18.8.3  Multicast Tx Frames (Offset = 3A03Ch - Port 0 or Offset = 3A23Ch - Port 1)
                4. 12.2.1.4.6.18.8.4  Pause Tx Frames (Offset = 3A240h - Port 1)
                5. 12.2.1.4.6.18.8.5  Deferred Tx Frames (Offset = 3A244h - Port 1)
                6. 12.2.1.4.6.18.8.6  Collisions (Offset = 3A248h - Port 1)
                7. 12.2.1.4.6.18.8.7  Single Collision Tx Frames (Offset = 3A24Ch - Port 1)
                8. 12.2.1.4.6.18.8.8  Multiple Collision Tx Frames (Offset = 3A250h - Port 1)
                9. 12.2.1.4.6.18.8.9  Excessive Collisions (Offset = 3A254h - Port 1)
                10. 12.2.1.4.6.18.8.10 Late Collisions (Offset = 3A258h - Port 1)
                11. 12.2.1.4.6.18.8.11 Carrier Sense Errors (Offset = 3A260h - Port 1)
                12. 12.2.1.4.6.18.8.12 Tx Octets (Offset = 3A064h - Port 0 or Offset = 3A264h - Port 1 )
                13. 12.2.1.4.6.18.8.13 Transmit Priority 0-7 (Offset = 3A380h to 3A3A8h - Port 1)
                14. 12.2.1.4.6.18.8.14 Transmit Priority 0-7 Drop (Offset = 3A3C0h to 3A3E8 - Port 1)
                15. 12.2.1.4.6.18.8.15 Tx Memory Protect Errors (Offset = 3A17Ch - Port 0 or Offset = 3A37Ch - Port 1)
                16. 12.2.1.4.6.18.8.16 IET Transmit Merge Hold Count (Offset = 3A350h - Port 1)
                17. 12.2.1.4.6.18.8.17 IET Transmit Merge Fragment Count (Offset = 3A154h - Port 0 or Offset = 3A354h - Port 1)
              9. 12.2.1.4.6.18.9  Rx- and Tx (Shared) Statistics Descriptions
                1. 12.2.1.4.6.18.9.1 Rx + Tx 64 Octet Frames (Offset = 3A068h - Port 0 or Offset = 3A268h - Port 1)
                2. 12.2.1.4.6.18.9.2 Rx + Tx 65–127 Octet Frames (Offset = 3A06Ch - Port 0 or Offset = 3A26Ch - Port 1)
                3. 12.2.1.4.6.18.9.3 Rx + Tx 128–255 Octet Frames (Offset = 3A070h - Port 0 or Offset = 3A270h - Port 1)
                4. 12.2.1.4.6.18.9.4 Rx + Tx 256–511 Octet Frames (Offset = 3A074h - Port 0 or Offset = 3A274h - Port 1)
                5. 12.2.1.4.6.18.9.5 Rx + Tx 512–1023 Octet Frames (Offset = 3A078h - Port 0 or Offset = 3A278h - Port 1)
                6. 12.2.1.4.6.18.9.6 Rx + Tx 1024_Up Octet Frames (Offset = 3A07Ch - Port 0 or Offset = 3A27Ch - Port 1)
                7. 12.2.1.4.6.18.9.7 Net Octets (Offset = 3A080h - Port 0 or Offset = 3A280h - Port 1)
              10. 12.2.1.4.6.18.10 2045
          7. 12.2.1.4.7 Common Platform Time Sync (CPTS)
            1. 12.2.1.4.7.1  MCU_CPSW0 CPTS Integration
            2. 12.2.1.4.7.2  CPTS Architecture
            3. 12.2.1.4.7.3  CPTS Initialization
            4. 12.2.1.4.7.4  32-bit Time Stamp Value
            5. 12.2.1.4.7.5  64-bit Time Stamp Value
            6. 12.2.1.4.7.6  64-Bit Timestamp Nudge
            7. 12.2.1.4.7.7  64-bit Timestamp PPM
            8. 12.2.1.4.7.8  Event FIFO
            9. 12.2.1.4.7.9  Timestamp Compare Output
              1. 12.2.1.4.7.9.1 Non-Toggle Mode: 32-bit
              2. 12.2.1.4.7.9.2 Non-Toggle Mode: 64-bit
              3. 12.2.1.4.7.9.3 Toggle Mode: 32-bit
              4. 12.2.1.4.7.9.4 Toggle Mode: 64-bit
            10. 12.2.1.4.7.10 Timestamp Sync Output
            11. 12.2.1.4.7.11 Timestamp GENFn Output
              1. 12.2.1.4.7.11.1 GENFn Nudge
              2. 12.2.1.4.7.11.2 GENFn PPM
            12. 12.2.1.4.7.12 Timestamp ESTFn
            13. 12.2.1.4.7.13 Time Sync Events
              1. 12.2.1.4.7.13.1 Time Stamp Push Event
              2. 12.2.1.4.7.13.2 Time Stamp Counter Rollover Event (32-bit mode only)
              3. 12.2.1.4.7.13.3 Time Stamp Counter Half-rollover Event (32-bit mode only)
              4. 12.2.1.4.7.13.4 Hardware Time Stamp Push Event
              5. 12.2.1.4.7.13.5 Ethernet Port Events
                1. 12.2.1.4.7.13.5.1 Ethernet Port Receive Event
                2. 12.2.1.4.7.13.5.2 Ethernet Port Transmit Event
                3. 12.2.1.4.7.13.5.3 2073
            14. 12.2.1.4.7.14 Timestamp Compare Event
              1. 12.2.1.4.7.14.1 32-Bit Mode
              2. 12.2.1.4.7.14.2 64-Bit Mode
            15. 12.2.1.4.7.15 Host Transmit Event
            16. 12.2.1.4.7.16 CPTS Interrupt Handling
          8. 12.2.1.4.8 CPPI Streaming Packet Interface
            1. 12.2.1.4.8.1 Port 0 CPPI Transmit Packet Streaming Interface (CPSW_2G Egress)
            2. 12.2.1.4.8.2 Port 0 CPPI Receive Packet Streaming Interface (CPSW_2G Ingress)
            3. 12.2.1.4.8.3 CPPI Checksum Offload
              1. 12.2.1.4.8.3.1 CPPI Transmit Checksum Offload
                1. 12.2.1.4.8.3.1.1 IPV4 UDP
                2. 12.2.1.4.8.3.1.2 IPV4 TCP
                3. 12.2.1.4.8.3.1.3 IPV6 UDP
                4. 12.2.1.4.8.3.1.4 IPV6 TCP
            4. 12.2.1.4.8.4 CPPI Receive Checksum Offload
            5. 12.2.1.4.8.5 Egress Packet Operations
          9. 12.2.1.4.9 MII Management Interface (MDIO)
            1. 12.2.1.4.9.1 MDIO Frame Formats
            2. 12.2.1.4.9.2 MDIO Functional Description
        5. 12.2.1.5 MCU_CPSW0 Programming Guide
          1. 12.2.1.5.1 Initialization and Configuration of CPSW Subsystem
          2. 12.2.1.5.2 CPSW Reset
          3. 12.2.1.5.3 MDIO Software Interface
            1. 12.2.1.5.3.1 Initializing the MDIO Module
            2. 12.2.1.5.3.2 Writing Data To a PHY Register
            3. 12.2.1.5.3.3 Reading Data From a PHY Register
        6. 12.2.1.6 MCU_CPSW0 Registers
          1. 12.2.1.6.1  MCU_CPSW0_NUSS Subsystem (SS) Registers
          2. 12.2.1.6.2  MCU_CPSW0_SGMII Registers
          3. 12.2.1.6.3  MCU_CPSW0_MDIO Registers
          4. 12.2.1.6.4  MCU_CPSW0_CPTS Registers
          5. 12.2.1.6.5  MCU_CPSW0_CONTROL Registers
          6. 12.2.1.6.6  MCU_CPSW0_CPINT Registers
          7. 12.2.1.6.7  MCU_CPSW0_RAM Registers
          8. 12.2.1.6.8  MCU_CPSW0_STAT0 Registers
          9. 12.2.1.6.9  MCU_CPSW0_STAT1 Registers
          10. 12.2.1.6.10 MCU_CPSW0_ALE Registers
          11. 12.2.1.6.11 MCU_CPSW0_ECC Registers
      2. 12.2.2 Gigabit Ethernet Switch (CPSW0)
        1. 12.2.2.1 CPSW0 Overview
          1. 12.2.2.1.1 CPSW0 Features
          2. 12.2.2.1.2 CPSW0 Not Supported Features
          3. 12.2.2.1.3 Terminology
        2. 12.2.2.2 CPSW0 Environment
          1. 12.2.2.2.1 CPSW0 RMII Interface
          2. 12.2.2.2.2 CPSW0 RGMII Interface
        3. 12.2.2.3 CPSW0 Integration
        4. 12.2.2.4 CPSW0 Functional Description
          1. 12.2.2.4.1 Functional Block Diagram
          2. 12.2.2.4.2 CPSW Ports
            1. 12.2.2.4.2.1 Interface Mode Selection
          3. 12.2.2.4.3 Clocking
            1. 12.2.2.4.3.1 Subsystem Clocking
            2. 12.2.2.4.3.2 Interface Clocking
              1. 12.2.2.4.3.2.1 RGMII Interface Clocking
              2. 12.2.2.4.3.2.2 RMII Interface Clocking
              3. 12.2.2.4.3.2.3 MDIO Clocking
          4. 12.2.2.4.4 Software IDLE
          5. 12.2.2.4.5 Interrupt Functionality
            1. 12.2.2.4.5.1 EVNT_PEND Interrupt
            2. 12.2.2.4.5.2 Statistics Interrupt (STAT_PEND0)
            3. 12.2.2.4.5.3 ECC DED Level Interrupt (ECC_DED_INT)
            4. 12.2.2.4.5.4 ECC SEC Level Interrupt (ECC_SEC_INT)
            5. 12.2.2.4.5.5 MDIO Interrupts
          6. 12.2.2.4.6 CPSW_5X
            1. 12.2.2.4.6.1  Address Lookup Engine (ALE)
              1. 12.2.2.4.6.1.1  Error Handling
              2. 12.2.2.4.6.1.2  Bypass Operations
              3. 12.2.2.4.6.1.3  OUI Deny or Accept
              4. 12.2.2.4.6.1.4  Statistics Counting
              5. 12.2.2.4.6.1.5  Automotive Security Features
              6. 12.2.2.4.6.1.6  CPSW Switching Solutions
                1. 12.2.2.4.6.1.6.1 Basics of 5-port Switch Type
              7. 12.2.2.4.6.1.7  VLAN Routing and OAM Operations
                1. 12.2.2.4.6.1.7.1 InterVLAN Routing
                2. 12.2.2.4.6.1.7.2 OAM Operations
              8. 12.2.2.4.6.1.8  Supervisory packets
              9. 12.2.2.4.6.1.9  Address Table Entry
                1. 12.2.2.4.6.1.9.1  Free Table Entry
                2. 12.2.2.4.6.1.9.2  Multicast Address Table Entry (Bit 40 == 0)
                3. 12.2.2.4.6.1.9.3  Multicast Address Table Entry (Bit 40 == 1)
                4. 12.2.2.4.6.1.9.4  VLAN Unicast Address Table Entry (Bit 40 == 0)
                5. 12.2.2.4.6.1.9.5  OUI Unicast Address Table Entry
                6. 12.2.2.4.6.1.9.6  VLAN/Unicast Address Table Entry (Bit 40 == 0)
                7. 12.2.2.4.6.1.9.7  VLAN/ Multicast Address Table Entry (Bit 40 == 1)
                8. 12.2.2.4.6.1.9.8  Inner VLAN Table Entry
                9. 12.2.2.4.6.1.9.9  Outer VLAN Table Entry
                10. 12.2.2.4.6.1.9.10 EtherType Table Entry
                11. 12.2.2.4.6.1.9.11 IPv4 Table Entry
                12. 12.2.2.4.6.1.9.12 IPv6 Table Entry High
                13. 12.2.2.4.6.1.9.13 IPv6 Table Entry Low
              10. 12.2.2.4.6.1.10 Multicast Address
                1. 12.2.2.4.6.1.10.1 Multicast Ranges
              11. 12.2.2.4.6.1.11 Supervisory Packets
              12. 12.2.2.4.6.1.12 Aging and Auto Aging
              13. 12.2.2.4.6.1.13 ALE Policing and Classification
                1. 12.2.2.4.6.1.13.1 ALE Policing
                2. 12.2.2.4.6.1.13.2 Classifier to Host Thread Mapping
                3. 12.2.2.4.6.1.13.3 ALE Classification
                  1. 2.2.4.6.1.13.3.1 Classifier to CPPI Transmit Flow ID Mapping
              14. 12.2.2.4.6.1.14 Mirroring
              15. 12.2.2.4.6.1.15 Trunking
              16. 12.2.2.4.6.1.16 DSCP
              17. 12.2.2.4.6.1.17 Packet Forwarding Processes
                1. 12.2.2.4.6.1.17.1 Ingress Filtering Process
                2. 12.2.2.4.6.1.17.2 VLAN_Aware Lookup Process
                3. 12.2.2.4.6.1.17.3 Egress Process
                4. 12.2.2.4.6.1.17.4 Learning/Updating/Touching Processes
                  1. 2.2.4.6.1.17.4.1 Learning Process
                  2. 2.2.4.6.1.17.4.2 Updating Process
                  3. 2.2.4.6.1.17.4.3 Touching Process
              18. 12.2.2.4.6.1.18 VLAN Aware Mode
              19. 12.2.2.4.6.1.19 VLAN Unaware Mode
            2. 12.2.2.4.6.2  Packet Priority Handling
              1. 12.2.2.4.6.2.1 Priority Mapping and Transmit VLAN Priority
            3. 12.2.2.4.6.3  CPPI Port Ingress
            4. 12.2.2.4.6.4  Packet CRC Handling
              1. 12.2.2.4.6.4.1 Transmit VLAN Processing
                1. 12.2.2.4.6.4.1.1 Untagged Packets (No VLAN or Priority Tag Header)
                2. 12.2.2.4.6.4.1.2 Priority Tagged Packets (VLAN VID == 0 && EN_VID0_MODE ==0h)
                3. 12.2.2.4.6.4.1.3 VLAN Tagged Packets (VLAN VID != 0 || (EN_VID0_MODE ==1h && VLAN VID ==0))
              2. 12.2.2.4.6.4.2 Ethernet Port Ingress Packet CRC
              3. 12.2.2.4.6.4.3 Ethernet Port Egress Packet CRC
              4. 12.2.2.4.6.4.4 CPPI Port Ingress Packet CRC
              5. 12.2.2.4.6.4.5 CPPI Port Egress Packet CRC
            5. 12.2.2.4.6.5  FIFO Memory Control
            6. 12.2.2.4.6.6  FIFO Transmit Queue Control
              1. 12.2.2.4.6.6.1 CPPI Port Receive Rate Limiting
              2. 12.2.2.4.6.6.2 Ethernet Port Transmit Rate Limiting
            7. 12.2.2.4.6.7  Intersperced Express Traffic (IET – P802.3br/D2.0)
              1. 12.2.2.4.6.7.1 IET Configuration
            8. 12.2.2.4.6.8  Enhanced Scheduled Traffic (EST – P802.1Qbv/D2.2)
              1. 12.2.2.4.6.8.1 Enhanced Scheduled Traffic Overview
              2. 12.2.2.4.6.8.2 Enhanced Scheduled Traffic Fetch RAM
              3. 12.2.2.4.6.8.3 Enhanced Scheduled Traffic Time Interval
              4. 12.2.2.4.6.8.4 Enhanced Scheduled Traffic Fetch Values
              5. 12.2.2.4.6.8.5 Enhanced Scheduled Traffic Packet Fill
              6. 12.2.2.4.6.8.6 Enhanced Scheduled Traffic Time Stamp
            9. 12.2.2.4.6.9  Audio Video Bridging
              1. 12.2.2.4.6.9.1 IEEE 802.1AS: Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks (Precision Time Protocol (PTP))
                1. 12.2.2.4.6.9.1.1 IEEE 1722: "Layer 2 Transport Protocol for Time-Sensitive Streams"
                  1. 2.2.4.6.9.1.1.1 Cross-timestamping and Presentation Timestamps
                2. 12.2.2.4.6.9.1.2 IEEE 1733: Extends RTCP for RTP Streaming over AVB-supported Networks
              2. 12.2.2.4.6.9.2 IEEE 802.1Qav: "Virtual Bridged Local Area Networks: Forwarding and Queuing for Time-Sensitive Streams"
                1. 12.2.2.4.6.9.2.1 Configuring the Device for 802.1Qav Operation
            10. 12.2.2.4.6.10 Ethernet MAC Sliver
              1. 12.2.2.4.6.10.1  CRC Insertion
              2. 12.2.2.4.6.10.2  MTXER
              3. 12.2.2.4.6.10.3  Adaptive Performance Optimization (APO)
              4. 12.2.2.4.6.10.4  Inter-Packet-Gap Enforcement
              5. 12.2.2.4.6.10.5  Back Off
              6. 12.2.2.4.6.10.6  Programmable Transmit Inter-Packet Gap
              7. 12.2.2.4.6.10.7  Speed, Duplex and Pause Frame Support Negotiation
              8. 12.2.2.4.6.10.8  RMII Interface
                1. 12.2.2.4.6.10.8.1 Features
                2. 12.2.2.4.6.10.8.2 RMII Receive (RX)
                3. 12.2.2.4.6.10.8.3 RMII Transmit (TX)
              9. 12.2.2.4.6.10.9  RGMII Interface
                1. 12.2.2.4.6.10.9.1 Features
                2. 12.2.2.4.6.10.9.2 RGMII Receive (RX)
                3. 12.2.2.4.6.10.9.3 In-Band Mode of Operation
                4. 12.2.2.4.6.10.9.4 Forced Mode of Operation
                5. 12.2.2.4.6.10.9.5 RGMII Transmit (TX)
              10. 12.2.2.4.6.10.10 Frame Classification
              11. 12.2.2.4.6.10.11 Receive FIFO Architecture
            11. 12.2.2.4.6.11 Embedded Memories
            12. 12.2.2.4.6.12 Memory Error Detection and Correction
              1. 12.2.2.4.6.12.1 Packet Header ECC
              2. 12.2.2.4.6.12.2 Packet Protect CRC
              3. 12.2.2.4.6.12.3 Aggregator RAM Control
            13. 12.2.2.4.6.13 Ethernet Port Flow Control
              1. 12.2.2.4.6.13.1 Ethernet Receive Flow Control
                1. 12.2.2.4.6.13.1.1 Collision Based Receive Buffer Flow Control
                2. 12.2.2.4.6.13.1.2 IEEE 802.3X Based Receive Flow Control
              2. 12.2.2.4.6.13.2 Qbb (10/100/1G/10G) Receive Priority Based Flow Control (PFC)
              3. 12.2.2.4.6.13.3 Ethernet Transmit Flow Control
            14. 12.2.2.4.6.14 PFC Trigger Rules
              1. 12.2.2.4.6.14.1 Destination Based Rule
              2. 12.2.2.4.6.14.2 Sum of Outflows Rule
              3. 12.2.2.4.6.14.3 Sum of Blocks Per Port Rule
              4. 12.2.2.4.6.14.4 Sum of Blocks Total Rule
              5. 12.2.2.4.6.14.5 Top of Receive FIFO Rule
            15. 12.2.2.4.6.15 Energy Efficient Ethernet Support (802.3az)
            16. 12.2.2.4.6.16 Ethernet Switch Latency
            17. 12.2.2.4.6.17 MAC Emulation Control
            18. 12.2.2.4.6.18 MAC Command IDLE
            19. 12.2.2.4.6.19 CPSW Network Statistics
              1. 12.2.2.4.6.19.1  Rx-only Statistics Descriptions
                1. 12.2.2.4.6.19.1.1  Good Rx Frames (Offset = 3A000h)
                2. 12.2.2.4.6.19.1.2  Broadcast Rx Frames (Offset = 3A004h)
                3. 12.2.2.4.6.19.1.3  Multicast Rx Frames (Offset = 3A008h)
                4. 12.2.2.4.6.19.1.4  Pause Rx Frames (Offset = 3A00Ch)
                5. 12.2.2.4.6.19.1.5  Rx CRC Errors (Offset = 3A010h)
                6. 12.2.2.4.6.19.1.6  Rx Align/Code Errors (Offset = 3A014h)
                7. 12.2.2.4.6.19.1.7  Oversize Rx Frames (Offset = 3A018h)
                8. 12.2.2.4.6.19.1.8  Rx Jabbers (Offset = 3A01Ch)
                9. 12.2.2.4.6.19.1.9  Undersize (Short) Rx Frames (Offset = 3A020h)
                10. 12.2.2.4.6.19.1.10 Rx Fragments (Offset = 3A024h)
                11. 12.2.2.4.6.19.1.11 RX IPG Error
                12. 12.2.2.4.6.19.1.12 ALE Drop (Offset = 3A028h)
                13. 12.2.2.4.6.19.1.13 ALE Overrun Drop (Offset = 3A02Ch)
                14. 12.2.2.4.6.19.1.14 Rx Octets (Offset = 3A030h)
                15. 12.2.2.4.6.19.1.15 Rx Bottom of FIFO Drop (Offset = 3A084h)
                16. 12.2.2.4.6.19.1.16 Portmask Drop (Offset = 3A088h)
                17. 12.2.2.4.6.19.1.17 Rx Top of FIFO Drop (Offset = 3A08Ch)
                18. 12.2.2.4.6.19.1.18 ALE Rate Limit Drop (Offset = 3A090h)
                19. 12.2.2.4.6.19.1.19 ALE VLAN Ingress Check Drop (Offset = 3A094h)
                  1. 2.2.4.6.19.1.19.1  ALE DA=SA Drop (Offset = 3A098h)
                  2. 2.2.4.6.19.1.19.2  Block Address Drop (Offset = 3A09Ch)
                  3. 2.2.4.6.19.1.19.3  ALE Secure Drop (Offset = 3A0A0h)
                  4. 2.2.4.6.19.1.19.4  ALE Authentication Drop (Offset = 3A0A4h)
                  5. 2.2.4.6.19.1.19.5  ALE Unknown Unicast (Offset = 3A0A8h)
                  6. 2.2.4.6.19.1.19.6  ALE Unknown Unicast Bytecount (Offset = 3A0ACh)
                  7. 2.2.4.6.19.1.19.7  ALE Unknown Multicast (Offset = 3A0B0h)
                  8. 2.2.4.6.19.1.19.8  ALE Unknown Multicast Bytecount (Offset = 3A0B4h)
                  9. 2.2.4.6.19.1.19.9  ALE Unknown Broadcast (Offset = 3A0B8h)
                  10. 2.2.4.6.19.1.19.10 ALE Unknown Broadcast Bytecount (Offset = 3A0BCh)
                  11. 2.2.4.6.19.1.19.11 ALE Policer/Classifier Match (Offset = 3A0C0h)
              2. 12.2.2.4.6.19.2  ALE Policer Match Red (Offset = 3A0C4h)
              3. 12.2.2.4.6.19.3  ALE Policer Match Yellow (Offset = 3A0C8h)
              4. 12.2.2.4.6.19.4  IET Receive Assembly Error (Offset = 3A140h)
              5. 12.2.2.4.6.19.5  IET Receive Assembly OK (Offset = 3A144h)
              6. 12.2.2.4.6.19.6  IET Receive SMD Error (Offset = 3A148h)
              7. 12.2.2.4.6.19.7  IET Receive Merge Fragment Count (Offset = 3A14Ch)
              8. 12.2.2.4.6.19.8  Tx-only Statistics Descriptions
                1. 12.2.2.4.6.19.8.1  Good Tx Frames (Offset = 3A034h)
                2. 12.2.2.4.6.19.8.2  Broadcast Tx Frames (Offset = 3A038h)
                3. 12.2.2.4.6.19.8.3  Multicast Tx Frames (Offset = 3A03Ch)
                4. 12.2.2.4.6.19.8.4  Pause Tx Frames (Offset = 3A040h)
                5. 12.2.2.4.6.19.8.5  Deferred Tx Frames (Offset = 3A044h)
                6. 12.2.2.4.6.19.8.6  Collisions (Offset = 3A048h)
                7. 12.2.2.4.6.19.8.7  Single Collision Tx Frames (Offset = 3A04Ch)
                8. 12.2.2.4.6.19.8.8  Multiple Collision Tx Frames (Offset = 3A050h)
                9. 12.2.2.4.6.19.8.9  Excessive Collisions (Offset = 3A054h)
                10. 12.2.2.4.6.19.8.10 Late Collisions (Offset = 3A058h)
                11. 12.2.2.4.6.19.8.11 Carrier Sense Errors (Offset = 3A060h)
                12. 12.2.2.4.6.19.8.12 Tx Octets (Offset = 3A064h)
                13. 12.2.2.4.6.19.8.13 Transmit Priority 0-7 (Offset = 3A180h to 3A1A8h)
                14. 12.2.2.4.6.19.8.14 Transmit Priority 0-7 Drop (Offset = 3A1C0h to 3A1E8h)
                15. 12.2.2.4.6.19.8.15 Tx Memory Protect Errors (Offset = 3A17Ch)
                16. 12.2.2.4.6.19.8.16 IET Transmit Merge Fragment Count (Offset = 3A14Ch)
                17. 12.2.2.4.6.19.8.17 IET Transmit Merge Hold Count (Offset = 3A150h)
              9. 12.2.2.4.6.19.9  Rx- and Tx (Shared) Statistics Descriptions
                1. 12.2.2.4.6.19.9.1 Rx + Tx 64 Octet Frames (Offset = 3A068h)
                2. 12.2.2.4.6.19.9.2 Rx + Tx 65–127 Octet Frames (Offset = 3A06Ch)
                3. 12.2.2.4.6.19.9.3 Rx + Tx 128–255 Octet Frames (Offset = 3A070h)
                4. 12.2.2.4.6.19.9.4 Rx + Tx 256–511 Octet Frames (Offset = 3A074h)
                5. 12.2.2.4.6.19.9.5 Rx + Tx 512–1023 Octet Frames (Offset = 3A078h)
                6. 12.2.2.4.6.19.9.6 Rx + Tx 1024_Up Octet Frames (Offset = 3A07Ch)
                7. 12.2.2.4.6.19.9.7 Net Octets (Offset = 3A080h)
              10. 12.2.2.4.6.19.10 2324
          7. 12.2.2.4.7 Common Platform Time Sync (CPTS)
            1. 12.2.2.4.7.1  CPSW0 CPTS Integration
            2. 12.2.2.4.7.2  CPTS Architecture
            3. 12.2.2.4.7.3  CPTS Initialization
            4. 12.2.2.4.7.4  32-bit Time Stamp Value
            5. 12.2.2.4.7.5  64-bit Time Stamp Value
            6. 12.2.2.4.7.6  64-Bit Timestamp Nudge
            7. 12.2.2.4.7.7  64-bit Timestamp PPM
            8. 12.2.2.4.7.8  Event FIFO
            9. 12.2.2.4.7.9  Timestamp Compare Output
              1. 12.2.2.4.7.9.1 Non-Toggle Mode: 32-bit
              2. 12.2.2.4.7.9.2 Non-Toggle Mode: 64-bit
              3. 12.2.2.4.7.9.3 Toggle Mode: 32-bit
              4. 12.2.2.4.7.9.4 Toggle Mode: 64-bit
            10. 12.2.2.4.7.10 Timestamp Sync Output
            11. 12.2.2.4.7.11 Timestamp GENFn Output
              1. 12.2.2.4.7.11.1 GENFn Nudge
              2. 12.2.2.4.7.11.2 GENFn PPM
            12. 12.2.2.4.7.12 Timestamp ESTFn
            13. 12.2.2.4.7.13 Time Sync Events
              1. 12.2.2.4.7.13.1 Time Stamp Push Event
              2. 12.2.2.4.7.13.2 Time Stamp Counter Rollover Event (32-bit mode only)
              3. 12.2.2.4.7.13.3 Time Stamp Counter Half-rollover Event (32-bit mode only)
              4. 12.2.2.4.7.13.4 Hardware Time Stamp Push Event
              5. 12.2.2.4.7.13.5 Ethernet Port Events
                1. 12.2.2.4.7.13.5.1 Ethernet Port Receive Event
                2. 12.2.2.4.7.13.5.2 Ethernet Port Transmit Event
                3. 12.2.2.4.7.13.5.3 2352
            14. 12.2.2.4.7.14 Timestamp Compare Event
              1. 12.2.2.4.7.14.1 32-Bit Mode
              2. 12.2.2.4.7.14.2 64-Bit Mode
            15. 12.2.2.4.7.15 Host Transmit Event
            16. 12.2.2.4.7.16 CPTS Interrupt Handling
          8. 12.2.2.4.8 CPPI Streaming Packet Interface
            1. 12.2.2.4.8.1 Port 0 CPPI Transmit Packet Streaming Interface (CPSW_5X Egress)
            2. 12.2.2.4.8.2 CPPI Receive Packet Streaming Interface (CPSW Ingress)
            3. 12.2.2.4.8.3 CPPI Checksum Offload
              1. 12.2.2.4.8.3.1 CPPI Transmit Checksum Offload
                1. 12.2.2.4.8.3.1.1 IPV4 UDP
                2. 12.2.2.4.8.3.1.2 IPV4 TCP
                3. 12.2.2.4.8.3.1.3 IPV6 UDP
                4. 12.2.2.4.8.3.1.4 IPV6 TCP
            4. 12.2.2.4.8.4 CPPI Receive Checksum Offload
            5. 12.2.2.4.8.5 Egress Packet Operations
          9. 12.2.2.4.9 MII Management Interface (MDIO)
            1. 12.2.2.4.9.1 MDIO Frame Formats
            2. 12.2.2.4.9.2 MDIO Functional Description
        5. 12.2.2.5 CPSW0 Programming Guide
          1. 12.2.2.5.1 Initialization and Configuration of CPSW Subsystem
          2. 12.2.2.5.2 Ethernet MAC Reset or XGMII/GMII Mode Change Configuration
          3. 12.2.2.5.3 MDIO Software Interface
            1. 12.2.2.5.3.1 Initializing the MDIO Module
            2. 12.2.2.5.3.2 Writing Data To a PHY Register
            3. 12.2.2.5.3.3 Reading Data From a PHY Register
        6. 12.2.2.6 CPSW0 Registers
          1. 12.2.2.6.1  CPSW0_NUSS Subsystem (SS) Registers
          2. 12.2.2.6.2  CPSW0_SGMII Registers
          3. 12.2.2.6.3  CPSW0_MDIO Registers
          4. 12.2.2.6.4  CPSW0_CPTS Registers
          5. 12.2.2.6.5  CPSW0_CONTROL Registers
          6. 12.2.2.6.6  CPSW0_CPINT Registers
          7. 12.2.2.6.7  CPSW0_RAM Registers
          8. 12.2.2.6.8  CPSW0_STAT Registers
          9. 12.2.2.6.9  CPSW0_ALE Registers
          10. 12.2.2.6.10 CPSW0_PCSR Registers
          11. 12.2.2.6.11 CPSW0_ECC Registers
      3. 12.2.3 Peripheral Component Interconnect Express (PCIe) Subsystem
        1. 12.2.3.1 PCIe Subsystem Overview
          1. 12.2.3.1.1 PCIe Subsystem Features
          2. 12.2.3.1.2 PCIe Subsystem Not Supported Features
        2. 12.2.3.2 PCIe Subsystem Environment
        3. 12.2.3.3 PCIe Subsystem Integration
        4. 12.2.3.4 PCIe Subsystem Functional Description
          1. 12.2.3.4.1  PCIe Subsystem Block Diagram
            1. 12.2.3.4.1.1 PCIe Core Module
            2. 12.2.3.4.1.2 PCIe PHY Interface
            3. 12.2.3.4.1.3 CBA Infrastructure
            4. 12.2.3.4.1.4 VBUSM to AXI Bridges
            5. 12.2.3.4.1.5 AXI to VBUSM Bridges
            6. 12.2.3.4.1.6 VBUSP to APB Bridge
            7. 12.2.3.4.1.7 Custom Logic
          2. 12.2.3.4.2  PCIe Subsystem Reset Schemes
            1. 12.2.3.4.2.1 PCIe Conventional Reset
            2. 12.2.3.4.2.2 PCIe Function Level Reset
            3. 12.2.3.4.2.3 PCIe Reset Isolation
              1. 12.2.3.4.2.3.1 Root Port Reset with Device Not Reset
              2. 12.2.3.4.2.3.2 Device Reset with Root Port Not Reset
              3. 12.2.3.4.2.3.3 End Point Device Reset with Root Port Not Reset
              4. 12.2.3.4.2.3.4 Device Reset with End Point Device Not Reset
            4. 12.2.3.4.2.4 PCIe Reset Limitations
            5. 12.2.3.4.2.5 PCIe Reset Requirements
          3. 12.2.3.4.3  PCIe Subsystem Power Management
            1. 12.2.3.4.3.1 CBA Power Management
          4. 12.2.3.4.4  PCIe Subsystem Interrupts
            1. 12.2.3.4.4.1 Interrupts Aggregation
            2. 12.2.3.4.4.2 Interrupt Generation in EP Mode
              1. 12.2.3.4.4.2.1 Legacy Interrupt Generation in EP Mode
              2. 12.2.3.4.4.2.2 MSI and MSI-X Interrupt Generation
            3. 12.2.3.4.4.3 Interrupt Reception in EP Mode
              1. 12.2.3.4.4.3.1 PCIe Core Downstream Interrupts
              2. 12.2.3.4.4.3.2 PCIe Core Function Level Reset Interrupts
              3. 12.2.3.4.4.3.3 PCIe Core Power Management Event Interrupts
              4. 12.2.3.4.4.3.4 PCIe Core Hot Reset Request Interrupt
              5. 12.2.3.4.4.3.5 PTM Valid Interrupt
            4. 12.2.3.4.4.4 Interrupt Generation in RP Mode
            5. 12.2.3.4.4.5 Interrupt Reception in RP Mode
              1. 12.2.3.4.4.5.1 PCIe Legacy Interrupt Reception in RP Mode
              2. 12.2.3.4.4.5.2 MSI/MSI-X Interrupt Reception in RP Mode
              3. 12.2.3.4.4.5.3 Advanced Error Reporting Interrupt
            6. 12.2.3.4.4.6 Common Interrupt Reception in RP and EP Modes
              1. 12.2.3.4.4.6.1 PCIe Local Interrupt
              2. 12.2.3.4.4.6.2 PHY Interrupt
              3. 12.2.3.4.4.6.3 Link down Interrupt
              4. 12.2.3.4.4.6.4 Transaction Error Interrupts
              5. 12.2.3.4.4.6.5 Power Management Event Interrupt
              6. 12.2.3.4.4.6.6 Active Internal Diagnostics Interrupts
            7. 12.2.3.4.4.7 ECC Aggregator Interrupts
            8. 12.2.3.4.4.8 CPTS Interrupt
          5. 12.2.3.4.5  PCIe Subsystem DMA Support
            1. 12.2.3.4.5.1 PCIe DMA Support in RP Mode
            2. 12.2.3.4.5.2 PCIe DMA Support in EP Mode
          6. 12.2.3.4.6  PCIe Subsystem Transactions
            1. 12.2.3.4.6.1 PCIe Supported Transactions
            2. 12.2.3.4.6.2 PCIe Transaction Limitations
          7. 12.2.3.4.7  PCIe Subsystem Address Translation
            1. 12.2.3.4.7.1 PCIe Inbound Address Translation
              1. 12.2.3.4.7.1.1 Root Port Inbound PCIe to AXI Address Translation
              2. 12.2.3.4.7.1.2 End Point Inbound PCIe to AXI Address Translation
            2. 12.2.3.4.7.2 PCIe Outbound Address Translation
              1. 12.2.3.4.7.2.1 PCIe Outbound Address Translation Bypass
          8. 12.2.3.4.8  PCIe Subsystem Virtualization Support
            1. 12.2.3.4.8.1 End Point SR-IOV Support
            2. 12.2.3.4.8.2 Root Port ATS Support
            3. 12.2.3.4.8.3 VirtID Mapping
          9. 12.2.3.4.9  PCIe Subsystem Quality-of-Service (QoS)
          10. 12.2.3.4.10 PCIe Subsystem Precision Time Measurement (PTM)
          11. 12.2.3.4.11 PCIe Subsystem Loopback
            1. 12.2.3.4.11.1 PCIe PIPE Loopback
              1. 12.2.3.4.11.1.1 PIPE Loopback Master Mode
              2. 12.2.3.4.11.1.2 PIPE Loopback Slave Mode
          12. 12.2.3.4.12 PCIe Subsystem Error Handling
            1. 12.2.3.4.12.1 PCIe AXI to/from VBUSM Bus Error Mapping
          13. 12.2.3.4.13 PCIe Subsystem Internal Diagnostics Features
            1. 12.2.3.4.13.1 PCIe Parity
            2. 12.2.3.4.13.2 ECC Aggregators
            3. 12.2.3.4.13.3 RAM ECC Inversion
          14. 12.2.3.4.14 LTSSM State Encoding
        5. 12.2.3.5 PCIe Subsystem Registers
          1. 12.2.3.5.1  PCIE_CORE_EP_PF Registers
          2. 12.2.3.5.2  PCIE_CORE_EP_VF Registers
          3. 12.2.3.5.3  PCIE_CORE_RP Registers
          4. 12.2.3.5.4  PCIE_CORE_LM Registers
          5. 12.2.3.5.5  PCIE_CORE_AXI Registers
          6. 12.2.3.5.6  PCIE_INTD Registers
          7. 12.2.3.5.7  PCIE_VMAP Registers
          8. 12.2.3.5.8  PCIE_CPTS Registers
          9. 12.2.3.5.9  PCIE_USER_CFG Registers
          10. 12.2.3.5.10 PCIE_ECC_AGGR0 Registers
          11. 12.2.3.5.11 PCIE_ECC_AGGR1 Registers
          12. 12.2.3.5.12 PCIE_DAT0 Registers
          13. 12.2.3.5.13 PCIE_DAT1 Registers
      4. 12.2.4 Universal Serial Bus (USB) Subsystem
        1. 12.2.4.1 USB Overview
          1. 12.2.4.1.1 USB Features
          2. 12.2.4.1.2 USB Not Supported Features
          3. 12.2.4.1.3 USB Terminology
        2. 12.2.4.2 USB Environment
        3. 12.2.4.3 USB Integration
        4. 12.2.4.4 USB Functional Description
          1. 12.2.4.4.1 USB Type-C Connector Support
          2. 12.2.4.4.2 USB Controller Reset
          3. 12.2.4.4.3 Overcurrent Detection
          4. 12.2.4.4.4 Top-Level Initialization Sequence
        5. 12.2.4.5 USB Registers
          1. 12.2.4.5.1 USB3P0SS_MMR_MMRVBP_USBSS_CMN Registers
          2. 12.2.4.5.2 USB_ECC_AGGR_CFG Registers
          3. 12.2.4.5.3 USB_RAMS_INJ_CFG Registers
      5. 12.2.5 Serializer/Deserializer (SerDes)
        1. 12.2.5.1 SerDes Overview
          1. 12.2.5.1.1 SerDes Features
          2. 12.2.5.1.2 Industry Standards Compatibility
        2. 12.2.5.2 SerDes Environment
          1. 12.2.5.2.1 SerDes I/Os
        3. 12.2.5.3 SerDes Integration
          1. 12.2.5.3.1 WIZ Settings
            1. 12.2.5.3.1.1 Interface Selection
            2. 12.2.5.3.1.2 Reference Clock Distribution
            3. 12.2.5.3.1.3 Internal Reference Clock Selection
        4. 12.2.5.4 SerDes Functional Description
          1. 12.2.5.4.1 SerDes Block Diagram
          2. 12.2.5.4.2 SerDes Programming Guide
    3. 12.3 Memory Interfaces
      1. 12.3.1 Flash Subsystem (FSS)
        1. 12.3.1.1 FSS Overview
          1. 12.3.1.1.1 FSS Features
          2. 12.3.1.1.2 FSS Not Supported Features
        2. 12.3.1.2 FSS Environment
          1. 12.3.1.2.1 FSS Typical Application
        3. 12.3.1.3 FSS Integration
          1. 12.3.1.3.1 FSS Integration in MCU Domain
        4. 12.3.1.4 FSS Functional Description
          1. 12.3.1.4.1 FSS Block Diagram
          2. 12.3.1.4.2 FSS ECC Support
            1. 12.3.1.4.2.1 FSS ECC Calculation
          3. 12.3.1.4.3 FSS Modes of Operation
          4. 12.3.1.4.4 FSS Regions
            1. 12.3.1.4.4.1 FSS Regions Boot Size Configuration
          5. 12.3.1.4.5 FSS Memory Regions
        5. 12.3.1.5 FSS Programming Guide
          1. 12.3.1.5.1 FSS Initialization Sequence
          2. 12.3.1.5.2 FSS Real-Time Operation
          3. 12.3.1.5.3 FSS Power Up/Down Sequence
        6. 12.3.1.6 FSS Registers
      2. 12.3.2 Octal Serial Peripheral Interface (OSPI)
        1. 12.3.2.1 OSPI Overview
          1. 12.3.2.1.1 OSPI Features
          2. 12.3.2.1.2 OSPI Not Supported Features
        2. 12.3.2.2 OSPI Environment
        3. 12.3.2.3 OSPI Integration
          1. 12.3.2.3.1 OSPI Integration in MCU Domain
        4. 12.3.2.4 OSPI Functional Description
          1. 12.3.2.4.1  OSPI Block Diagram
            1. 12.3.2.4.1.1 Data Target Interface
            2. 12.3.2.4.1.2 Configuration Target Interface
            3. 12.3.2.4.1.3 OSPI Clock Domains
          2. 12.3.2.4.2  OSPI Modes
            1. 12.3.2.4.2.1 Read Data Capture
              1. 12.3.2.4.2.1.1 Mechanisms of Data Capturing
              2. 12.3.2.4.2.1.2 Data Capturing Mechanism Using Taps
              3. 12.3.2.4.2.1.3 Data Capturing Mechanism Using PHY Module
            2. 12.3.2.4.2.2 External Pull Down on DQS
          3. 12.3.2.4.3  OSPI Power Management
          4. 12.3.2.4.4  Auto HW Polling
          5. 12.3.2.4.5  Flash Reset
          6. 12.3.2.4.6  OSPI Memory Regions
          7. 12.3.2.4.7  OSPI Interrupt Requests
          8. 12.3.2.4.8  OSPI Data Interface
            1. 12.3.2.4.8.1 Data Interface Address Remapping
            2. 12.3.2.4.8.2 Write Protection
            3. 12.3.2.4.8.3 Access Forwarding
          9. 12.3.2.4.9  OSPI Direct Access Controller (DAC)
          10. 12.3.2.4.10 OSPI Indirect Access Controller (INDAC)
            1. 12.3.2.4.10.1 Indirect Read Controller
              1. 12.3.2.4.10.1.1 Indirect Read Transfer Process
            2. 12.3.2.4.10.2 Indirect Write Controller
              1. 12.3.2.4.10.2.1 Indirect Write Transfer Process
            3. 12.3.2.4.10.3 Indirect Access Queuing
            4. 12.3.2.4.10.4 Consecutive Writes and Reads Using Indirect Transfers
            5. 12.3.2.4.10.5 Accessing the SRAM
          11. 12.3.2.4.11 OSPI Software-Triggered Instruction Generator (STIG)
            1. 12.3.2.4.11.1 Servicing a STIG Request
            2. 12.3.2.4.11.2 2576
          12. 12.3.2.4.12 OSPI Arbitration Between Direct / Indirect Access Controller and STIG
          13. 12.3.2.4.13 OSPI Command Translation
          14. 12.3.2.4.14 Selecting the Flash Instruction Type
          15. 12.3.2.4.15 OSPI Data Integrity
          16. 12.3.2.4.16 OSPI PHY Module
            1. 12.3.2.4.16.1 PHY Pipeline Mode
            2. 12.3.2.4.16.2 Read Data Capturing by the PHY Module
        5. 12.3.2.5 OSPI Programming Guide
          1. 12.3.2.5.1 Configuring the OSPI Controller for Use After Reset
          2. 12.3.2.5.2 Configuring the OSPI Controller for Optimal Use
          3. 12.3.2.5.3 Using the Flash Command Control Register (STIG Operation)
          4. 12.3.2.5.4 Using SPI Legacy Mode
          5. 12.3.2.5.5 Entering XIP Mode from POR
          6. 12.3.2.5.6 Entering XIP Mode Otherwise
          7. 12.3.2.5.7 Exiting XIP Mode
        6. 12.3.2.6 OSPI Registers
      3. 12.3.3 HyperBus Interface
        1. 12.3.3.1 HyperBus Overview
          1. 12.3.3.1.1 HyperBus Features
          2. 12.3.3.1.2 HyperBus Not Supported Features
        2. 12.3.3.2 HyperBus Environment
        3. 12.3.3.3 HyperBus Integration
          1. 12.3.3.3.1 HyperBus Integration in MCU Domain
        4. 12.3.3.4 HyperBus Functional Description
          1. 12.3.3.4.1 HyperBus Interrupts
          2. 12.3.3.4.2 HyperBus ECC Support
            1. 12.3.3.4.2.1 ECC Aggregator
          3. 12.3.3.4.3 HyperBus Internal FIFOs
          4. 12.3.3.4.4 HyperBus Data Regions
          5. 12.3.3.4.5 HyperBus True Continuous Read (TCR) Mode
        5. 12.3.3.5 HyperBus Programming Guide
          1. 12.3.3.5.1 HyperBus Initialization Sequence
            1. 12.3.3.5.1.1 HyperFlash Access
            2. 12.3.3.5.1.2 HyperRAM Access
          2. 12.3.3.5.2 HyperBus Real-time Operating Requirements
          3. 12.3.3.5.3 HyperBus Power Up/Down Sequence
        6. 12.3.3.6 HyperBus Registers
      4. 12.3.4 General-Purpose Memory Controller (GPMC)
        1. 12.3.4.1 GPMC Overview
          1. 12.3.4.1.1 GPMC Features
          2. 12.3.4.1.2 GPMC Not Supported Features
        2. 12.3.4.2 GPMC Environment
          1. 12.3.4.2.1 GPMC Modes
          2. 12.3.4.2.2 GPMC I/O Signals
        3. 12.3.4.3 GPMC Integration
          1. 12.3.4.3.1 GPMC Integration in MAIN Domain
        4. 12.3.4.4 GPMC Functional Description
          1. 12.3.4.4.1  GPMC Block Diagram
          2. 12.3.4.4.2  GPMC Clock Configuration
          3. 12.3.4.4.3  GPMC Power Management
          4. 12.3.4.4.4  GPMC Interrupt Requests
          5. 12.3.4.4.5  GPMC Interconnect Port Interface
          6. 12.3.4.4.6  GPMC Address and Data Bus
            1. 12.3.4.4.6.1 GPMC I/O Configuration Setting
          7. 12.3.4.4.7  GPMC Address Decoder and Chip-Select Configuration
            1. 12.3.4.4.7.1 Chip-Select Base Address and Region Size
            2. 12.3.4.4.7.2 Access Protocol
              1. 12.3.4.4.7.2.1 Supported Devices
              2. 12.3.4.4.7.2.2 Access Size Adaptation and Device Width
              3. 12.3.4.4.7.2.3 Address/Data-Multiplexing Interface
            3. 12.3.4.4.7.3 External Signals
              1. 12.3.4.4.7.3.1 WAIT Pin Monitoring Control
                1. 12.3.4.4.7.3.1.1 Wait Monitoring During Asynchronous Read Access
                2. 12.3.4.4.7.3.1.2 Wait Monitoring During Asynchronous Write Access
                3. 12.3.4.4.7.3.1.3 Wait Monitoring During Synchronous Read Access
                4. 12.3.4.4.7.3.1.4 Wait Monitoring During Synchronous Write Access
                5. 12.3.4.4.7.3.1.5 Wait With NAND Device
                6. 12.3.4.4.7.3.1.6 Idle Cycle Control Between Successive Accesses
                  1. 3.4.4.7.3.1.6.1 Bus Turnaround (BUSTURNAROUND)
                  2. 3.4.4.7.3.1.6.2 Idle Cycles Between Accesses to Same Chip-Select (CYCLE2CYCLESAMECSEN, CYCLE2CYCLEDELAY)
                  3. 3.4.4.7.3.1.6.3 Idle Cycles Between Accesses to Different Chip-Select (CYCLE2CYCLEDIFFCSEN, CYCLE2CYCLEDELAY)
                7. 12.3.4.4.7.3.1.7 Slow Device Support (TIMEPARAGRANULARITY Parameter)
              2. 12.3.4.4.7.3.2 DIR Pin
              3. 12.3.4.4.7.3.3 Reset
              4. 12.3.4.4.7.3.4 Write Protect Signal (nWP)
              5. 12.3.4.4.7.3.5 Byte Enable (nBE1/nBE0)
            4. 12.3.4.4.7.4 Error Handling
          8. 12.3.4.4.8  GPMC Timing Setting
            1. 12.3.4.4.8.1  Read Cycle Time and Write Cycle Time (RDCYCLETIME / WRCYCLETIME)
            2. 12.3.4.4.8.2  nCS: Chip-Select Signal Control Assertion/Deassertion Time (CSONTIME / CSRDOFFTIME / CSWROFFTIME / CSEXTRADELAY)
            3. 12.3.4.4.8.3  nADV/ALE: Address Valid/Address Latch Enable Signal Control Assertion/Deassertion Time (ADVONTIME / ADVRDOFFTIME / ADVWROFFTIME / ADVEXTRADELAY/ADVAADMUXONTIME/ADVAADMUXRDOFFTIME/ADVAADMUXWROFFTIME)
            4. 12.3.4.4.8.4  nOE/nRE: Output Enable/Read Enable Signal Control Assertion/Deassertion Time (OEONTIME / OEOFFTIME / OEEXTRADELAY / OEAADMUXONTIME / OEAADMUXOFFTIME)
            5. 12.3.4.4.8.5  nWE: Write Enable Signal Control Assertion/Deassertion Time (WEONTIME / WEOFFTIME / WEEXTRADELAY)
            6. 12.3.4.4.8.6  GPMC_CLKOUT
            7. 12.3.4.4.8.7  GPMC Output Clock and Control Signals Setup and Hold
            8. 12.3.4.4.8.8  Access Time (RDACCESSTIME / WRACCESSTIME)
              1. 12.3.4.4.8.8.1 Access Time on Read Access
              2. 12.3.4.4.8.8.2 Access Time on Write Access
            9. 12.3.4.4.8.9  Page Burst Access Time (PAGEBURSTACCESSTIME)
              1. 12.3.4.4.8.9.1 Page Burst Access Time on Read Access
              2. 12.3.4.4.8.9.2 Page Burst Access Time on Write Access
            10. 12.3.4.4.8.10 Bus Keeping Support
          9. 12.3.4.4.9  GPMC NOR Access Description
            1. 12.3.4.4.9.1 Asynchronous Access Description
              1. 12.3.4.4.9.1.1 Access on Address/Data Multiplexed Devices
                1. 12.3.4.4.9.1.1.1 Asynchronous Single-Read Operation on an Address/Data Multiplexed Device
                2. 12.3.4.4.9.1.1.2 Asynchronous Single-Write Operation on an Address/Data-Multiplexed Device
                3. 12.3.4.4.9.1.1.3 Asynchronous Multiple (Page) Write Operation on an Address/Data-Multiplexed Device
              2. 12.3.4.4.9.1.2 Access on Address/Address/Data-Multiplexed Devices
                1. 12.3.4.4.9.1.2.1 Asynchronous Single Read Operation on an AAD-Multiplexed Device
                2. 12.3.4.4.9.1.2.2 Asynchronous Single-Write Operation on an AAD-Multiplexed Device
                3. 12.3.4.4.9.1.2.3 Asynchronous Multiple (Page) Read Operation on an AAD-Multiplexed Device
            2. 12.3.4.4.9.2 Synchronous Access Description
              1. 12.3.4.4.9.2.1 Synchronous Single Read
              2. 12.3.4.4.9.2.2 Synchronous Multiple (Burst) Read (4-, 8-, 16-Word16 Burst With Wraparound Capability)
              3. 12.3.4.4.9.2.3 Synchronous Single Write
              4. 12.3.4.4.9.2.4 Synchronous Multiple (Burst) Write
            3. 12.3.4.4.9.3 Asynchronous and Synchronous Accesses in non-multiplexed Mode
              1. 12.3.4.4.9.3.1 Asynchronous Single-Read Operation on non-multiplexed Device
              2. 12.3.4.4.9.3.2 Asynchronous Single-Write Operation on non-multiplexed Device
              3. 12.3.4.4.9.3.3 Asynchronous Multiple (Page Mode) Read Operation on non-multiplexed Device
              4. 12.3.4.4.9.3.4 Synchronous Operations on a non-multiplexed Device
            4. 12.3.4.4.9.4 Page and Burst Support
            5. 12.3.4.4.9.5 System Burst vs External Device Burst Support
          10. 12.3.4.4.10 GPMC pSRAM Access Specificities
          11. 12.3.4.4.11 GPMC NAND Access Description
            1. 12.3.4.4.11.1 NAND Memory Device in Byte or 16-bit Word Stream Mode
              1. 12.3.4.4.11.1.1 Chip-Select Configuration for NAND Interfacing in Byte or Word Stream Mode
              2. 12.3.4.4.11.1.2 NAND Device Command and Address Phase Control
              3. 12.3.4.4.11.1.3 Command Latch Cycle
              4. 12.3.4.4.11.1.4 Address Latch Cycle
              5. 12.3.4.4.11.1.5 NAND Device Data Read and Write Phase Control in Stream Mode
              6. 12.3.4.4.11.1.6 NAND Device General Chip-Select Timing Control Requirement
              7. 12.3.4.4.11.1.7 Read and Write Access Size Adaptation
                1. 12.3.4.4.11.1.7.1 8-Bit-Wide NAND Device
                2. 12.3.4.4.11.1.7.2 16-Bit-Wide NAND Device
            2. 12.3.4.4.11.2 NAND Device-Ready Pin
              1. 12.3.4.4.11.2.1 Ready Pin Monitored by Software Polling
              2. 12.3.4.4.11.2.2 Ready Pin Monitored by Hardware Interrupt
            3. 12.3.4.4.11.3 ECC Calculator
              1. 12.3.4.4.11.3.1 Hamming Code
                1. 12.3.4.4.11.3.1.1 ECC Result Register and ECC Computation Accumulation Size
                2. 12.3.4.4.11.3.1.2 ECC Enabling
                3. 12.3.4.4.11.3.1.3 ECC Computation
                4. 12.3.4.4.11.3.1.4 ECC Comparison and Correction
                5. 12.3.4.4.11.3.1.5 ECC Calculation Based on 8-Bit Word
                6. 12.3.4.4.11.3.1.6 ECC Calculation Based on 16-Bit Word
              2. 12.3.4.4.11.3.2 BCH Code
                1. 12.3.4.4.11.3.2.1 Requirements
                2. 12.3.4.4.11.3.2.2 Memory Mapping of BCH Codeword
                  1. 3.4.4.11.3.2.2.1 Memory Mapping of Data Message
                  2. 3.4.4.11.3.2.2.2 Memory-Mapping of the ECC
                  3. 3.4.4.11.3.2.2.3 Wrapping Modes
                    1. 4.4.11.3.2.2.3.1  Manual Mode (0x0)
                    2. 4.4.11.3.2.2.3.2  Mode 0x1
                    3. 4.4.11.3.2.2.3.3  Mode 0xA (10)
                    4. 4.4.11.3.2.2.3.4  Mode 0x2
                    5. 4.4.11.3.2.2.3.5  Mode 0x3
                    6. 4.4.11.3.2.2.3.6  Mode 0x7
                    7. 4.4.11.3.2.2.3.7  Mode 0x8
                    8. 4.4.11.3.2.2.3.8  Mode 0x4
                    9. 4.4.11.3.2.2.3.9  Mode 0x9
                    10. 4.4.11.3.2.2.3.10 Mode 0x5
                    11. 4.4.11.3.2.2.3.11 Mode 0xB (11)
                    12. 4.4.11.3.2.2.3.12 Mode 0x6
                3. 12.3.4.4.11.3.2.3 Supported NAND Page Mappings and ECC Schemes
                  1. 3.4.4.11.3.2.3.1 Per-Sector Spare Mappings
                  2. 3.4.4.11.3.2.3.2 Pooled Spare Mapping
                  3. 3.4.4.11.3.2.3.3 Per-Sector Spare Mapping, with ECC Separated at the End of the Page
            4. 12.3.4.4.11.4 Prefetch and Write-Posting Engine
              1. 12.3.4.4.11.4.1 General Facts About the Engine Configuration
              2. 12.3.4.4.11.4.2 Prefetch Mode
              3. 12.3.4.4.11.4.3 FIFO Control in Prefetch Mode
              4. 12.3.4.4.11.4.4 Write-Posting Mode
              5. 12.3.4.4.11.4.5 FIFO Control in Write-Posting Mode
              6. 12.3.4.4.11.4.6 Optimizing NAND Access Using the Prefetch and Write-Posting Engine
              7. 12.3.4.4.11.4.7 Interleaved Accesses Between Prefetch and Write-Posting Engine and Other Chip-Selects
          12. 12.3.4.4.12 GPMC Use Cases and Tips
            1. 12.3.4.4.12.1 How to Set GPMC Timing Parameters for Typical Accesses
              1. 12.3.4.4.12.1.1 External Memory Attached to the GPMC Module
              2. 12.3.4.4.12.1.2 Typical GPMC Setup
                1. 12.3.4.4.12.1.2.1 GPMC Configuration for Synchronous Burst Read Access
                2. 12.3.4.4.12.1.2.2 GPMC Configuration for Asynchronous Read Access
                3. 12.3.4.4.12.1.2.3 GPMC Configuration for Asynchronous Single Write Access
            2. 12.3.4.4.12.2 How to Choose a Suitable Memory to Use With the GPMC
              1. 12.3.4.4.12.2.1 Supported Memories or Devices
                1. 12.3.4.4.12.2.1.1 Memory Pin Multiplexing
                2. 12.3.4.4.12.2.1.2 NAND Interface Protocol
                3. 12.3.4.4.12.2.1.3 NOR Interface Protocol
                4. 12.3.4.4.12.2.1.4 Other Technologies
        5. 12.3.4.5 GPMC Basic Programming Model
          1. 12.3.4.5.1 GPMC High-Level Programming Model Overview
          2. 12.3.4.5.2 GPMC Initialization
          3. 12.3.4.5.3 GPMC Configuration in NOR Mode
          4. 12.3.4.5.4 GPMC Configuration in NAND Mode
          5. 12.3.4.5.5 Set Memory Access
          6. 12.3.4.5.6 GPMC Timing Parameters
            1. 12.3.4.5.6.1 GPMC Timing Parameters Formulas
              1. 12.3.4.5.6.1.1 NAND Flash Interface Timing Parameters Formulas
              2. 12.3.4.5.6.1.2 Synchronous NOR Flash Timing Parameters Formulas
              3. 12.3.4.5.6.1.3 Asynchronous NOR Flash Timing Parameters Formulas
        6. 12.3.4.6 GPMC Registers
      5. 12.3.5 Error Location Module (ELM)
        1. 12.3.5.1 ELM Overview
          1. 12.3.5.1.1 ELM Features
          2. 12.3.5.1.2 ELM Not Supported Features
        2. 12.3.5.2 ELM Integration
          1. 12.3.5.2.1 ELM Integration in MAIN Domain
        3. 12.3.5.3 ELM Functional Description
          1. 12.3.5.3.1 ELM Software Reset
          2. 12.3.5.3.2 ELM Power Management
          3. 12.3.5.3.3 ELM Interrupt Requests
          4. 12.3.5.3.4 ELM Processing Initialization
          5. 12.3.5.3.5 ELM Processing Sequence
          6. 12.3.5.3.6 ELM Processing Completion
        4. 12.3.5.4 ELM Basic Programming Model
          1. 12.3.5.4.1 ELM Low-Level Programming Model
            1. 12.3.5.4.1.1 Processing Initialization
            2. 12.3.5.4.1.2 Read Results
            3. 12.3.5.4.1.3 2786
          2. 12.3.5.4.2 Use Case: ELM Used in Continuous Mode
          3. 12.3.5.4.3 Use Case: ELM Used in Page Mode
        5. 12.3.5.5 ELM Registers
      6. 12.3.6 Multi-Media Card Secure Digital (MMCSD) Interface
        1. 12.3.6.1 MMCSD Overview
          1. 12.3.6.1.1 MMCSD Features
          2. 12.3.6.1.2 MMCSD Not Supported Features
        2. 12.3.6.2 MMCSD Environment
          1. 12.3.6.2.1 Protocol and Data Format
            1. 12.3.6.2.1.1 Protocol
            2. 12.3.6.2.1.2 Data Format
              1. 12.3.6.2.1.2.1 Coding Scheme for Command Token
              2. 12.3.6.2.1.2.2 Coding Scheme for Response Token
              3. 12.3.6.2.1.2.3 Coding Scheme for Data Token
        3. 12.3.6.3 MMCSD Integration
          1. 12.3.6.3.1 MMCSD Integration in MAIN Domain
        4. 12.3.6.4 MMCSD Functional Description
          1. 12.3.6.4.1 Block Diagram
          2. 12.3.6.4.2 Memory Regions
          3. 12.3.6.4.3 Interrupt Requests
          4. 12.3.6.4.4 ECC Support
            1. 12.3.6.4.4.1 ECC Aggregator
          5. 12.3.6.4.5 Advanced DMA
          6. 12.3.6.4.6 eMMC PHY BIST
            1. 12.3.6.4.6.1 BIST Overview
            2. 12.3.6.4.6.2 BIST Modes
              1. 12.3.6.4.6.2.1 DS Mode
              2. 12.3.6.4.6.2.2 HS Mode with TXDLY using DLL
              3. 12.3.6.4.6.2.3 HS Mode with TXDLY using Delay Chain
              4. 12.3.6.4.6.2.4 DDR50 Mode with TXDLY using DLL
              5. 12.3.6.4.6.2.5 DDR50 Mode with TXDLY using Delay Chain
              6. 12.3.6.4.6.2.6 HS200 Mode with TX/RXDLY using DLL
              7. 12.3.6.4.6.2.7 HS200 Mode with TX/RXDLY using Delay Chain
              8. 12.3.6.4.6.2.8 HS400 Mode
            3. 12.3.6.4.6.3 BIST Functionality
            4. 12.3.6.4.6.4 Signal Interface
            5. 12.3.6.4.6.5 Programming Flow
              1. 12.3.6.4.6.5.1 DS Mode
                1. 12.3.6.4.6.5.1.1 Configuration
                2. 12.3.6.4.6.5.1.2 BIST Programming
              2. 12.3.6.4.6.5.2 HS Mode with DLY_CHAIN
                1. 12.3.6.4.6.5.2.1 Configuration
                2. 12.3.6.4.6.5.2.2 BIST Programming
              3. 12.3.6.4.6.5.3 HS Mode with DLL
                1. 12.3.6.4.6.5.3.1 Configuration
                2. 12.3.6.4.6.5.3.2 BIST Programming
              4. 12.3.6.4.6.5.4 DDR52 Mode with DLY_CHAIN
                1. 12.3.6.4.6.5.4.1 Configuration
                2. 12.3.6.4.6.5.4.2 BIST Programming
              5. 12.3.6.4.6.5.5 DDR52 Mode with DLL
                1. 12.3.6.4.6.5.5.1 Configuration
                2. 12.3.6.4.6.5.5.2 BIST Programming
              6. 12.3.6.4.6.5.6 HS200 Mode with DLY_CHAIN
                1. 12.3.6.4.6.5.6.1 Configuration
                2. 12.3.6.4.6.5.6.2 BIST Programming
              7. 12.3.6.4.6.5.7 HS200 Mode with DLL
                1. 12.3.6.4.6.5.7.1 Configuration
                2. 12.3.6.4.6.5.7.2 BIST Programming
              8. 12.3.6.4.6.5.8 HS400 Mode with DLL
                1. 12.3.6.4.6.5.8.1 Configuration
                2. 12.3.6.4.6.5.8.2 BIST Programming
            6. 12.3.6.4.6.6 HS200 BIST Result Check Procedure
        5. 12.3.6.5 MMCSD Programming Guide
          1. 12.3.6.5.1 Sequences
            1. 12.3.6.5.1.1  SD Card Detection
            2. 12.3.6.5.1.2  SD Clock Control
              1. 12.3.6.5.1.2.1 Internal Clock Setup Sequence
              2. 12.3.6.5.1.2.2 SD Clock Supply and Stop Sequence
              3. 12.3.6.5.1.2.3 SD Clock Frequency Change Sequence
            3. 12.3.6.5.1.3  SD Bus Power Control
            4. 12.3.6.5.1.4  Changing Bus Width
            5. 12.3.6.5.1.5  Timeout Setting on DAT Line
            6. 12.3.6.5.1.6  Card Initialization and Identification (for SD I/F)
              1. 12.3.6.5.1.6.1 Signal Voltage Switch Procedure (for UHS-I)
            7. 12.3.6.5.1.7  SD Transaction Generation
              1. 12.3.6.5.1.7.1 Transaction Control without Data Transfer Using DAT Line
                1. 12.3.6.5.1.7.1.1 The Sequence to Issue a SD Command
                2. 12.3.6.5.1.7.1.2 The Sequence to Finalize a Command
                3. 12.3.6.5.1.7.1.3 2865
              2. 12.3.6.5.1.7.2 Transaction Control with Data Transfer Using DAT Line
                1. 12.3.6.5.1.7.2.1 Not using DMA
                2. 12.3.6.5.1.7.2.2 Using SDMA
                3. 12.3.6.5.1.7.2.3 Using ADMA
            8. 12.3.6.5.1.8  Abort Transaction
              1. 12.3.6.5.1.8.1 Asynchronous Abort
              2. 12.3.6.5.1.8.2 Synchronous Abort
            9. 12.3.6.5.1.9  Changing Bus Speed Mode
            10. 12.3.6.5.1.10 Error Recovery
              1. 12.3.6.5.1.10.1 Error Interrupt Recovery
              2. 12.3.6.5.1.10.2 Auto CMD12 Error Recovery
            11. 12.3.6.5.1.11 Wakeup Control (Optional)
            12. 12.3.6.5.1.12 Suspend/Resume (Optional, Not Supported from Version 4.00)
              1. 12.3.6.5.1.12.1 Suspend Sequence
              2. 12.3.6.5.1.12.2 Resume Sequence
              3. 12.3.6.5.1.12.3 Stop At Block Gap/Continue Timing for Read Transaction
              4. 12.3.6.5.1.12.4 Stop At Block Gap/Continue Timing for Write Transaction
          2. 12.3.6.5.2 Driver Flow Sequence
            1. 12.3.6.5.2.1 Host Controller Setup and Card Detection
              1. 12.3.6.5.2.1.1 Host Controller Setup Sequence
              2. 12.3.6.5.2.1.2 Card Interface Detection Sequence
            2. 12.3.6.5.2.2 Boot Operation
              1. 12.3.6.5.2.2.1 Normal Boot Operation: (For Legacy eMMC 5.0)
              2. 12.3.6.5.2.2.2 Alternate Boot Operation (For Legacy eMMC 5.0):
              3. 12.3.6.5.2.2.3 Boot Code Chunk Read Operation (For Legacy eMMC 5.0):
            3. 12.3.6.5.2.3 Retuning procedure (For Legacy Interface)
              1. 12.3.6.5.2.3.1 Sampling Clock Tuning
              2. 12.3.6.5.2.3.2 Tuning Modes
              3. 12.3.6.5.2.3.3 Re-Tuning Mode 2
            4. 12.3.6.5.2.4 Command Queuing Driver Flow Sequence
              1. 12.3.6.5.2.4.1 Command Queuing Initialization Sequence
              2. 12.3.6.5.2.4.2 Task Issuance Sequence
              3. 12.3.6.5.2.4.3 Task Execution and Completion Sequence
              4. 12.3.6.5.2.4.4 Task Discard and Clear Sequence
              5. 12.3.6.5.2.4.5 Error Detect and Recovery when CQ is enabled
        6. 12.3.6.6 MMCSD Registers
          1. 12.3.6.6.1 MMCSD0 Subsystem Registers
          2. 12.3.6.6.2 MMCSD0 RX RAM ECC Aggregator Registers
          3. 12.3.6.6.3 MMCSD0 TX RAM ECC Aggregator Registers
          4. 12.3.6.6.4 MMCSD0 Host Controller Registers
          5. 12.3.6.6.5 MMCSD1 Subsystem Registers
          6. 12.3.6.6.6 MMCSD1 RX RAM ECC Aggregator Registers
          7. 12.3.6.6.7 MMCSD1 TX RAM ECC Aggregator Registers
          8. 12.3.6.6.8 MMCSD1 Host Controller Registers
    4. 12.4 Industrial and Control Interfaces
      1. 12.4.1 Enhanced Capture (ECAP) Module
        1. 12.4.1.1 ECAP Overview
          1. 12.4.1.1.1 ECAP Features
        2. 12.4.1.2 ECAP Environment
          1. 12.4.1.2.1 ECAP I/O Interface
        3. 12.4.1.3 ECAP Integration
          1. 12.4.1.3.1 Daisy-Chain Connectivity between ECAP Modules
        4. 12.4.1.4 ECAP Functional Description
          1. 12.4.1.4.1 Capture and APWM Operating Modes
            1. 12.4.1.4.1.1 ECAP Capture Mode Description
              1. 12.4.1.4.1.1.1 ECAP Event Prescaler
              2. 12.4.1.4.1.1.2 ECAP Edge Polarity Select and Qualifier
              3. 12.4.1.4.1.1.3 ECAP Continuous/One-Shot Control
              4. 12.4.1.4.1.1.4 ECAP 32-Bit Counter and Phase Control
              5. 12.4.1.4.1.1.5 CAP1-CAP4 Registers
              6. 12.4.1.4.1.1.6 ECAP Interrupt Control
              7. 12.4.1.4.1.1.7 ECAP Shadow Load and Lockout Control
            2. 12.4.1.4.1.2 ECAP APWM Mode Operation
          2. 12.4.1.4.2 Summary of ECAP Functional Registers
        5. 12.4.1.5 ECAP Use Cases
          1. 12.4.1.5.1 Absolute Time-Stamp Operation Rising Edge Trigger Example
            1. 12.4.1.5.1.1 Code Snippet for CAP Mode Absolute Time, Rising Edge Trigger
          2. 12.4.1.5.2 Absolute Time-Stamp Operation Rising and Falling Edge Trigger Example
            1. 12.4.1.5.2.1 Code Snippet for CAP Mode Absolute Time, Rising and Falling Edge Trigger
          3. 12.4.1.5.3 Time Difference (Delta) Operation Rising Edge Trigger Example
            1. 12.4.1.5.3.1 Code Snippet for CAP Mode Delta Time, Rising Edge Trigger
          4. 12.4.1.5.4 Time Difference (Delta) Operation Rising and Falling Edge Trigger Example
            1. 12.4.1.5.4.1 Code Snippet for CAP Mode Delta Time, Rising and Falling Edge Triggers
          5. 12.4.1.5.5 Application of the APWM Mode
            1. 12.4.1.5.5.1 Simple PWM Generation (Independent Channel/s) Example
              1. 12.4.1.5.5.1.1 Code Snippet for APWM Mode
            2. 12.4.1.5.5.2 Multichannel PWM Generation with Synchronization Example
              1. 12.4.1.5.5.2.1 Code Snippet for Multichannel PWM Generation with Synchronization
            3. 12.4.1.5.5.3 Multichannel PWM Generation with Phase Control Example
              1. 12.4.1.5.5.3.1 Code Snippet for Multichannel PWM Generation with Phase Control
        6. 12.4.1.6 ECAP Registers
      2. 12.4.2 Enhanced Pulse Width Modulation (EPWM) Module
        1. 12.4.2.1 EPWM Overview
          1. 12.4.2.1.1 EPWM Features
          2. 12.4.2.1.2 EPWM Not Supported Features
          3. 12.4.2.1.3 2951
        2. 12.4.2.2 EPWM Environment
          1. 12.4.2.2.1 EPWM I/O Interface
        3. 12.4.2.3 EPWM Integration
          1. 12.4.2.3.1 Device Specific EPWM Features
          2. 12.4.2.3.2 Daisy-Chain Connectivity between EPWM Modules
          3. 12.4.2.3.3 ADC start of conversion signals (PWM_SOCA and PWM_SOCB)
          4. 12.4.2.3.4 EPWM Modules Time Base Clock Gating
        4. 12.4.2.4 EPWM Functional Description
          1. 12.4.2.4.1  EPWM Submodule Features
            1. 12.4.2.4.1.1 Constant Definitions Used in the EPWM Code Examples
          2. 12.4.2.4.2  EPWM Time-Base (TB) Submodule
            1. 12.4.2.4.2.1 Overview
            2. 12.4.2.4.2.2 2964
            3. 12.4.2.4.2.3 Controlling and Monitoring the EPWM Time-Base Submodule
            4. 12.4.2.4.2.4 Calculating PWM Period and Frequency
              1. 12.4.2.4.2.4.1 EPWM Time-Base Period Shadow Register
              2. 12.4.2.4.2.4.2 EPWM Time-Base Counter Synchronization
            5. 12.4.2.4.2.5 Phase Locking the Time-Base Clocks of Multiple EPWM Modules
            6. 12.4.2.4.2.6 EPWM Time-Base Counter Modes and Timing Waveforms
          3. 12.4.2.4.3  EPWM Counter-Compare (CC) Submodule
            1. 12.4.2.4.3.1 Overview
            2. 12.4.2.4.3.2 Controlling and Monitoring the EPWM Counter-Compare Submodule
            3. 12.4.2.4.3.3 Operational Highlights for the EPWM Counter-Compare Submodule
            4. 12.4.2.4.3.4 EPWM Counter-Compare Submodule Timing Waveforms
          4. 12.4.2.4.4  EPWM Action-Qualifier (AQ) Submodule
            1. 12.4.2.4.4.1 Overview
            2. 12.4.2.4.4.2 Controlling and Monitoring the EPWM Action-Qualifier Submodule
            3. 12.4.2.4.4.3 EPWM Action-Qualifier Event Priority
            4. 12.4.2.4.4.4 Waveforms for Common EPWM Configurations
          5. 12.4.2.4.5  EPWM Dead-Band Generator (DB) Submodule
            1. 12.4.2.4.5.1 Overview
            2. 12.4.2.4.5.2 Controlling and Monitoring the EPWM Dead-Band Submodule
            3. 12.4.2.4.5.3 Operational Highlights for the EPWM Dead-Band Generator Submodule
          6. 12.4.2.4.6  EPWM-Chopper (PC) Submodule
            1. 12.4.2.4.6.1 Overview
            2. 12.4.2.4.6.2 2987
            3. 12.4.2.4.6.3 Controlling the EPWM-Chopper Submodule
            4. 12.4.2.4.6.4 Operational Highlights for the EPWM-Chopper Submodule
            5. 12.4.2.4.6.5 EPWM-Chopper Waveforms
              1. 12.4.2.4.6.5.1 EPWM-Chopper One-Shot Pulse
              2. 12.4.2.4.6.5.2 EPWM-Chopper Duty Cycle Control
          7. 12.4.2.4.7  EPWM Trip-Zone (TZ) Submodule
            1. 12.4.2.4.7.1 Overview
            2. 12.4.2.4.7.2 Controlling and Monitoring the EPWM Trip-Zone Submodule
            3. 12.4.2.4.7.3 Operational Highlights for the EPWM Trip-Zone Submodule
            4. 12.4.2.4.7.4 Generating EPWM Trip-Event Interrupts
          8. 12.4.2.4.8  EPWM Event-Trigger (ET) Submodule
            1. 12.4.2.4.8.1 Overview
            2. 12.4.2.4.8.2 Controlling and Monitoring the EPWM Event-Trigger Submodule
            3. 12.4.2.4.8.3 Operational Overview of the EPWM Event-Trigger Submodule
            4. 12.4.2.4.8.4 3002
          9. 12.4.2.4.9  EPWM High Resolution (HRPWM) Submodule
            1. 12.4.2.4.9.1 Overview
            2. 12.4.2.4.9.2 Architecture of the High-Resolution PWM Submodule
            3. 12.4.2.4.9.3 Controlling and Monitoring the High-Resolution PWM Submodule
            4. 12.4.2.4.9.4 Configuring the High-Resolution PWM Submodule
            5. 12.4.2.4.9.5 Operational Highlights for the High-Resolution PWM Submodule
              1. 12.4.2.4.9.5.1 HRPWM Edge Positioning
              2. 12.4.2.4.9.5.2 HRPWM Scaling Considerations
              3. 12.4.2.4.9.5.3 HRPWM Duty Cycle Range Limitation
          10. 12.4.2.4.10 EPWM / HRPWM Functional Register Groups
          11. 12.4.2.4.11 Proper EPWM Interrupt Initialization Procedure
        5. 12.4.2.5 EPWM Registers
      3. 12.4.3 Enhanced Quadrature Encoder Pulse (EQEP) Module
        1. 12.4.3.1 EQEP Overview
          1. 12.4.3.1.1 EQEP Features
          2. 12.4.3.1.2 EQEP Not Supported Features
        2. 12.4.3.2 EQEP Environment
          1. 12.4.3.2.1 EQEP I/O Interface
        3. 12.4.3.3 EQEP Integration
          1. 12.4.3.3.1 Device Specific EQEP Features
        4. 12.4.3.4 EQEP Functional Description
          1. 12.4.3.4.1 EQEP Inputs
          2. 12.4.3.4.2 EQEP Quadrature Decoder Unit (QDU)
            1. 12.4.3.4.2.1 EQEP Position Counter Input Modes
              1. 12.4.3.4.2.1.1 Quadrature Count Mode
              2. 12.4.3.4.2.1.2 EQEP Direction-count Mode
              3. 12.4.3.4.2.1.3 EQEP Up-Count Mode
              4. 12.4.3.4.2.1.4 EQEP Down-Count Mode
            2. 12.4.3.4.2.2 EQEP Input Polarity Selection
            3. 12.4.3.4.2.3 EQEP Position-Compare Sync Output
          3. 12.4.3.4.3 EQEP Position Counter and Control Unit (PCCU)
            1. 12.4.3.4.3.1 EQEP Position Counter Operating Modes
              1. 12.4.3.4.3.1.1 EQEP Position Counter Reset on Index Event (EQEP_QDEC_QEP_CTL[29-28] PCRM] = 0b00)
              2. 12.4.3.4.3.1.2 EQEP Position Counter Reset on Maximum Position (EQEP_QDEC_QEP_CTL[29-28] PCRM=0b01)
              3. 12.4.3.4.3.1.3 Position Counter Reset on the First Index Event (EQEP_QDEC_QEP_CTL[29-28] PCRM = 0b10)
              4. 12.4.3.4.3.1.4 Position Counter Reset on Unit Time out Event (EQEP_QDEC_QEP_CTL[29-28] PCRM = 0b11)
            2. 12.4.3.4.3.2 EQEP Position Counter Latch
              1. 12.4.3.4.3.2.1 Index Event Latch
              2. 12.4.3.4.3.2.2 EQEP Strobe Event Latch
            3. 12.4.3.4.3.3 EQEP Position Counter Initialization
            4. 12.4.3.4.3.4 EQEP Position-Compare Unit
          4. 12.4.3.4.4 EQEP Edge Capture Unit
          5. 12.4.3.4.5 EQEP Watchdog
          6. 12.4.3.4.6 Unit Timer Base
          7. 12.4.3.4.7 EQEP Interrupt Structure
          8. 12.4.3.4.8 Summary of EQEP Functional Registers
        5. 12.4.3.5 EQEP Registers
      4. 12.4.4 Controller Area Network (MCAN)
        1. 12.4.4.1 MCAN Overview
          1. 12.4.4.1.1 MCAN Features
          2. 12.4.4.1.2 MCAN Not Supported Features
        2. 12.4.4.2 MCAN Environment
          1. 12.4.4.2.1 CAN Network Basics
        3. 12.4.4.3 MCAN Integration
          1. 12.4.4.3.1 MCAN Integration in MCU Domain
          2. 12.4.4.3.2 MCAN Integration in MAIN Domain
        4. 12.4.4.4 MCAN Functional Description
          1. 12.4.4.4.1  Module Clocking Requirements
          2. 12.4.4.4.2  Interrupt and DMA Requests
            1. 12.4.4.4.2.1 Interrupt Requests
            2. 12.4.4.4.2.2 DMA Requests
            3. 12.4.4.4.2.3 3064
          3. 12.4.4.4.3  Operating Modes
            1. 12.4.4.4.3.1 Software Initialization
            2. 12.4.4.4.3.2 Normal Operation
            3. 12.4.4.4.3.3 CAN FD Operation
            4. 12.4.4.4.3.4 Transmitter Delay Compensation
              1. 12.4.4.4.3.4.1 Description
              2. 12.4.4.4.3.4.2 Transmitter Delay Compensation Measurement
            5. 12.4.4.4.3.5 Restricted Operation Mode
            6. 12.4.4.4.3.6 Bus Monitoring Mode
            7. 12.4.4.4.3.7 Disabled Automatic Retransmission (DAR) Mode
              1. 12.4.4.4.3.7.1 Frame Transmission in DAR Mode
            8. 12.4.4.4.3.8 Power Down (Sleep Mode)
              1. 12.4.4.4.3.8.1 External Clock Stop Mode
              2. 12.4.4.4.3.8.2 Suspend Mode
              3. 12.4.4.4.3.8.3 Wakeup request
            9. 12.4.4.4.3.9 Test Modes
              1. 12.4.4.4.3.9.1 Internal Loopback Mode
          4. 12.4.4.4.4  Timestamp Generation
            1. 12.4.4.4.4.1 External Timestamp Counter
          5. 12.4.4.4.5  Timeout Counter
          6. 12.4.4.4.6  ECC Support
            1. 12.4.4.4.6.1 ECC Wrapper
            2. 12.4.4.4.6.2 ECC Aggregator
          7. 12.4.4.4.7  Rx Handling
            1. 12.4.4.4.7.1 Acceptance Filtering
              1. 12.4.4.4.7.1.1 Range Filter
              2. 12.4.4.4.7.1.2 Filter for specific IDs
              3. 12.4.4.4.7.1.3 Classic Bit Mask Filter
              4. 12.4.4.4.7.1.4 Standard Message ID Filtering
              5. 12.4.4.4.7.1.5 Extended Message ID Filtering
            2. 12.4.4.4.7.2 Rx FIFOs
              1. 12.4.4.4.7.2.1 Rx FIFO Blocking Mode
              2. 12.4.4.4.7.2.2 Rx FIFO Overwrite Mode
            3. 12.4.4.4.7.3 Dedicated Rx Buffers
              1. 12.4.4.4.7.3.1 Rx Buffer Handling
            4. 12.4.4.4.7.4 Debug on CAN Support
          8. 12.4.4.4.8  Tx Handling
            1. 12.4.4.4.8.1 Transmit Pause
            2. 12.4.4.4.8.2 Dedicated Tx Buffers
            3. 12.4.4.4.8.3 Tx FIFO
            4. 12.4.4.4.8.4 Tx Queue
            5. 12.4.4.4.8.5 Mixed Dedicated Tx Buffers/Tx FIFO
            6. 12.4.4.4.8.6 Mixed Dedicated Tx Buffers/Tx Queue
            7. 12.4.4.4.8.7 Transmit Cancellation
            8. 12.4.4.4.8.8 Tx Event Handling
          9. 12.4.4.4.9  FIFO Acknowledge Handling
          10. 12.4.4.4.10 Message RAM
            1. 12.4.4.4.10.1 Message RAM Configuration
            2. 12.4.4.4.10.2 Rx Buffer and FIFO Element
            3. 12.4.4.4.10.3 Tx Buffer Element
            4. 12.4.4.4.10.4 Tx Event FIFO Element
            5. 12.4.4.4.10.5 Standard Message ID Filter Element
            6. 12.4.4.4.10.6 Extended Message ID Filter Element
        5. 12.4.4.5 MCAN Registers
          1. 12.4.4.5.1 MCAN Subsystem Registers
          2. 12.4.4.5.2 MCAN Core Registers
          3. 12.4.4.5.3 MCAN ECC Aggregator Registers
    5. 12.5 Audio Interfaces
      1. 12.5.1 Audio Tracking Logic (ATL)
        1. 12.5.1.1 ATL Overview
          1. 12.5.1.1.1 ATL Features Overview
          2. 12.5.1.1.2 ATL Not Supported Features
    6. 12.6 Timer Modules
      1. 12.6.1 Global Timebase Counter (GTC)
        1. 12.6.1.1 GTC Overview
          1. 12.6.1.1.1 GTC Features
          2. 12.6.1.1.2 GTC Not Supported Features
        2. 12.6.1.2 GTC Integration
        3. 12.6.1.3 GTC Functional Description
          1. 12.6.1.3.1 GTC Block Diagram
          2. 12.6.1.3.2 GTC Counter
          3. 12.6.1.3.3 GTC Gray Encoder
          4. 12.6.1.3.4 GTC Push Event Generation
          5. 12.6.1.3.5 GTC Register Partitioning
        4. 12.6.1.4 GTC Registers
          1. 12.6.1.4.1 GTC0_GTC_CFG0 Registers
          2. 12.6.1.4.2 GTC0_GTC_CFG1 Registers
          3. 12.6.1.4.3 GTC0_GTC_CFG2 Registers
          4. 12.6.1.4.4 GTC0_GTC_CFG3 Registers
      2. 12.6.2 Windowed Watchdog Timer (WWDT)
        1. 12.6.2.1 RTI Overview
          1. 12.6.2.1.1 RTI Features
          2. 12.6.2.1.2 RTI Not Supported Features
        2. 12.6.2.2 RTI Integration
          1. 12.6.2.2.1 RTI Integration in MCU Domain
          2. 12.6.2.2.2 RTI Integration in MAIN Domain
        3. 12.6.2.3 RTI Functional Description
          1. 12.6.2.3.1 RTI Counter Operation
          2. 12.6.2.3.2 RTI Digital Watchdog
          3. 12.6.2.3.3 RTI Digital Windowed Watchdog
          4. 12.6.2.3.4 RTI Low Power Mode Operation
          5. 12.6.2.3.5 RTI Debug Mode Behavior
        4. 12.6.2.4 RTI Registers
      3. 12.6.3 Timers
        1. 12.6.3.1 Timers Overview
          1. 12.6.3.1.1 Timers Features
          2. 12.6.3.1.2 Timers Not Supported Features
        2. 12.6.3.2 Timers Environment
          1. 12.6.3.2.1 Timer External System Interface
        3. 12.6.3.3 Timers Integration
          1. 12.6.3.3.1 Timers Integration in MCU Domain
          2. 12.6.3.3.2 Timers Integration in MAIN Domain
        4. 12.6.3.4 Timers Functional Description
          1. 12.6.3.4.1  Timer Block Diagram
          2. 12.6.3.4.2  Timer Power Management
            1. 12.6.3.4.2.1 Wake-Up Capability
          3. 12.6.3.4.3  Timer Software Reset
          4. 12.6.3.4.4  Timer Interrupts
          5. 12.6.3.4.5  Timer Mode Functionality
            1. 12.6.3.4.5.1 1-ms Tick Generation
          6. 12.6.3.4.6  Timer Capture Mode Functionality
          7. 12.6.3.4.7  Timer Compare Mode Functionality
          8. 12.6.3.4.8  Timer Prescaler Functionality
          9. 12.6.3.4.9  Timer Pulse-Width Modulation
          10. 12.6.3.4.10 Timer Counting Rate
          11. 12.6.3.4.11 Timer Under Emulation
          12. 12.6.3.4.12 Accessing Timer Registers
            1. 12.6.3.4.12.1 Writing to Timer Registers
              1. 12.6.3.4.12.1.1 Write Posting Synchronization Mode
              2. 12.6.3.4.12.1.2 Write Nonposting Synchronization Mode
            2. 12.6.3.4.12.2 Reading From Timer Counter Registers
              1. 12.6.3.4.12.2.1 Read Posted
              2. 12.6.3.4.12.2.2 Read Non-Posted
          13. 12.6.3.4.13 Timer Posted Mode Selection
        5. 12.6.3.5 Timers Low-Level Programming Models
          1. 12.6.3.5.1 Timer Global Initialization
            1. 12.6.3.5.1.1 Global Initialization of Surrounding Modules
            2. 12.6.3.5.1.2 Timer Module Global Initialization
              1. 12.6.3.5.1.2.1 Main Sequence – Timer Module Global Initialization
          2. 12.6.3.5.2 Timer Operational Mode Configuration
            1. 12.6.3.5.2.1 Timer Mode
              1. 12.6.3.5.2.1.1 Main Sequence – Timer Mode Configuration
            2. 12.6.3.5.2.2 Timer Compare Mode
              1. 12.6.3.5.2.2.1 Main Sequence – Timer Compare Mode Configuration
            3. 12.6.3.5.2.3 Timer Capture Mode
              1. 12.6.3.5.2.3.1 Main Sequence – Timer Capture Mode Configuration
              2. 12.6.3.5.2.3.2 Subsequence – Initialize Capture Mode
              3. 12.6.3.5.2.3.3 Subsequence – Detect Event
            4. 12.6.3.5.2.4 Timer PWM Mode
              1. 12.6.3.5.2.4.1 Main Sequence – Timer PWM Mode Configuration
        6. 12.6.3.6 Timers Registers
    7. 12.7 Internal Diagnostics Modules
      1. 12.7.1 Dual Clock Comparator (DCC)
        1. 12.7.1.1 DCC Overview
          1. 12.7.1.1.1 DCC Features
          2. 12.7.1.1.2 DCC Not Supported Features
        2. 12.7.1.2 DCC Integration
          1. 12.7.1.2.1 DCC Integration in MCU Domain
          2. 12.7.1.2.2 DCC Integration in MAIN Domain
        3. 12.7.1.3 DCC Functional Description
          1. 12.7.1.3.1 DCC Counter Operation
          2. 12.7.1.3.2 DCC Low Power Mode Operation
          3. 12.7.1.3.3 DCC Suspend Mode Behavior
          4. 12.7.1.3.4 DCC Single-Shot Mode
          5. 12.7.1.3.5 DCC Continuous mode
            1. 12.7.1.3.5.1 DCC Continue on Error
            2. 12.7.1.3.5.2 DCC Error Count
          6. 12.7.1.3.6 DCC Control and count hand-off across clock domains
          7. 12.7.1.3.7 DCC Error Trajectory record
            1. 12.7.1.3.7.1 DCC FIFO capturing for Errors
            2. 12.7.1.3.7.2 DCC FIFO in continuous capture mode
            3. 12.7.1.3.7.3 DCC FIFO Details
            4. 12.7.1.3.7.4 DCC FIFO Debug mode behavior
          8. 12.7.1.3.8 DCC Count read registers
        4. 12.7.1.4 DCC Registers
      2. 12.7.2 Error Signaling Module (ESM)
        1. 12.7.2.1 ESM Overview
          1. 12.7.2.1.1 ESM Features
        2. 12.7.2.2 ESM Environment
        3. 12.7.2.3 ESM Integration
          1. 12.7.2.3.1 ESM Integration in WKUP Domain
          2. 12.7.2.3.2 ESM Integration in MCU Domain
          3. 12.7.2.3.3 ESM Integration in MAIN Domain
        4. 12.7.2.4 ESM Functional Description
          1. 12.7.2.4.1 ESM Interrupt Requests
            1. 12.7.2.4.1.1 ESM Configuration Error Interrupt
            2. 12.7.2.4.1.2 ESM Low Priority Error Interrupt
              1. 12.7.2.4.1.2.1 ESM Low Priority Error Level Event
              2. 12.7.2.4.1.2.2 ESM Low Priority Error Pulse Event
            3. 12.7.2.4.1.3 ESM High Priority Error Interrupt
              1. 12.7.2.4.1.3.1 ESM High Priority Error Level Event
              2. 12.7.2.4.1.3.2 ESM High Priority Error Pulse Event
          2. 12.7.2.4.2 ESM Error Event Inputs
          3. 12.7.2.4.3 ESM Error Pin Output
          4. 12.7.2.4.4 ESM Minimum Time Interval
          5. 12.7.2.4.5 ESM Protection for Registers
          6. 12.7.2.4.6 ESM Clock Stop
        5. 12.7.2.5 ESM Registers
      3. 12.7.3 Memory Cyclic Redundancy Check (MCRC) Controller
        1. 12.7.3.1 MCRC Overview
          1. 12.7.3.1.1 MCRC Features
          2. 12.7.3.1.2 MCRC Not Supported Features
        2. 12.7.3.2 MCRC Integration
        3. 12.7.3.3 MCRC Functional Description
          1. 12.7.3.3.1  MCRC Block Diagram
          2. 12.7.3.3.2  MCRC General Operation
          3. 12.7.3.3.3  MCRC Modes of Operation
            1. 12.7.3.3.3.1 AUTO Mode
            2. 12.7.3.3.3.2 Semi-CPU Mode
            3. 12.7.3.3.3.3 Full-CPU Mode
          4. 12.7.3.3.4  PSA Signature Register
          5. 12.7.3.3.5  PSA Sector Signature Register
          6. 12.7.3.3.6  CRC Value Register
          7. 12.7.3.3.7  Raw Data Register
          8. 12.7.3.3.8  Example DMA Controller Setup
            1. 12.7.3.3.8.1 AUTO Mode Using Hardware Timer Trigger
            2. 12.7.3.3.8.2 AUTO Mode Using Software Trigger
            3. 12.7.3.3.8.3 Semi-CPU Mode Using Hardware Timer Trigger
          9. 12.7.3.3.9  Pattern Count Register
          10. 12.7.3.3.10 Sector Count Register/Current Sector Register
          11. 12.7.3.3.11 Interrupts
            1. 12.7.3.3.11.1 Compression Complete Interrupt
            2. 12.7.3.3.11.2 CRC Fail Interrupt
            3. 12.7.3.3.11.3 Overrun Interrupt
            4. 12.7.3.3.11.4 Underrun Interrupt
            5. 12.7.3.3.11.5 Timeout Interrupt
            6. 12.7.3.3.11.6 Interrupt Offset Register
            7. 12.7.3.3.11.7 Error Handling
          12. 12.7.3.3.12 Power Down Mode
          13. 12.7.3.3.13 Emulation
        4. 12.7.3.4 MCRC Programming Examples
          1. 12.7.3.4.1 Example: Auto Mode Using Time Based Event Triggering
            1. 12.7.3.4.1.1 DMA Setup
            2. 12.7.3.4.1.2 Timer Setup
            3. 12.7.3.4.1.3 CRC Setup
          2. 12.7.3.4.2 Example: Auto Mode Without Using Time Based Triggering
            1. 12.7.3.4.2.1 DMA Setup
            2. 12.7.3.4.2.2 CRC Setup
          3. 12.7.3.4.3 Example: Semi-CPU Mode
            1. 12.7.3.4.3.1 DMA Setup
            2. 12.7.3.4.3.2 Timer Setup
            3. 12.7.3.4.3.3 CRC Setup
          4. 12.7.3.4.4 Example: Full-CPU Mode
            1. 12.7.3.4.4.1 CRC Setup
        5. 12.7.3.5 MCRC Registers
      4. 12.7.4 ECC Aggregator
        1. 12.7.4.1 ECC Aggregator Overview
          1. 12.7.4.1.1 ECC Aggregator Features
        2. 12.7.4.2 ECC Aggregator Integration
        3. 12.7.4.3 ECC Aggregator Functional Description
          1. 12.7.4.3.1 ECC Aggregator Block Diagram
          2. 12.7.4.3.2 ECC Aggregator Register Groups
          3. 12.7.4.3.3 Read Access to the ECC Control and Status Registers
          4. 12.7.4.3.4 Serial Write Operation
          5. 12.7.4.3.5 Interrupts
          6. 12.7.4.3.6 Inject Only Mode
        4. 12.7.4.4 ECC Aggregator Registers
  15. 13On-Chip Debug
  16. 14Revision History

MCSPI Registers

Table 12-652 lists the memory-mapped registers for the MCSPI. All register offset addresses not listed in Table 12-652 should be considered as reserved locations and the register contents should not be modified.

Table 12-651 MCSPI Instances
InstanceBase Address
MCSPI0_CFG0210 0000h
MCSPI1_CFG0211 0000h
MCSPI2_CFG0212 0000h
MCSPI3_CFG0213 0000h
MCSPI4_CFG0214 0000h
MCU_MCSPI0_CFG4030 0000h
MCU_MCSPI1_CFG4031 0000h
MCU_MCSPI2_CFG4032 0000h
Table 12-652 MCSPI Registers
OffsetAcronymRegister NameMCSPI0_CFG Physical AddressMCSPI1_CFG Physical AddressMCSPI2_CFG Physical Address
0hMCSPI_HL_REVIP Revision register0210 0000h0211 0000h0212 0000h
4hMCSPI_HL_HWINFOMCSPI hardware configuration register0210 0004h0211 0004h0212 0004h
10hMCSPI_HL_SYSCONFIGClock management configuration register0210 0010h0211 0010h0212 0010h
100hMCSPI_REVISIONRevision number0210 0100h0211 0100h0212 0100h
110hMCSPI_SYSCONFIGConfiguration register0210 0110h0211 0110h0212 0110h
114hMCSPI_SYSSTATUSStatus information register0210 0114h0211 0114h0212 0114h
118hMCSPI_IRQSTATUSInterrupt status register0210 0118h0211 0118h0212 0118h
11ChMCSPI_IRQENABLEInterrupt enable register0210 011Ch0211 011Ch0212 011Ch
120hMCSPI_WAKEUPENABLEWake-up enable register0210 0120h0211 0120h0212 0120h
124hMCSPI_SYSTSystem interconnect check in system test mode0210 0124h0211 0124h0212 0124h
128hMCSPI_MODULCTRLMCSPI configuration register0210 0128h0211 0128h0212 0128h
12ChMCSPI_CHCONF_0Configuration register of channel 00210 012Ch0211 012Ch0212 012Ch
130hMCSPI_CHSTAT_0Status register of channel 00210 0130h0211 0130h0212 0130h
134hMCSPI_CHCTRL_0Enable register of channel 00210 0134h0211 0134h0212 0134h
138hMCSPI_TX_0TX register of channel 00210 0138h0211 0138h0212 0138h
13ChMCSPI_RX_0RX register of channel 00210 013Ch0211 013Ch0212 013Ch
140hMCSPI_CHCONF_1Configuration register of channel 10210 0140h0211 0140h0212 0140h
144hMCSPI_CHSTAT_1Status register of channel 10210 0144h0211 0144h0212 0144h
148hMCSPI_CHCTRL_1Enable register of channel 10210 0148h0211 0148h0212 0148h
14ChMCSPI_TX_1TX register of channel 10210 014Ch0211 014Ch0212 014Ch
150hMCSPI_RX_1RX register of channel 10210 0150h0211 0150h0212 0150h
154hMCSPI_CHCONF_2Configuration register of channel 20210 0154h0211 0154h0212 0154h
158hMCSPI_CHSTAT_2Status register of channel 20210 0158h0211 0158h0212 0158h
15ChMCSPI_CHCTRL_2Enable register of channel 20210 015Ch0211 015Ch0212 015Ch
160hMCSPI_TX_2TX register of channel 20210 0160h0211 0160h0212 0160h
164hMCSPI_RX_2RX register of channel 20210 0164h0211 0164h0212 0164h
168hMCSPI_CHCONF_3Configuration register of channel 30210 0168h0211 0168h0212 0168h
16ChMCSPI_CHSTAT_3Status register of channel 30210 016Ch0211 016Ch0212 016Ch
170hMCSPI_CHCTRL_3Enable register of channel 30210 0170h0211 0170h0212 0170h
174hMCSPI_TX_3TX register of channel 30210 0174h0211 0174h0212 0174h
178hMCSPI_RX_3RX register of channel 30210 0178h0211 0178h0212 0178h
17ChMCSPI_XFERLEVELTransfer levels when FIFO is used0210 017Ch0211 017Ch0212 017Ch
180hMCSPI_DAFTXMCSPI words transmitted when FIFO is used0210 0180h0211 0180h0212 0180h
1A0hMCSPI_DAFRXMCSPI words received when FIFO is used0210 01A0h0211 01A0h0212 01A0h
Table 12-653 MCSPI Registers
OffsetAcronymRegister NameMCSPI3_CFG Physical AddressMCSPI4_CFG Physical Address
0hMCSPI_HL_REVIP Revision register0213 0000h0214 0000h
4hMCSPI_HL_HWINFOMCSPI hardware configuration register0213 0004h0214 0004h
10hMCSPI_HL_SYSCONFIGClock management configuration register0213 0010h0214 0010h
100hMCSPI_REVISIONRevision number0213 0100h0214 0100h
110hMCSPI_SYSCONFIGConfiguration register0213 0110h0214 0110h
114hMCSPI_SYSSTATUSStatus information register0213 0114h0214 0114h
118hMCSPI_IRQSTATUSInterrupt status register0213 0118h0214 0118h
11ChMCSPI_IRQENABLEInterrupt enable register0213 011Ch0214 011Ch
120hMCSPI_WAKEUPENABLEWake-up enable register0213 0120h0214 0120h
124hMCSPI_SYSTSystem interconnect check in system test mode0213 0124h0214 0124h
128hMCSPI_MODULCTRLMCSPI configuration register0213 0128h0214 0128h
12ChMCSPI_CHCONF_0Configuration register of channel 00213 012Ch0214 012Ch
130hMCSPI_CHSTAT_0Status register of channel 00213 0130h0214 0130h
134hMCSPI_CHCTRL_0Enable register of channel 00213 0134h0214 0134h
138hMCSPI_TX_0TX register of channel 00213 0138h0214 0138h
13ChMCSPI_RX_0RX register of channel 00213 013Ch0214 013Ch
140hMCSPI_CHCONF_1Configuration register of channel 10213 0140h0214 0140h
144hMCSPI_CHSTAT_1Status register of channel 10213 0144h0214 0144h
148hMCSPI_CHCTRL_1Enable register of channel 10213 0148h0214 0148h
14ChMCSPI_TX_1TX register of channel 10213 014Ch0214 014Ch
150hMCSPI_RX_1RX register of channel 10213 0150h0214 0150h
154hMCSPI_CHCONF_2Configuration register of channel 20213 0154h0214 0154h
158hMCSPI_CHSTAT_2Status register of channel 20213 0158h0214 0158h
15ChMCSPI_CHCTRL_2Enable register of channel 20213 015Ch0214 015Ch
160hMCSPI_TX_2TX register of channel 20213 0160h0214 0160h
164hMCSPI_RX_2RX register of channel 20213 0164h0214 0164h
168hMCSPI_CHCONF_3Configuration register of channel 30213 0168h0214 0168h
16ChMCSPI_CHSTAT_3Status register of channel 30213 016Ch0214 016Ch
170hMCSPI_CHCTRL_3Enable register of channel 30213 0170h0214 0170h
174hMCSPI_TX_3TX register of channel 30213 0174h0214 0174h
178hMCSPI_RX_3RX register of channel 30213 0178h0214 0178h
17ChMCSPI_XFERLEVELTransfer levels when FIFO is used0213 017Ch0214 017Ch
180hMCSPI_DAFTXMCSPI words transmitted when FIFO is used0213 0180h0214 0180h
1A0hMCSPI_DAFRXMCSPI words received when FIFO is used0213 01A0h0214 01A0h
Table 12-654 MCSPI Registers
OffsetAcronymRegister NameMCU_MCSPI0_CFG Physical AddressMCU_MCSPI1_CFG Physical AddressMCU_MCSPI2_CFG Physical Address
0hMCSPI_HL_REVIP Revision register4030 0000h4031 0000h4032 0000h
4hMCSPI_HL_HWINFOMCSPI hardware configuration register4030 0004h4031 0004h4032 0004h
10hMCSPI_HL_SYSCONFIGClock management configuration register4030 0010h4031 0010h4032 0010h
100hMCSPI_REVISIONRevision number4030 0100h4031 0100h4032 0100h
110hMCSPI_SYSCONFIGConfiguration register4030 0110h4031 0110h4032 0110h
114hMCSPI_SYSSTATUSStatus information register4030 0114h4031 0114h4032 0114h
118hMCSPI_IRQSTATUSInterrupt status register4030 0118h4031 0118h4032 0118h
11ChMCSPI_IRQENABLEInterrupt enable register4030 011Ch4031 011Ch4032 011Ch
120hMCSPI_WAKEUPENABLEWake-up enable register4030 0120h4031 0120h4032 0120h
124hMCSPI_SYSTSystem interconnect check in system test mode4030 0124h4031 0124h4032 0124h
128hMCSPI_MODULCTRLMCSPI configuration register4030 0128h4031 0128h4032 0128h
12ChMCSPI_CHCONF_0Configuration register of channel 04030 012Ch4031 012Ch4032 012Ch
130hMCSPI_CHSTAT_0Status register of channel 04030 0130h4031 0130h4032 0130h
134hMCSPI_CHCTRL_0Enable register of channel 04030 0134h4031 0134h4032 0134h
138hMCSPI_TX_0TX register of channel 04030 0138h4031 0138h4032 0138h
13ChMCSPI_RX_0RX register of channel 04030 013Ch4031 013Ch4032 013Ch
140hMCSPI_CHCONF_1Configuration register of channel 14030 0140h4031 0140h4032 0140h
144hMCSPI_CHSTAT_1Status register of channel 14030 0144h4031 0144h4032 0144h
148hMCSPI_CHCTRL_1Enable register of channel 14030 0148h4031 0148h4032 0148h
14ChMCSPI_TX_1TX register of channel 14030 014Ch4031 014Ch4032 014Ch
150hMCSPI_RX_1RX register of channel 14030 0150h4031 0150h4032 0150h
154hMCSPI_CHCONF_2Configuration register of channel 24030 0154h4031 0154h4032 0154h
158hMCSPI_CHSTAT_2Status register of channel 24030 0158h4031 0158h4032 0158h
15ChMCSPI_CHCTRL_2Enable register of channel 24030 015Ch4031 015Ch4032 015Ch
160hMCSPI_TX_2TX register of channel 24030 0160h4031 0160h4032 0160h
164hMCSPI_RX_2RX register of channel 24030 0164h4031 0164h4032 0164h
168hMCSPI_CHCONF_3Configuration register of channel 34030 0168h4031 0168h4032 0168h
16ChMCSPI_CHSTAT_3Status register of channel 34030 016Ch4031 016Ch4032 016Ch
170hMCSPI_CHCTRL_3Enable register of channel 34030 0170h4031 0170h4032 0170h
174hMCSPI_TX_3TX register of channel 34030 0174h4031 0174h4032 0174h
178hMCSPI_RX_3RX register of channel 34030 0178h4031 0178h4032 0178h
17ChMCSPI_XFERLEVELTransfer levels when FIFO is used4030 017Ch4031 017Ch4032 017Ch
180hMCSPI_DAFTXMCSPI words transmitted when FIFO is used4030 0180h4031 0180h4032 0180h
1A0hMCSPI_DAFRXMCSPI words received when FIFO is used4030 01A0h4031 01A0h4032 01A0h

1.5.6.1 MCSPI_HL_REV Register (Offset = 0h) [reset = 40301A0Bh]

MCSPI_HL_REV is shown in Figure 12-349 and described in Table 12-656.

Return to Summary Table.

IP Revision Identifier (X.Y.R)
Used by software to track features, bugs, and compatibility

Table 12-655 MCSPI_HL_REV Instances
InstancePhysical Address
MCSPI0_CFG0210 0000h
MCSPI1_CFG0211 0000h
MCSPI2_CFG0212 0000h
MCSPI3_CFG0213 0000h
MCSPI4_CFG0214 0000h
MCU_MCSPI0_CFG4030 0000h
MCU_MCSPI1_CFG4031 0000h
MCU_MCSPI2_CFG4032 0000h
Figure 12-349 MCSPI_HL_REV Register
313029282726252423222120191817161514131211109876543210
REVISION
R-40301A0Bh
LEGEND: R = Read Only; -n = value after reset
Table 12-656 MCSPI_HL_REV Register Field Descriptions
BitFieldTypeResetDescription
31-0REVISIONR40301A0Bh

IP Revision

1.5.6.2 MCSPI_HL_HWINFO Register (Offset = 4h) [reset = 41h]

MCSPI_HL_HWINFO is shown in Figure 12-350 and described in Table 12-658.

Return to Summary Table.

Information about the IP module's hardware configuration, that is, typically the module's HDL generics (if any).
Actual field format and encoding is up to the module's designer to decide.

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-657 MCSPI_HL_HWINFO Instances
InstancePhysical Address
MCSPI0_CFG0210 0004h
MCSPI1_CFG0211 0004h
MCSPI2_CFG0212 0004h
MCSPI3_CFG0213 0004h
MCSPI4_CFG0214 0004h
MCU_MCSPI0_CFG4030 0004h
MCU_MCSPI1_CFG4031 0004h
MCU_MCSPI2_CFG4032 0004h
Figure 12-350 MCSPI_HL_HWINFO Register
3130292827262524
RSVD
R-0h
2322212019181716
RSVD
R-0h
15141312111098
RSVD
R-0h
76543210
RSVDRETMODEFFNBYTEUSEFIFO
R-0hR-0hR-4hR-1h
LEGEND: R = Read Only; -n = value after reset
Table 12-658 MCSPI_HL_HWINFO Register Field Descriptions
BitFieldTypeResetDescription
31-7RSVDR0h

Reserved
These bits are initialized to 0, and writes to them are ignored.

6RETMODER0h

Retention Mode generic parameter. This bit field indicates whether the retention mode is supported using the pin PIRFFRET.
0h = Retention mode disabled
1h = Retention mode enabled

5-1FFNBYTER4h

FIFO number of byte generic parameter
This field defines the value of FFNBYTE generic parameter, only MSB bits from 8 down to 4 are taken into account.

1h (R) = FIFO 16 bytes depth

2h (R) = FIFO 32 bytes depth

4h (R) = FIFO 64 bytes depth

8h (R) = FIFO 128 bytes depth

10h (R) = FIFO 256 bytes depth

0USEFIFOR1h

Use of a FIFO enable:
This bit indicates if a FIFO is integrated within controller design with its management.

0h (R) = FIFO not implemented in design

1h (R) = FIFO and its management implemented in design with depth defined by FFNBYTE generic

1.5.6.3 MCSPI_HL_SYSCONFIG Register (Offset = 10h) [reset = 8h]

MCSPI_HL_SYSCONFIG is shown in Figure 12-351 and described in Table 12-660.

Return to Summary Table.

Clock management configuration

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-659 MCSPI_HL_SYSCONFIG Instances
InstancePhysical Address
MCSPI0_CFG0210 0010h
MCSPI1_CFG0211 0010h
MCSPI2_CFG0212 0010h
MCSPI3_CFG0213 0010h
MCSPI4_CFG0214 0010h
MCU_MCSPI0_CFG4030 0010h
MCU_MCSPI1_CFG4031 0010h
MCU_MCSPI2_CFG4032 0010h
Figure 12-351 MCSPI_HL_SYSCONFIG Register
3130292827262524
RSVD
R-0h
2322212019181716
RSVD
R-0h
15141312111098
RSVD
R-0h
76543210
RSVDIDLEMODEFREEEMUSOFTRESET
R-0hR/W-2hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-660 MCSPI_HL_SYSCONFIG Register Field Descriptions
BitFieldTypeResetDescription
31-4RSVDR0h

Reads returns 0

3-2IDLEMODER/W2h

Configuration of the local target state management mode.
By definition, target can handle read/write transaction as long as it is out of IDLE state.

0h (R/W) = Force-idle mode: local target's IDLE state follows (acknowledges) the system's clock stop requests unconditionally, that is, regardless of the IP module's internal requirements. Backup mode, for debug only.

1h (R/W) = No-idle mode: local target never enters IDLE state. Backup mode, for debug only.

2h (R/W) = Smart-idle mode: local target's IDLE state eventually follows (acknowledges) the system's clock stop requests, depending on the IP module's internal requirements. IP module shall not generate (IRQ- or DMA-request-related) wake-up events.

3h (R/W) = Smart-idle wake-up-capable mode: local target's IDLE state eventually follows (acknowledges) the system's clock stop requests, depending on the IP module's internal requirements. IP module may generate (IRQ- or DMA-request-related) wake-up events when in IDLE state.

1FREEEMUR/W0h

Sensitivity to emulation (debug) suspend input signal.

0h (R/W) = IP module is sensitive to emulation suspend.

1h (R/W) = IP module is not sensitive to emulation suspend.

0SOFTRESETR/W0h

Software reset. (Optional)

0h (R/W) = Reset done, no pending action

1h (R/W) = Initiate software reset

1.5.6.4 MCSPI_REVISION Register (Offset = 100h) [reset = 2Bh]

MCSPI_REVISION is shown in Figure 12-352 and described in Table 12-662.

Return to Summary Table.

This register contains the revision number.

Table 12-661 MCSPI_REVISION Instances
InstancePhysical Address
MCSPI0_CFG0210 0100h
MCSPI1_CFG0211 0100h
MCSPI2_CFG0212 0100h
MCSPI3_CFG0213 0100h
MCSPI4_CFG0214 0100h
MCU_MCSPI0_CFG4030 0100h
MCU_MCSPI1_CFG4031 0100h
MCU_MCSPI2_CFG4032 0100h
Figure 12-352 MCSPI_REVISION Register
313029282726252423222120191817161514131211109876543210
REVISION
R-2Bh
LEGEND: R = Read Only; -n = value after reset
Table 12-662 MCSPI_REVISION Register Field Descriptions
BitFieldTypeResetDescription
31-0REVISIONR2Bh

IP revision

1.5.6.5 MCSPI_SYSCONFIG Register (Offset = 110h) [reset = 15h]

MCSPI_SYSCONFIG is shown in Figure 12-353 and described in Table 12-664.

Return to Summary Table.

This register allows controlling various parameters of the configuration interface and is not affected by software reset.

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-663 MCSPI_SYSCONFIG Instances
InstancePhysical Address
MCSPI0_CFG0210 0110h
MCSPI1_CFG0211 0110h
MCSPI2_CFG0212 0110h
MCSPI3_CFG0213 0110h
MCSPI4_CFG0214 0110h
MCU_MCSPI0_CFG4030 0110h
MCU_MCSPI1_CFG4031 0110h
MCU_MCSPI2_CFG4032 0110h
Figure 12-353 MCSPI_SYSCONFIG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDCLOCKACTIVITY
R-0hR/W-0h
76543210
RESERVEDSIDLEMODEENAWAKEUPSOFTRESETAUTOIDLE
R-0hR/W-2hR/W-1hR/W-0hR/W-1h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-664 MCSPI_SYSCONFIG Register Field Descriptions
BitFieldTypeResetDescription
31-10RESERVEDR0h

Reads returns 0

9-8CLOCKACTIVITYR/W0h

Clocks activity during wake-up mode period

0h (R/W) = Interface and functional clocks may be switched off.

1h (R/W) = Interface clock is maintained. Functional clock may be switched off.

2h (R/W) = Functional clock is maintained. Interface clock may be switched off.

3h (R/W) = Interface and functional clocks are maintained.

7-5RESERVEDR0h

Reads returns 0

4-3SIDLEMODER/W2h

Power management

0h (R/W) = If an IDLE request is detected, the MCSPI acknowledges it unconditionally and goes in inactive mode. Interrupt, DMA requests and wake-up lines are unconditionally deasserted and the module wake-up capability is deactivated even if the MCSPI_SYSCONFIG[2] ENAWAKEUP bit is set.

1h (R/W) = If an IDLE request is detected, the request is ignored and the module does not switch to wake-up mode, and keeps on behaving normally.

2h (R/W) = If an IDLE request is detected, the module will switch to wake-up mode based on its internal activity, and the wake-up capability can be used if the bit MCSPI_SYSCONFIG[2] ENAWAKEUP is set.

3h (R/W) = Reserved - do not use.

2ENAWAKEUPR/W1h

Wake-up feature control

0h (R/W) = Wake-up capability is disabled.

1h (R/W) = Wake-up capability is enabled.

1SOFTRESETR/W0h

Software reset. During reads it always returns 0.

0h (R/W) = (write) Normal mode

1h (R/W) = (write) Set this bit to 1 to trigger a module reset. The bit is automatically reset by the hardware.

0AUTOIDLER/W1h

Internal interface clock-gating strategy

0h (R/W) = Interface clock is free-running.

1h (R/W) = Automatic interface clock gating strategy is applied, based on the configuration interface activity.

1.5.6.6 MCSPI_SYSSTATUS Register (Offset = 114h) [reset = 1h]

MCSPI_SYSSTATUS is shown in Figure 12-354 and described in Table 12-666.

Return to Summary Table.

This register provides status information about the module excluding the interrupt status information.

Table 12-665 MCSPI_SYSSTATUS Instances
InstancePhysical Address
MCSPI0_CFG0210 0114h
MCSPI1_CFG0211 0114h
MCSPI2_CFG0212 0114h
MCSPI3_CFG0213 0114h
MCSPI4_CFG0214 0114h
MCU_MCSPI0_CFG4030 0114h
MCU_MCSPI1_CFG4031 0114h
MCU_MCSPI2_CFG4032 0114h
Figure 12-354 MCSPI_SYSSTATUS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRESETDONE
R-0hR-1h
LEGEND: R = Read Only; -n = value after reset
Table 12-666 MCSPI_SYSSTATUS Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0h

Reserved for module specific status information.
Read returns 0.

0RESETDONER1h

Internal reset monitoring

0h (R) = Internal module reset is ongoing

1h (R) = Reset completed

1.5.6.7 MCSPI_IRQSTATUS Register (Offset = 118h) [reset = 0h]

MCSPI_IRQSTATUS is shown in Figure 12-355 and described in Table 12-668.

Return to Summary Table.

The interrupt status regroups all the status of the module internal events that can generate an interrupt.

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-667 MCSPI_IRQSTATUS Instances
InstancePhysical Address
MCSPI0_CFG0210 0118h
MCSPI1_CFG0211 0118h
MCSPI2_CFG0212 0118h
MCSPI3_CFG0213 0118h
MCSPI4_CFG0214 0118h
MCU_MCSPI0_CFG4030 0118h
MCU_MCSPI1_CFG4031 0118h
MCU_MCSPI2_CFG4032 0118h
Figure 12-355 MCSPI_IRQSTATUS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVEDEOWWKS
R-0hR/W1C-0hR/W1C-0h
15141312111098
RESERVEDRX3_FULLTX3_UNDERFLOWTX3_EMPTYRESERVEDRX2_FULLTX2_UNDERFLOWTX2_EMPTY
R-0hR/W1C-0hR/W1C-0hR/W1C-0hR-0hR/W1C-0hR/W1C-0hR/W1C-0h
76543210
RESERVEDRX1_FULLTX1_UNDERFLOWTX1_EMPTYRX0_OVERFLOWRX0_FULLTX0_UNDERFLOWTX0_EMPTY
R-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0h
LEGEND: R = Read Only; R/W1C = Read/Write 1 to Clear Bit; -n = value after reset
Table 12-668 MCSPI_IRQSTATUS Register Field Descriptions
BitFieldTypeResetDescription
31-18RESERVEDR0h

Reads returns 0

17EOWR/W1C0h

End of word count event when a channel is enabled using the FIFO buffer and the channel had sent the number of MCSPI word defined by MCSPI_XFERLEVEL[31-16] WCNT.

0h (R/W) = Event false

1h (R/W) = Event status bit is reset

16WKSR/W1C0h

Wake-up event in slave mode when an active control signal is detected on the SPIEN line programmed in the field MCSPI_CHCONF_0[22-21] SPIENSLV

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

15RESERVEDR0h

Reads returns 0

14RX3_FULLR/W1C0h

Receiver register is full or almost full. Only when Channel 3 is enabled

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

13TX3_UNDERFLOWR/W1C0h

Transmitter register underflow. Only when Channel 3 is enabled.
The transmitter register is empty (not updated by host or DMA with new data) before its time slot assignment.
Exception: No TX_underflow event when no data has been loaded into the transmitter register since channel has been enabled.

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

12TX3_EMPTYR/W1C0h

Transmitter register is empty or almost empty.
Note: Enabling the channel automatically rises this event.

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

11RESERVEDR0h

Reads returns 0.

10RX2_FULLR/W1C0h

Receiver register full or almost full. Channel 2

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

9TX2_UNDERFLOWR/W1C0h

Transmitter register underflow. Channel 2

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

8TX2_EMPTYR/W1C0h

Transmitter register empty or almost empty. Channel 2

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

7RESERVEDR0h

Reads returns 0

6RX1_FULLR/W1C0h

Receiver register full or almost full. Channel 1

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

5TX1_UNDERFLOWR/W1C0h

Transmitter register underflow. Channel 1

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

4TX1_EMPTYR/W1C0h

Transmitter register empty or almost empty. Channel 1

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

3RX0_OVERFLOWR/W1C0h

Receiver register overflow (slave mode only). Channel 0

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

2RX0_FULLR/W1C0h

Receiver register full or almost full. Channel 0

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

1TX0_UNDERFLOWR/W1C0h

Transmitter register underflow. Channel 0

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

0TX0_EMPTYR/W1C0h

Transmitter register empty or almost empty. Channel 0

0h (R/W) = Event status bit unchanged

1h (R/W) = Event is pending

1.5.6.8 MCSPI_IRQENABLE Register (Offset = 11Ch) [reset = 0h]

MCSPI_IRQENABLE is shown in Figure 12-356 and described in Table 12-670.

Return to Summary Table.

This register allows enabling/disabling of the module internal sources of interrupt, on an event-by-event basis.

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-669 MCSPI_IRQENABLE Instances
InstancePhysical Address
MCSPI0_CFG0210 011Ch
MCSPI1_CFG0211 011Ch
MCSPI2_CFG0212 011Ch
MCSPI3_CFG0213 011Ch
MCSPI4_CFG0214 011Ch
MCU_MCSPI0_CFG4030 011Ch
MCU_MCSPI1_CFG4031 011Ch
MCU_MCSPI2_CFG4032 011Ch
Figure 12-356 MCSPI_IRQENABLE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVEDEOW_ENABLEWKE
R-0hR/W-0hR/W-0h
15141312111098
RESERVEDRX3_FULL_ENABLETX3_UNDERFLOW_ENABLETX3_EMPTY_ENABLERESERVEDRX2_FULL_ENABLETX2_UNDERFLOW_ENABLETX2_EMPTY_ENABLE
R-0hR/W-0hR/W-0hR/W-0hR-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRX1_FULL_ENABLETX1_UNDERFLOW_ENABLETX1_EMPTY_ENABLERX0_OVERFLOW_ENABLERX0_FULL_ENABLETX0_UNDERFLOW_ENABLETX0_EMPTY_ENABLE
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-670 MCSPI_IRQENABLE Register Field Descriptions
BitFieldTypeResetDescription
31-18RESERVEDR0h

Reads return 0.

17EOW_ENABLER/W0h

End of Word count Interrupt Enable.

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

16WKER/W0h

Wake-up event interrupt enable in slave mode when an active control signal is detected on the SPIEN line programmed in the MCSPI_CHCONF_0[22-21] SPIENSLV bit

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

15RESERVEDR0h

Reads returns 0.

14RX3_FULL_ENABLER/W0h

Receiver register Full Interrupt Enable. Channel 3

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

13TX3_UNDERFLOW_ENABLER/W0h

Transmitter register Underflow Interrupt Enable. Channel 3

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

12TX3_EMPTY_ENABLER/W0h

Transmitter register Empty Interrupt Enable. Channel 3

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

11RESERVEDR0h

Reads return 0.

10RX2_FULL_ENABLER/W0h

Receiver register Full Interrupt Enable. Channel 2

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

9TX2_UNDERFLOW_ENABLER/W0h

Transmitter register Underflow Interrupt Enable. Channel 2

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

8TX2_EMPTY_ENABLER/W0h

Transmitter register Empty Interrupt Enable. Channel 2

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

7RESERVEDR0h

Reads return 0.

6RX1_FULL_ENABLER/W0h

Receiver register Full Interrupt Enable. Channel 1

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

5TX1_UNDERFLOW_ENABLER/W0h

Transmitter register Underflow Interrupt Enable. Channel 1

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

4TX1_EMPTY_ENABLER/W0h

Transmitter register Empty Interrupt Enable. Channel 1

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

3RX0_OVERFLOW_ENABLER/W0h

Receiver register Overflow Interrupt Enable. Channel 0

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

2RX0_FULL_ENABLER/W0h

Receiver register Full Interrupt Enable. Channel 0

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

1TX0_UNDERFLOW_ENABLER/W0h

Transmitter register Underflow Interrupt Enable. Channel 0

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

0TX0_EMPTY_ENABLER/W0h

Transmitter register Empty Interrupt Enable. Channel 0

0h (R/W) = Interrupt disabled

1h (R/W) = Interrupt enabled

1.5.6.9 MCSPI_WAKEUPENABLE Register (Offset = 120h) [reset = 0h]

MCSPI_WAKEUPENABLE is shown in Figure 12-357 and described in Table 12-672.

Return to Summary Table.

The wake-up enable register allows enabling and disabling of the module internal sources of wakeup on event-by-event basis.

Note:

Some of the MCSPI features described in this section may not be supported on this family of devices. For more information, see MCSPI Not Supported Features.

Table 12-671 MCSPI_WAKEUPENABLE Instances
InstancePhysical Address
MCSPI0_CFG0210 0120h
MCSPI1_CFG0211 0120h
MCSPI2_CFG0212 0120h
MCSPI3_CFG0213 0120h
MCSPI4_CFG0214 0120h
MCU_MCSPI0_CFG4030 0120h
MCU_MCSPI1_CFG4031 0120h
MCU_MCSPI2_CFG4032 0120h
Figure 12-357 MCSPI_WAKEUPENABLE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDWKEN
R-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-672 MCSPI_WAKEUPENABLE Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0h

Reads returns 0.

0WKENR/W0h

Wake-up functionality in slave mode when an active control signal is detected on the SPIEN line programmed in the MCSPI_CHCONF_0[22-21] SPIENSLV bit

0h (R/W) = The event is not allowed to wake-up the system, even if the global control bit MCSPI_SYSCONFIG[2] ENAWAKEUPis set.

1h (R/W) = The event is allowed to wake-up the system if the global control bit MCSPI_SYSCONFIG[2] ENAWAKEUP is set.

1.5.6.10 MCSPI_SYST Register (Offset = 124h) [reset = 0h]

MCSPI_SYST is shown in Figure 12-358 and described in Table 12-674.

Return to Summary Table.

This register is used to check the correctness of the system interconnect either internally to peripheral bus, or externally to device I/O pads, when the module is configured in system test (SYSTEST) mode.

Table 12-673 MCSPI_SYST Instances
InstancePhysical Address
MCSPI0_CFG0210 0124h
MCSPI1_CFG0211 0124h
MCSPI2_CFG0212 0124h
MCSPI3_CFG0213 0124h
MCSPI4_CFG0214 0124h
MCU_MCSPI0_CFG4030 0124h
MCU_MCSPI1_CFG4031 0124h
MCU_MCSPI2_CFG4032 0124h
Figure 12-358 MCSPI_SYST Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDSSBSPIENDIRSPIDATDIR1SPIDATDIR0
R-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
WAKDSPICLKSPIDAT_1SPIDAT_0SPIEN_3SPIEN_2SPIEN_1SPIEN_0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-674 MCSPI_SYST Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR0h

Reads returns 0.

11SSBR/W0h

Set status bit

0h (R/W) = No action. Writing 0 does not clear already set status bits. This bit must be cleared before trying to clear a status bit of the MCSPI_IRQSTATUS register.

1h (R/W) = Force to 1 all status bits of MCSPI_IRQSTATUS register. Writing 1 into this bit sets to 1 all status bits in the MCSPI_IRQSTATUS register.

10SPIENDIRR/W0h

Set the direction of the SPIEN[3:0] lines and SPICLK line.

0h (R/W) = Output (as in master mode)

1h (R/W) = Input (as in slave mode)

9SPIDATDIR1R/W0h

Set the direction of the SPIDAT[1].

0h (R/W) = Output

1h (R/W) = Input

8SPIDATDIR0R/W0h

Set the direction of the SPIDAT[0].

0h (R/W) = Output

1h (R/W) = Input

7WAKDR/W0h

SWAKEUP output (signal data value of internal signal to system).
The signal is driven high or low according to the value written into this bit.

0h (R/W) = The pin is driven low.

1h (R/W) = The pin is driven high.

6SPICLKR/W0h

SPICLK line (signal data value)
If MCSPI_SYST[10] SPIENDIR = 1 (input mode direction), this bit returns the value on the CLKSPI line (high or low), and a write into this bit has no effect.
If MCSPI_SYST[10] SPIENDIR = 0 (output mode direction), the CLKSPI line is driven high or low according to the value written into this bit.

5SPIDAT_1R/W0h

SPIDAT[1] line (signal data value)
If MCSPI_SYST[9] SPIDATDIR1 = 0 (output mode direction), the SPIDAT[1] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[9] SPIDATDIR1 = 1 (input mode direction), this bit returns the value on the SPIDAT[1] line (high or low), and a write into this bit has no effect.

4SPIDAT_0R/W0h

SPIDAT[0] line (signal data value)
If MCSPI_SYST[8] SPIDATDIR0 = 0 (output mode direction), the SPIDAT[0] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[8] SPIDATDIR0 = 1 (input mode direction), this bit returns the value on the SPIDAT[0] line (high or low), and a write into this bit has no effect.

3SPIEN_3R/W0h

SPIEN[3] line (signal data value)
If MCSPI_SYST[10] SPIENDIR = 0 (output mode direction), the SPIENT[3] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[10] SPIENDIR = 1 (input mode direction), this bit returns the value on the SPIEN[3] line (high or low), and a write into this bit has no effect.

2SPIEN_2R/W0h

SPIEN[2] line (signal data value)
If MCSPI_SYST[10] SPIENDIR = 0 (output mode direction), the SPIENT[2] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[10] SPIENDIR = 1 (input mode direction), this bit returns the value on the SPIEN[2] line (high or low), and a write into this bit has no effect.

1SPIEN_1R/W0h

SPIEN[1] line (signal data value)
If MCSPI_SYST[10] SPIENDIR = 0 (output mode direction), the SPIENT[1] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[10] SPIENDIR = 1 (input mode direction), this bit returns the value on the SPIEN[1] line (high or low), and a write into this bit has no effect.

0SPIEN_0R/W0h

SPIEN[0] line (signal data value)
If MCSPI_SYST[10] SPIENDIR = 0 (output mode direction), the SPIENT[0] line is driven high or low according to the value written into this bit.
If MCSPI_SYST[10] SPIENDIR = 1 (input mode direction), this bit returns the value on the SPIEN[0] line (high or low), and a write into this bit has no effect.

1.5.6.11 MCSPI_MODULCTRL Register (Offset = 128h) [reset = 4h]

MCSPI_MODULCTRL is shown in Figure 12-359 and described in Table 12-676.

Return to Summary Table.

This register is dedicated to the configuration of the serial peripheral interface.

Table 12-675 MCSPI_MODULCTRL Instances
InstancePhysical Address
MCSPI0_CFG0210 0128h
MCSPI1_CFG0211 0128h
MCSPI2_CFG0212 0128h
MCSPI3_CFG0213 0128h
MCSPI4_CFG0214 0128h
MCU_MCSPI0_CFG4030 0128h
MCU_MCSPI1_CFG4031 0128h
MCU_MCSPI2_CFG4032 0128h
Figure 12-359 MCSPI_MODULCTRL Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDFDAA
R-0hR/W-0h
76543210
MOAINITDLYSYSTEM_TESTMSPIN34SINGLE
R/W-0hR-0hR/W-0hR/W-1hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-676 MCSPI_MODULCTRL Register Field Descriptions
BitFieldTypeResetDescription
31-9RESERVEDR0h

Reads returns 0.

8FDAAR/W0h

FIFO DMA address 256-bit aligned
This bit is used when a FIFO is managed by the module and DMA connected to the controller provides only 256-bit aligned address. If this bit is set the enabled channel which uses the FIFO has its data managed through MCSPI_DAFTX and MCSPI_DAFRX registers instead of MCSPI_TX(i) and MCSPI_RX(i) registers.

0h (R/W) = FIFO data managed by MCSPI_TX(i) and MCSPI_RX(i) registers.

1h (R/W) = FIFO data managed by MCSPI_DAFTX and MCSPI_DAFRX registers.

7MOAR/W0h

Multiple word configuration interface access:
This bit can only be used when a channel is enabled using a FIFO. It allows the system to perform multiple MCSPI word access for a single 32-bit interface word access. This is possible for WL < 16.

0h (R/W) = Multiple word access disabled

1h (R/W) = Multiple word access enabled with FIFO

6-4INITDLYR/W0h

Initial MCSPI delay for first transfer:
This field is an option only available in SINGLE master mode. The controller waits for a delay to transmit the first MCSPI word after channel enabled and corresponding TX register filled. This delay is based on MCSPI output frequency clock. No clock output provided to the boundary and chip select is not active in 4-pin mode within this period.

0h (R/W) = No delay for first MCSPI transfer.

1h (R/W) = The controller wait 4 MCSPI bus clock

2h (R/W) = The controller wait 8 MCSPI bus clock

3h (R/W) = The controller wait 16 MCSPI bus clock

4h (R/W) = The controller wait 32 MCSPI bus clock

3SYSTEM_TESTR/W0h

Enables the system test mode

0h (R/W) = Functional mode

1h (R/W) = System test mode (SYSTEST)

2MSR/W1h

Master/slave

0h (R/W) = Master - The module generates the SPICLK and SPIEN[3:0].

1h (R/W) = Slave - The module receives the SPICLK and SPIEN[3:0].

1PIN34R/W0h

Pin mode selection:
This bit is used in master or slave mode to configure the MCSPI pin mode (3-pin or 4-pin). If asserted the controller only uses SIMO, SOMI, and SPICLK clock pin for MCSPI transfers.

0h (R/W) = SPIEN is used as a chip-select.

1h (R/W) = SPIEN is not used. In this mode all related options to chip-select have no meaning.

0SINGLER/W0h

Single channel/Multi Channel (master mode only)

0h (R/W) = More than one channel will be used in master mode.

1h (R/W) = Only one channel will be used in master mode. This bit must be set in Force SPIEN[i] mode.

1.5.6.12 MCSPI_CHCONF_0 Register (Offset = 12Ch) [reset = 00060000h]

MCSPI_CHCONF_0 is shown in Figure 12-360 and described in Table 12-678.

Return to Summary Table.

This register is dedicated to the configuration of the channel i.

Table 12-677 MCSPI_CHCONF_0 Instances
InstancePhysical Address
MCSPI0_CFG0210 012Ch
MCSPI1_CFG0211 012Ch
MCSPI2_CFG0212 012Ch
MCSPI3_CFG0213 012Ch
MCSPI4_CFG0214 012Ch
MCU_MCSPI0_CFG4030 012Ch
MCU_MCSPI1_CFG4031 012Ch
MCU_MCSPI2_CFG4032 012Ch
Figure 12-360 MCSPI_CHCONF_0 Register
3130292827262524
RESERVEDCLKGFFERFFEWTCS0SBPOL
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
SBESPIENSLVFORCETURBOISDPE1DPE0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-1hR/W-1hR/W-0h
15141312111098
DMARDMAWTRMWL
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
WLEPOLCLKDPOLPHA
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-678 MCSPI_CHCONF_0 Register Field Descriptions
BitFieldTypeResetDescription
31-30RESERVEDR0h

Read returns 0.

29CLKGR/W0h

Clock divider granularity
This bit defines the granularity of channel clock divider: power of 2 or one clock cycle granularity.
When this bit is set the register MCSPI_CHCTRL_0[15-8] EXTCLK must be configured to reach a maximum of 4096 clock divider ratio.
Then the clock divider ratio is a concatenation of MCSPI_CHCONF_0[5-2] CLKD and MCSPI_CHCTRL_0[15-8] EXTCLK values

0h (R/W) = Clock granularity of power of 2

1h (R/W) = One clock cycle granularity

28FFERR/W0h

FIFO enabled for receive: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to receive data.

1h (R/W) = The buffer is used to receive data.

27FFEWR/W0h

FIFO enabled for transmit: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to transmit data.

1h (R/W) = The buffer is used to transmit data.

26-25TCS0R/W0h

Chip-select time control
This 2-bit field defines the number of interface clock cycles between CS toggling and first or last edge of MCSPI clock.

0h (R/W) = 0.5 clock cycle

1h (R/W) = 1.5 clock cycles

2h (R/W) = 2.5 clock cycles

3h (R/W) = 3.5 clock cycles

24SBPOLR/W0h

Start-bit polarity

0h (R/W) = Start-bit polarity is held to 0 during MCSPI transfer.

1h (R/W) = Start-bit polarity is held to 1 during MCSPI transfer.

23SBER/W0h

Start-bit enable for MCSPI transfer

0h (R/W) = Default MCSPI transfer length as specified by WL bit field

1h (R/W) = Start bit D/CX added before MCSPI transfer polarity is defined by MCSPI_CHCONF_0[24] SBPOL

22-21SPIENSLVR/W0h

Channel 0 only and slave mode only: MCSPI slave select signal detection.
Reserved bits for other cases.

0h (R/W) = Detection enabled only on SPIEN[0]

1h (R/W) = Detection enabled only on SPIEN[1]

2h (R/W) = Detection enabled only on SPIEN[2]

3h (R/W) = Detection enabled only on SPIEN[3]

20FORCER/W0h

Manual SPIEN assertion to keep SPIEN active between MCSPI words (single channel master mode only).

0h (R/W) = Writing 0 into this bit drives low the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it high when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

1h (R/W) = Writing 1 into this bit drives high the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it low when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

19TURBOR/W0h

Turbo mode

0h (R/W) = Turbo is deactivated (recommended for single MCSPI word transfer).

1h (R/W) = Turbo is activated to maximize the throughput for multiple MCSPI words transfer.

18ISR/W1h

Input Select

0h (R/W) = Data line 0 (SPIDAT[0]) selected for reception

1h (R/W) = Data line 1 (SPIDAT[1]) selected for reception

17DPE1R/W1h

Transmission enable for data line 1

0h (R/W) = Data line 1 (SPIDAT[1]) selected for transmission

1h (R/W) = No transmission on Data Line1 (SPIDAT[1])

16DPE0R/W0h

Transmission Enable for data line 0

0h (R/W) = Data Line0 (SPIDAT[0]) selected for transmission

1h (R/W) = No transmission on data line 0 (SPIDAT[0])

15DMARR/W0h

DMA read request
The DMA read request line is asserted when the channel is enabled and a new data is available in the receive register of the channel.
The DMA read request line is deasserted on read completion of the receive register of the channel.

0h (R/W) = DMA read request disabled

1h (R/W) = DMA read request enabled

14DMAWR/W0h

DMA write request.
The DMA write request line is asserted when The channel is enabled and the transmitter register of the channel is empty.
The DMA write request line is deasserted on load completion of the transmitter register of the channel.

0h (R/W) = DMA write request disabled

1h (R/W) = DMA write request enabled

13-12TRMR/W0h

Transmit/receive modes

0h (R/W) = Transmit-and-receive mode

1h (R/W) = Receive-only mode

2h (R/W) = Transmit-only mode

3h (R/W) = Reserved

11-7WLR/W0h

SPI word length

0h (R/W) = Reserved

1h (R/W) = Reserved

2h (R/W) = Reserved

3h (R/W) = The MCSPI word is 4 bits long

4h (R/W) = The MCSPI word is 5 bits long

5h (R/W) = The MCSPI word is 6 bits long

6h (R/W) = The MCSPI word is 7 bits long

7h (R/W) = The MCSPI word is 8 bits long

8h (R/W) = The MCSPI word is 9 bits long

9h (R/W) = The MCSPI word is 10 bits long

Ah (R/W) = The MCSPI word is 11 bits long

Bh (R/W) = The MCSPI word is 12 bits long

Ch (R/W) = The MCSPI word is 13 bits long

Dh (R/W) = The MCSPI word is 14 bits long

Eh (R/W) = The MCSPI word is 15 bits long

Fh (R/W) = The MCSPI word is 16 bits long

10h (R/W) = The MCSPI word is 17 bits long

11h (R/W) = The MCSPI word is 18 bits long

12h (R/W) = The MCSPI word is 19 bits long

13h (R/W) = The MCSPI word is 20 bits long

14h (R/W) = The MCSPI word is 21 bits long

15h (R/W) = The MCSPI word is 22 bits long

16h (R/W) = The MCSPI word is 23 bits long

17h (R/W) = The MCSPI word is 24 bits long

18h (R/W) = The MCSPI word is 25 bits long

19h (R/W) = The MCSPI word is 26 bits long

1Ah (R/W) = The MCSPI word is 27 bits long

1Bh (R/W) = The MCSPI word is 28 bits long

1Ch (R/W) = The MCSPI word is 29 bits long

1Dh (R/W) = The MCSPI word is 30 bits long

1Eh (R/W) = The MCSPI word is 31 bits long

1Fh (R/W) = The MCSPI word is 32 bits long

6EPOLR/W0h

SPIEN polarity

0h (R/W) = SPIEN is held high during the ACTIVE state.

1h (R/W) = SPIEN is held low during the ACTIVE state.

5-2CLKDR/W0h

Frequency divider for SPICLK (only when the module is a Master MCSPI device). A programmable clock divider divides the MCSPI reference clock (SPICLKREF) with a 4-bit value, and results in a new clock SPICLK available to shift-in and shift-out data. By default the clock divider ratio has a power of 2 granularity when MCSPI_CHCONF_0/1/2/3[29] CLKG is cleared. Otherwise this field is the 4-LSB bit of a 12-bit register concatenated with clock divider extension MCSPI_CHCTRL_0/1/2/3[15-8] EXTCLK register. The value description below defines the clock ratio when MCSPI_CHCONF_0/1/2/3[29] CLKG is set to 0.

0h (R/W) = 1

1h (R/W) = 2

2h (R/W) = 4

3h (R/W) = 8

4h (R/W) = 16

5h (R/W) = 32

6h (R/W) = 64

7h (R/W) = 128

8h (R/W) = 256

9h (R/W) = 512

Ah (R/W) = 1024

Bh (R/W) = 2048

Ch (R/W) = 4096

Dh (R/W) = 8192

Eh (R/W) = 16384

Fh (R/W) = 32768

1POLR/W0h

SPICLK polarity (see Transfer Format)

0h (R/W) = SPICLK is held low during the INACTIVE state

1h (R/W) = SPICLK is held high during the INACTIVE state

0PHAR/W0h

SPICLK phase (see Transfer Format)

0h (R/W) = Data are latched on odd-numbered edges of SPICLK.

1h (R/W) = Data are latched on even-numbered edges of SPICLK.

1.5.6.13 MCSPI_CHSTAT_0 Register (Offset = 130h) [reset = 0h]

MCSPI_CHSTAT_0 is shown in Figure 12-361 and described in Table 12-680.

Return to Summary Table.

This register provides status information about transmitter and receiver registers of channel i.

Table 12-679 MCSPI_CHSTAT_0 Instances
InstancePhysical Address
MCSPI0_CFG0210 0130h
MCSPI1_CFG0211 0130h
MCSPI2_CFG0212 0130h
MCSPI3_CFG0213 0130h
MCSPI4_CFG0214 0130h
MCU_MCSPI0_CFG4030 0130h
MCU_MCSPI1_CFG4031 0130h
MCU_MCSPI2_CFG4032 0130h
Figure 12-361 MCSPI_CHSTAT_0 Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRXFFFRXFFETXFFFTXFFEEOTTXSRXS
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-680 MCSPI_CHSTAT_0 Register Field Descriptions
BitFieldTypeResetDescription
31-7RESERVEDR0h

Read returns 0.

6RXFFFR0h

Channel i FIFO receive buffer full status

0h (R) = FIFO receive buffer is not full

1h (R) = FIFO receive buffer is full

5RXFFER0h

Channel i FIFO receive buffer empty status

0h (R) = FIFO receive buffer is not empty

1h (R) = FIFO receive buffer is empty

4TXFFFR0h

Channel i FIFO transmit buffer full status

0h (R) = FIFO transmit buffer is not full

1h (R) = FIFO transmit buffer is full

3TXFFER0h

Channel i FIFO transmit buffer empty status

0h (R) = FIFO transmit buffer is not empty

1h (R) = FIFO transmit buffer is empty

2EOTR0h

Channel i end of transfer status. The definitions of beginning and end of transfer vary with master versus slave and the transfer format (transmit/receive modes, turbo mode). See dedicated chapters for details.

0h (R) = This flag is automatically cleared when the shift register is loaded with the data from the transmitter register (beginning of transfer).

1h (R) = This flag is automatically set to one at the end of an MCSPI transfer.

1TXSR0h

Channel i transmitter register status

0h (R) = Register is full.

1h (R) = Register is empty.

0RXSR0h

Channel i receiver register status

0h (R) = Register is empty.

1h (R) = Register is full.

1.5.6.14 MCSPI_CHCTRL_0 Register (Offset = 134h) [reset = 0h]

MCSPI_CHCTRL_0 is shown in Figure 12-362 and described in Table 12-682.

Return to Summary Table.

This register is dedicated to enable channel i.

Table 12-681 MCSPI_CHCTRL_0 Instances
InstancePhysical Address
MCSPI0_CFG0210 0134h
MCSPI1_CFG0211 0134h
MCSPI2_CFG0212 0134h
MCSPI3_CFG0213 0134h
MCSPI4_CFG0214 0134h
MCU_MCSPI0_CFG4030 0134h
MCU_MCSPI1_CFG4031 0134h
MCU_MCSPI2_CFG4032 0134h
Figure 12-362 MCSPI_CHCTRL_0 Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
EXTCLKRESERVEDEN
R/W-0hR-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-682 MCSPI_CHCTRL_0 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0h

Read returns 0.

15-8EXTCLKR/W0h

Clock ratio extension:
This field is used to concatenate with MCSPI_CHCONF_0/1/2/3[5-2] CLKD register for clock ratio only when granularity is one clock cycle (MCSPI_CHCONF_0/1/2/3[29] CLKG set to 1). Then the maximum value reached is 4096 clock divider ratio.

0h (R/W) = Clock ratio is CLKD + 1.

1h (R/W) = Clock ratio is CLKD + 1 + 16.

FFh (R/W) = Clock ratio is CLKD + 1 + 4080.

7-1RESERVEDR0h

Read returns 0.

0ENR/W0h

Channel enable

0h (R/W) = Channel i is not active.

1h (R/W) = Channel i is active.

1.5.6.15 MCSPI_TX_0 Register (Offset = 138h) [reset = 0h]

MCSPI_TX_0 is shown in Figure 12-363 and described in Table 12-684.

Return to Summary Table.

This register contains a single MCSPI word for channel ito transmit on the serial link, whatever MCSPI word length is.

Table 12-683 MCSPI_TX_0 Instances
InstancePhysical Address
MCSPI0_CFG0210 0138h
MCSPI1_CFG0211 0138h
MCSPI2_CFG0212 0138h
MCSPI3_CFG0213 0138h
MCSPI4_CFG0214 0138h
MCU_MCSPI0_CFG4030 0138h
MCU_MCSPI1_CFG4031 0138h
MCU_MCSPI2_CFG4032 0138h
Figure 12-363 MCSPI_TX_0 Register
313029282726252423222120191817161514131211109876543210
TDATA
R/W-0h
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-684 MCSPI_TX_0 Register Field Descriptions
BitFieldTypeResetDescription
31-0TDATAR/W0h

Channel i data to transmit

1.5.6.16 MCSPI_RX_0 Register (Offset = 13Ch) [reset = 0h]

MCSPI_RX_0 is shown in Figure 12-364 and described in Table 12-686.

Return to Summary Table.

This register contains a single MCSPI word for channel i received through the serial link, whatever MCSPI word length is.

Table 12-685 MCSPI_RX_0 Instances
InstancePhysical Address
MCSPI0_CFG0210 013Ch
MCSPI1_CFG0211 013Ch
MCSPI2_CFG0212 013Ch
MCSPI3_CFG0213 013Ch
MCSPI4_CFG0214 013Ch
MCU_MCSPI0_CFG4030 013Ch
MCU_MCSPI1_CFG4031 013Ch
MCU_MCSPI2_CFG4032 013Ch
Figure 12-364 MCSPI_RX_0 Register
313029282726252423222120191817161514131211109876543210
RDATA
R-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-686 MCSPI_RX_0 Register Field Descriptions
BitFieldTypeResetDescription
31-0RDATAR0h

Channel i received data

1.5.6.17 MCSPI_CHCONF_1 Register (Offset = 140h) [reset = 00060000h]

MCSPI_CHCONF_1 is shown in Figure 12-365 and described in Table 12-688.

Return to Summary Table.

This register is dedicated to the configuration of the channel i.

Table 12-687 MCSPI_CHCONF_1 Instances
InstancePhysical Address
MCSPI0_CFG0210 0140h
MCSPI1_CFG0211 0140h
MCSPI2_CFG0212 0140h
MCSPI3_CFG0213 0140h
MCSPI4_CFG0214 0140h
MCU_MCSPI0_CFG4030 0140h
MCU_MCSPI1_CFG4031 0140h
MCU_MCSPI2_CFG4032 0140h
Figure 12-365 MCSPI_CHCONF_1 Register
3130292827262524
RESERVEDCLKGFFERFFEWTCS0SBPOL
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
SBESPIENSLVFORCETURBOISDPE1DPE0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-1hR/W-1hR/W-0h
15141312111098
DMARDMAWTRMWL
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
WLEPOLCLKDPOLPHA
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-688 MCSPI_CHCONF_1 Register Field Descriptions
BitFieldTypeResetDescription
31-30RESERVEDR0h

Read returns 0.

29CLKGR/W0h

Clock divider granularity
This bit defines the granularity of channel clock divider: power of 2 or one clock cycle granularity.
When this bit is set the register MCSPI_CHCTRL_0/1/2/3[15-8] EXTCLK must be configured to reach a maximum of 4096 clock divider ratio.
Then the clock divider ratio is a concatenation of MCSPI_CHCONF_0/1/2/3[5-2] CLKD and MCSPI_CHCTRL_0/1/2/3[15-8] EXTCLK values

0h (R/W) = Clock granularity of power of 2

1h (R/W) = One clock cycle granularity

28FFERR/W0h

FIFO enabled for receive: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to receive data.

1h (R/W) = The buffer is used to receive data.

27FFEWR/W0h

FIFO enabled for transmit: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to transmit data.

1h (R/W) = The buffer is used to transmit data.

26-25TCS0R/W0h

Chip-select time control
This 2-bit field defines the number of interface clock cycles between CS toggling and first or last edge of MCSPI clock.

0h (R/W) = 0.5 clock cycle

1h (R/W) = 1.5 clock cycles

2h (R/W) = 2.5 clock cycles

3h (R/W) = 3.5 clock cycles

24SBPOLR/W0h

Start-bit polarity

0h (R/W) = Start-bit polarity is held to 0 during MCSPI transfer.

1h (R/W) = Start-bit polarity is held to 1 during MCSPI transfer.

23SBER/W0h

Start-bit enable for MCSPI transfer

0h (R/W) = Default MCSPI transfer length as specified by WL bit field

1h (R/W) = Start bit D/CX added before MCSPI transfer polarity is defined by MCSPI_CHCONF_0[24] SBPOL

22-21SPIENSLVR/W0h

Channel 0 only and slave mode only: MCSPI slave select signal detection.
Reserved bits for other cases.

0h (R/W) = Detection enabled only on SPIEN[0]

1h (R/W) = Detection enabled only on SPIEN[1]

2h (R/W) = Detection enabled only on SPIEN[2]

3h (R/W) = Detection enabled only on SPIEN[3]

20FORCER/W0h

Manual SPIEN assertion to keep SPIEN active between MCSPI words (single channel master mode only).

0h (R/W) = Writing 0 into this bit drives low the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it high when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

1h (R/W) = Writing 1 into this bit drives high the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it low when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

19TURBOR/W0h

Turbo mode

0h (R/W) = Turbo is deactivated (recommended for single MCSPI word transfer).

1h (R/W) = Turbo is activated to maximize the throughput for multiple MCSPI words transfer.

18ISR/W1h

Input Select

0h (R/W) = Data line 0 (SPIDAT[0]) selected for reception

1h (R/W) = Data line 1 (SPIDAT[1]) selected for reception

17DPE1R/W1h

Transmission enable for data line 1

0h (R/W) = Data line 1 (SPIDAT[1]) selected for transmission

1h (R/W) = No transmission on Data Line1 (SPIDAT[1])

16DPE0R/W0h

Transmission Enable for data line 0

0h (R/W) = Data Line0 (SPIDAT[0]) selected for transmission

1h (R/W) = No transmission on data line 0 (SPIDAT[0])

15DMARR/W0h

DMA read request
The DMA read request line is asserted when the channel is enabled and a new data is available in the receive register of the channel.
The DMA read request line is deasserted on read completion of the receive register of the channel.

0h (R/W) = DMA read request disabled

1h (R/W) = DMA read request enabled

14DMAWR/W0h

DMA write request.
The DMA write request line is asserted when The channel is enabled and the transmitter register of the channel is empty.
The DMA write request line is deasserted on load completion of the transmitter register of the channel.

0h (R/W) = DMA write request disabled

1h (R/W) = DMA write request enabled

13-12TRMR/W0h

Transmit/receive modes

0h (R/W) = Transmit-and-receive mode

1h (R/W) = Receive-only mode

2h (R/W) = Transmit-only mode

3h (R/W) = Reserved

11-7WLR/W0h

SPI word length

0h (R/W) = Reserved

1h (R/W) = Reserved

2h (R/W) = Reserved

3h (R/W) = The MCSPI word is 4 bits long

4h (R/W) = The MCSPI word is 5 bits long

5h (R/W) = The MCSPI word is 6 bits long

6h (R/W) = The MCSPI word is 7 bits long

7h (R/W) = The MCSPI word is 8 bits long

8h (R/W) = The MCSPI word is 9 bits long

9h (R/W) = The MCSPI word is 10 bits long

Ah (R/W) = The MCSPI word is 11 bits long

Bh (R/W) = The MCSPI word is 12 bits long

Ch (R/W) = The MCSPI word is 13 bits long

Dh (R/W) = The MCSPI word is 14 bits long

Eh (R/W) = The MCSPI word is 15 bits long

Fh (R/W) = The MCSPI word is 16 bits long

10h (R/W) = The MCSPI word is 17 bits long

11h (R/W) = The MCSPI word is 18 bits long

12h (R/W) = The MCSPI word is 19 bits long

13h (R/W) = The MCSPI word is 20 bits long

14h (R/W) = The MCSPI word is 21 bits long

15h (R/W) = The MCSPI word is 22 bits long

16h (R/W) = The MCSPI word is 23 bits long

17h (R/W) = The MCSPI word is 24 bits long

18h (R/W) = The MCSPI word is 25 bits long

19h (R/W) = The MCSPI word is 26 bits long

1Ah (R/W) = The MCSPI word is 27 bits long

1Bh (R/W) = The MCSPI word is 28 bits long

1Ch (R/W) = The MCSPI word is 29 bits long

1Dh (R/W) = The MCSPI word is 30 bits long

1Eh (R/W) = The MCSPI word is 31 bits long

1Fh (R/W) = The MCSPI word is 32 bits long

6EPOLR/W0h

SPIEN polarity

0h (R/W) = SPIEN is held high during the ACTIVE state.

1h (R/W) = SPIEN is held low during the ACTIVE state.

5-2CLKDR/W0h

Frequency divider for SPICLK (only when the module is a Master MCSPI device). A programmable clock divider divides the MCSPI reference clock (SPICLKREF) with a 4-bit value, and results in a new clock SPICLK available to shift-in and shift-out data. By default the clock divider ratio has a power of 2 granularity when MCSPI_CHCONF_0/1/2/3[29] CLKG is cleared. Otherwise this field is the 4-LSB bit of a 12-bit register concatenated with clock divider extension MCSPI_CHCTRL_0/1/2/3[15-8] EXTCLK register. The value description below defines the clock ratio when MCSPI_CHCONF_0/1/2/3[29] CLKG is set to 0.

0h (R/W) = 1

1h (R/W) = 2

2h (R/W) = 4

3h (R/W) = 8

4h (R/W) = 16

5h (R/W) = 32

6h (R/W) = 64

7h (R/W) = 128

8h (R/W) = 256

9h (R/W) = 512

Ah (R/W) = 1024

Bh (R/W) = 2048

Ch (R/W) = 4096

Dh (R/W) = 8192

Eh (R/W) = 16384

Fh (R/W) = 32768

1POLR/W0h

SPICLK polarity (see Transfer Format)

0h (R/W) = SPICLK is held low during the INACTIVE state

1h (R/W) = SPICLK is held high during the INACTIVE state

0PHAR/W0h

SPICLK phase (see Transfer Format)

0h (R/W) = Data are latched on odd-numbered edges of SPICLK.

1h (R/W) = Data are latched on even-numbered edges of SPICLK.

1.5.6.18 MCSPI_CHSTAT_1 Register (Offset = 144h) [reset = 0h]

MCSPI_CHSTAT_1 is shown in Figure 12-366 and described in Table 12-690.

Return to Summary Table.

This register provides status information about transmitter and receiver registers of channel i.

Table 12-689 MCSPI_CHSTAT_1 Instances
InstancePhysical Address
MCSPI0_CFG0210 0144h
MCSPI1_CFG0211 0144h
MCSPI2_CFG0212 0144h
MCSPI3_CFG0213 0144h
MCSPI4_CFG0214 0144h
MCU_MCSPI0_CFG4030 0144h
MCU_MCSPI1_CFG4031 0144h
MCU_MCSPI2_CFG4032 0144h
Figure 12-366 MCSPI_CHSTAT_1 Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRXFFFRXFFETXFFFTXFFEEOTTXSRXS
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-690 MCSPI_CHSTAT_1 Register Field Descriptions
BitFieldTypeResetDescription
31-7RESERVEDR0h

Read returns 0.

6RXFFFR0h

Channel i FIFO receive buffer full status

0h (R) = FIFO receive buffer is not full

1h (R) = FIFO receive buffer is full

5RXFFER0h

Channel i FIFO receive buffer empty status

0h (R) = FIFO receive buffer is not empty

1h (R) = FIFO receive buffer is empty

4TXFFFR0h

Channel i FIFO transmit buffer full status

0h (R) = FIFO transmit buffer is not full

1h (R) = FIFO transmit buffer is full

3TXFFER0h

Channel i FIFO transmit buffer empty status

0h (R) = FIFO transmit buffer is not empty

1h (R) = FIFO transmit buffer is empty

2EOTR0h

Channel i end of transfer status. The definitions of beginning and end of transfer vary with master versus slave and the transfer format (transmit/receive modes, turbo mode). See dedicated chapters for details.

0h (R) = This flag is automatically cleared when the shift register is loaded with the data from the transmitter register (beginning of transfer).

1h (R) = This flag is automatically set to one at the end of an MCSPI transfer.

1TXSR0h

Channel i transmitter register status

0h (R) = Register is full.

1h (R) = Register is empty.

0RXSR0h

Channel i receiver register status

0h (R) = Register is empty.

1h (R) = Register is full.

1.5.6.19 MCSPI_CHCTRL_1 Register (Offset = 148h) [reset = 0h]

MCSPI_CHCTRL_1 is shown in Figure 12-367 and described in Table 12-692.

Return to Summary Table.

This register is dedicated to enable channel i.

Table 12-691 MCSPI_CHCTRL_1 Instances
InstancePhysical Address
MCSPI0_CFG0210 0148h
MCSPI1_CFG0211 0148h
MCSPI2_CFG0212 0148h
MCSPI3_CFG0213 0148h
MCSPI4_CFG0214 0148h
MCU_MCSPI0_CFG4030 0148h
MCU_MCSPI1_CFG4031 0148h
MCU_MCSPI2_CFG4032 0148h
Figure 12-367 MCSPI_CHCTRL_1 Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
EXTCLKRESERVEDEN
R/W-0hR-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-692 MCSPI_CHCTRL_1 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0h

Read returns 0.

15-8EXTCLKR/W0h

Clock ratio extension:
This field is used to concatenate with MCSPI_CHCONF_0/1/2/3[5-2] CLKD register for clock ratio only when granularity is one clock cycle (MCSPI_CHCONF_0/1/2/3[29] CLKG set to 1). Then the maximum value reached is 4096 clock divider ratio.

0h (R/W) = Clock ratio is CLKD + 1.

1h (R/W) = Clock ratio is CLKD + 1 + 16.

FFh (R/W) = Clock ratio is CLKD + 1 + 4080.

7-1RESERVEDR0h

Read returns 0.

0ENR/W0h

Channel enable

0h (R/W) = Channel "i" is not active.

1h (R/W) = Channel "i" is active.

1.5.6.20 MCSPI_TX_1 Register (Offset = 14Ch) [reset = 0h]

MCSPI_TX_1 is shown in Figure 12-368 and described in Table 12-694.

Return to Summary Table.

This register contains a single MCSPI word for channel i to transmit on the serial link, whatever MCSPI word length is.

Table 12-693 MCSPI_TX_1 Instances
InstancePhysical Address
MCSPI0_CFG0210 014Ch
MCSPI1_CFG0211 014Ch
MCSPI2_CFG0212 014Ch
MCSPI3_CFG0213 014Ch
MCSPI4_CFG0214 014Ch
MCU_MCSPI0_CFG4030 014Ch
MCU_MCSPI1_CFG4031 014Ch
MCU_MCSPI2_CFG4032 014Ch
Figure 12-368 MCSPI_TX_1 Register
313029282726252423222120191817161514131211109876543210
TDATA
R/W-
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-694 MCSPI_TX_1 Register Field Descriptions
BitFieldTypeResetDescription
31-0TDATAR/W0

Channel i data to transmit

1.5.6.21 MCSPI_RX_1 Register (Offset = 150h) [reset = 0h]

MCSPI_RX_1 is shown in Figure 12-369 and described in Table 12-696.

Return to Summary Table.

This register contains a single MCSPI word for channel i received through the serial link, whatever MCSPI word length is.

Table 12-695 MCSPI_RX_1 Instances
InstancePhysical Address
MCSPI0_CFG0210 0150h
MCSPI1_CFG0211 0150h
MCSPI2_CFG0212 0150h
MCSPI3_CFG0213 0150h
MCSPI4_CFG0214 0150h
MCU_MCSPI0_CFG4030 0150h
MCU_MCSPI1_CFG4031 0150h
MCU_MCSPI2_CFG4032 0150h
Figure 12-369 MCSPI_RX_1 Register
313029282726252423222120191817161514131211109876543210
RDATA
R-
LEGEND: R = Read Only; -n = value after reset
Table 12-696 MCSPI_RX_1 Register Field Descriptions
BitFieldTypeResetDescription
31-0RDATAR0

Channel i received data

1.5.6.22 MCSPI_CHCONF_2 Register (Offset = 154h) [reset = 00060000h]

MCSPI_CHCONF_2 is shown in Figure 12-370 and described in Table 12-698.

Return to Summary Table.

This register is dedicated to the configuration of the channel i

Table 12-697 MCSPI_CHCONF_2 Instances
InstancePhysical Address
MCSPI0_CFG0210 0154h
MCSPI1_CFG0211 0154h
MCSPI2_CFG0212 0154h
MCSPI3_CFG0213 0154h
MCSPI4_CFG0214 0154h
MCU_MCSPI0_CFG4030 0154h
MCU_MCSPI1_CFG4031 0154h
MCU_MCSPI2_CFG4032 0154h
Figure 12-370 MCSPI_CHCONF_2 Register
3130292827262524
RESERVEDCLKGFFERFFEWTCS0SBPOL
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
SBESPIENSLVFORCETURBOISDPE1DPE0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-1hR/W-1hR/W-0h
15141312111098
DMARDMAWTRMWL
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
WLEPOLCLKDPOLPHA
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-698 MCSPI_CHCONF_2 Register Field Descriptions
BitFieldTypeResetDescription
31-30RESERVEDR0h

Read returns 0.

29CLKGR/W0h

Clock divider granularity
This bit defines the granularity of channel clock divider: power of 2 or one clock cycle granularity.
When this bit is set the register MCSPI_CHCTRL_2[15-8] EXTCLK must be configured to reach a maximum of 4096 clock divider ratio.
Then the clock divider ratio is a concatenation of MCSPI_CHCONF_2[5-2] CLKD and MCSPI_CHCTRL_2[15-8] EXTCLK values

0h (R/W) = Clock granularity of power of 2

1h (R/W) = One clock cycle granularity

28FFERR/W0h

FIFO enabled for receive: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to receive data.

1h (R/W) = The buffer is used to receive data.

27FFEWR/W0h

FIFO enabled for transmit: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to transmit data.

1h (R/W) = The buffer is used to transmit data.

26-25TCS0R/W0h

Chip-select time control
This 2-bit field defines the number of interface clock cycles between CS toggling and first or last edge of MCSPI clock.

0h (R/W) = 0.5 clock cycle

1h (R/W) = 1.5 clock cycles

2h (R/W) = 2.5 clock cycles

3h (R/W) = 3.5 clock cycles

24SBPOLR/W0h

Start-bit polarity

0h (R/W) = Start-bit polarity is held to 0 during MCSPI transfer.

1h (R/W) = Start-bit polarity is held to 1 during MCSPI transfer.

23SBER/W0h

Start-bit enable for MCSPI transfer

0h (R/W) = Default MCSPI transfer length as specified by WL bit field

1h (R/W) = Start bit D/CX added before MCSPI transfer polarity is defined by MCSPI_CHCONF_2[24] SBPOL

22-21SPIENSLVR/W0h

Channel 0 only and slave mode only: MCSPI slave select signal detection.
Reserved bits for other cases.

0h (R/W) = Detection enabled only on SPIEN[0]

1h (R/W) = Detection enabled only on SPIEN[1]

2h (R/W) = Detection enabled only on SPIEN[2]

3h (R/W) = Detection enabled only on SPIEN[3]

20FORCER/W0h

Manual SPIEN assertion to keep SPIEN active between MCSPI words (single channel master mode only).

0h (R/W) = Writing 0 into this bit drives low the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it high when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

1h (R/W) = Writing 1 into this bit drives high the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it low when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

19TURBOR/W0h

Turbo mode

0h (R/W) = Turbo is deactivated (recommended for single MCSPI word transfer).

1h (R/W) = Turbo is activated to maximize the throughput for multiple MCSPI words transfer.

18ISR/W1h

Input Select

0h (R/W) = Data line 0 (SPIDAT[0]) selected for reception

1h (R/W) = Data line 1 (SPIDAT[1]) selected for reception

17DPE1R/W1h

Transmission enable for data line 1

0h (R/W) = Data line 1 (SPIDAT[1]) selected for transmission

1h (R/W) = No transmission on Data Line1 (SPIDAT[1])

16DPE0R/W0h

Transmission Enable for data line 0

0h (R/W) = Data Line0 (SPIDAT[0]) selected for transmission

1h (R/W) = No transmission on data line 0 (SPIDAT[0])

15DMARR/W0h

DMA read request
The DMA read request line is asserted when the channel is enabled and a new data is available in the receive register of the channel.
The DMA read request line is deasserted on read completion of the receive register of the channel.

0h (R/W) = DMA read request disabled

1h (R/W) = DMA read request enabled

14DMAWR/W0h

DMA write request.
The DMA write request line is asserted when The channel is enabled and the transmitter register of the channel is empty.
The DMA write request line is deasserted on load completion of the transmitter register of the channel.

0h (R/W) = DMA write request disabled

1h (R/W) = DMA write request enabled

13-12TRMR/W0h

Transmit/receive modes

0h (R/W) = Transmit-and-receive mode

1h (R/W) = Receive-only mode

2h (R/W) = Transmit-only mode

3h (R/W) = Reserved

11-7WLR/W0h

SPI word length

0h (R/W) = Reserved

1h (R/W) = Reserved

2h (R/W) = Reserved

3h (R/W) = The MCSPI word is 4 bits long

4h (R/W) = The MCSPI word is 5 bits long

5h (R/W) = The MCSPI word is 6 bits long

6h (R/W) = The MCSPI word is 7 bits long

7h (R/W) = The MCSPI word is 8 bits long

8h (R/W) = The MCSPI word is 9 bits long

9h (R/W) = The MCSPI word is 10 bits long

Ah (R/W) = The MCSPI word is 11 bits long

Bh (R/W) = The MCSPI word is 12 bits long

Ch (R/W) = The MCSPI word is 13 bits long

Dh (R/W) = The MCSPI word is 14 bits long

Eh (R/W) = The MCSPI word is 15 bits long

Fh (R/W) = The MCSPI word is 16 bits long

10h (R/W) = The MCSPI word is 17 bits long

11h (R/W) = The MCSPI word is 18 bits long

12h (R/W) = The MCSPI word is 19 bits long

13h (R/W) = The MCSPI word is 20 bits long

14h (R/W) = The MCSPI word is 21 bits long

15h (R/W) = The MCSPI word is 22 bits long

16h (R/W) = The MCSPI word is 23 bits long

17h (R/W) = The MCSPI word is 24 bits long

18h (R/W) = The MCSPI word is 25 bits long

19h (R/W) = The MCSPI word is 26 bits long

1Ah (R/W) = The MCSPI word is 27 bits long

1Bh (R/W) = The MCSPI word is 28 bits long

1Ch (R/W) = The MCSPI word is 29 bits long

1Dh (R/W) = The MCSPI word is 30 bits long

1Eh (R/W) = The MCSPI word is 31 bits long

1Fh (R/W) = The MCSPI word is 32 bits long

6EPOLR/W0h

SPIEN polarity

0h (R/W) = SPIEN is held high during the ACTIVE state.

1h (R/W) = SPIEN is held low during the ACTIVE state.

5-2CLKDR/W0h

Frequency divider for SPICLK (only when the module is a Master MCSPI device). A programmable clock divider divides the MCSPI reference clock (SPICLKREF) with a 4-bit value, and results in a new clock SPICLK available to shift-in and shift-out data. By default the clock divider ratio has a power of 2 granularity when MCSPI_CHCONF_2[29] CLKG is cleared. Otherwise this field is the 4-LSB bit of a 12-bit register concatenated with clock divider extension MCSPI_CHCTRL_2[15-8] EXTCLK register. The value description below defines the clock ratio when MCSPI_CHCONF_2[29] CLKG is set to 0.

0h (R/W) = 1

1h (R/W) = 2

2h (R/W) = 4

3h (R/W) = 8

4h (R/W) = 16

5h (R/W) = 32

6h (R/W) = 64

7h (R/W) = 128

8h (R/W) = 256

9h (R/W) = 512

Ah (R/W) = 1024

Bh (R/W) = 2048

Ch (R/W) = 4096

Dh (R/W) = 8192

Eh (R/W) = 16384

Fh (R/W) = 32768

1POLR/W0h

SPICLK polarity (see Transfer Format)

0h (R/W) = SPICLK is held low during the INACTIVE state

1h (R/W) = SPICLK is held high during the INACTIVE state

0PHAR/W0h

SPICLK phase (see Transfer Format)

0h (R/W) = Data are latched on odd-numbered edges of SPICLK.

1h (R/W) = Data are latched on even-numbered edges of SPICLK.

1.5.6.23 MCSPI_CHSTAT_2 Register (Offset = 158h) [reset = 0h]

MCSPI_CHSTAT_2 is shown in Figure 12-371 and described in Table 12-700.

Return to Summary Table.

This register provides status information about transmitter and receiver registers of channel i.

Table 12-699 MCSPI_CHSTAT_2 Instances
InstancePhysical Address
MCSPI0_CFG0210 0158h
MCSPI1_CFG0211 0158h
MCSPI2_CFG0212 0158h
MCSPI3_CFG0213 0158h
MCSPI4_CFG0214 0158h
MCU_MCSPI0_CFG4030 0158h
MCU_MCSPI1_CFG4031 0158h
MCU_MCSPI2_CFG4032 0158h
Figure 12-371 MCSPI_CHSTAT_2 Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRXFFFRXFFETXFFFTXFFEEOTTXSRXS
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-700 MCSPI_CHSTAT_2 Register Field Descriptions
BitFieldTypeResetDescription
31-7RESERVEDR0h

Read returns 0.

6RXFFFR0h

Channel i FIFO receive buffer full status

0h (R) = FIFO receive buffer is not full

1h (R) = FIFO receive buffer is full

5RXFFER0h

Channel i FIFO receive buffer empty status

0h (R) = FIFO receive buffer is not empty

1h (R) = FIFO receive buffer is empty

4TXFFFR0h

Channel i FIFO transmit buffer full status

0h (R) = FIFO transmit buffer is not full

1h (R) = FIFO transmit buffer is full

3TXFFER0h

Channel i FIFO transmit buffer empty status

0h (R) = FIFO transmit buffer is not empty

1h (R) = FIFO transmit buffer is empty

2EOTR0h

Channel i end of transfer status. The definitions of beginning and end of transfer vary with master versus slave and the transfer format (transmit/receive modes, turbo mode). See dedicated chapters for details.

0h (R) = This flag is automatically cleared when the shift register is loaded with the data from the transmitter register (beginning of transfer).

1h (R) = This flag is automatically set to one at the end of an MCSPI transfer.

1TXSR0h

Channel i transmitter register status

0h (R) = Register is full.

1h (R) = Register is empty.

0RXSR0h

Channel i receiver register status

0h (R) = Register is empty.

1h (R) = Register is full.

1.5.6.24 MCSPI_CHCTRL_2 Register (Offset = 15Ch) [reset = 0h]

MCSPI_CHCTRL_2 is shown in Figure 12-372 and described in Table 12-702.

Return to Summary Table.

This register is dedicated to enable channel i.

Table 12-701 MCSPI_CHCTRL_2 Instances
InstancePhysical Address
MCSPI0_CFG0210 015Ch
MCSPI1_CFG0211 015Ch
MCSPI2_CFG0212 015Ch
MCSPI3_CFG0213 015Ch
MCSPI4_CFG0214 015Ch
MCU_MCSPI0_CFG4030 015Ch
MCU_MCSPI1_CFG4031 015Ch
MCU_MCSPI2_CFG4032 015Ch
Figure 12-372 MCSPI_CHCTRL_2 Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
EXTCLKRESERVEDEN
R/W-0hR-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-702 MCSPI_CHCTRL_2 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0h

Read returns 0.

15-8EXTCLKR/W0h

Clock ratio extension:
This field is used to concatenate with MCSPI_CHCONF_0/1/2/3[5-2] CLKD register for clock ratio only when granularity is one clock cycle (MCSPI_CHCONF_0/1/2/3[29] CLKG set to 1). Then the maximum value reached is 4096 clock divider ratio.

0h (R/W) = Clock ratio is CLKD + 1.

1h (R/W) = Clock ratio is CLKD + 1 + 16.

FFh (R/W) = Clock ratio is CLKD + 1 + 4080.

7-1RESERVEDR0h

Read returns 0.

0ENR/W0h

Channel enable

0h (R/W) = Channel i is not active.

1h (R/W) = Channel i is active.

1.5.6.25 MCSPI_TX_2 Register (Offset = 160h) [reset = 0h]

MCSPI_TX_2 is shown in Figure 12-373 and described in Table 12-704.

Return to Summary Table.

This register contains a single MCSPI word for channel i to transmit on the serial link, whatever MCSPI word length is.

Table 12-703 MCSPI_TX_2 Instances
InstancePhysical Address
MCSPI0_CFG0210 0160h
MCSPI1_CFG0211 0160h
MCSPI2_CFG0212 0160h
MCSPI3_CFG0213 0160h
MCSPI4_CFG0214 0160h
MCU_MCSPI0_CFG4030 0160h
MCU_MCSPI1_CFG4031 0160h
MCU_MCSPI2_CFG4032 0160h
Figure 12-373 MCSPI_TX_2 Register
313029282726252423222120191817161514131211109876543210
TDATA
R/W-0h
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-704 MCSPI_TX_2 Register Field Descriptions
BitFieldTypeResetDescription
31-0TDATAR/W0h

Channel i data to transmit

1.5.6.26 MCSPI_RX_2 Register (Offset = 164h) [reset = 0h]

MCSPI_RX_2 is shown in Figure 12-374 and described in Table 12-706.

Return to Summary Table.

This register contains a single MCSPI word for channel i received through the serial link, whatever MCSPI word length is.

Table 12-705 MCSPI_RX_2 Instances
InstancePhysical Address
MCSPI0_CFG0210 0164h
MCSPI1_CFG0211 0164h
MCSPI2_CFG0212 0164h
MCSPI3_CFG0213 0164h
MCSPI4_CFG0214 0164h
MCU_MCSPI0_CFG4030 0164h
MCU_MCSPI1_CFG4031 0164h
MCU_MCSPI2_CFG4032 0164h
Figure 12-374 MCSPI_RX_2 Register
313029282726252423222120191817161514131211109876543210
RDATA
R-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-706 MCSPI_RX_2 Register Field Descriptions
BitFieldTypeResetDescription
31-0RDATAR0h

Channel i received data

1.5.6.27 MCSPI_CHCONF_3 Register (Offset = 168h) [reset = 00060000h]

MCSPI_CHCONF_3 is shown in Figure 12-375 and described in Table 12-708.

Return to Summary Table.

This register is dedicated to the configuration of the channel i

Table 12-707 MCSPI_CHCONF_3 Instances
InstancePhysical Address
MCSPI0_CFG0210 0168h
MCSPI1_CFG0211 0168h
MCSPI2_CFG0212 0168h
MCSPI3_CFG0213 0168h
MCSPI4_CFG0214 0168h
MCU_MCSPI0_CFG4030 0168h
MCU_MCSPI1_CFG4031 0168h
MCU_MCSPI2_CFG4032 0168h
Figure 12-375 MCSPI_CHCONF_3 Register
3130292827262524
RESERVEDCLKGFFERFFEWTCS0SBPOL
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
2322212019181716
SBESPIENSLVFORCETURBOISDPE1DPE0
R/W-0hR/W-0hR/W-0hR/W-0hR/W-1hR/W-1hR/W-0h
15141312111098
DMARDMAWTRMWL
R/W-0hR/W-0hR/W-0hR/W-0h
76543210
WLEPOLCLKDPOLPHA
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-708 MCSPI_CHCONF_3 Register Field Descriptions
BitFieldTypeResetDescription
31-30RESERVEDR0h

Read returns 0.

29CLKGR/W0h

Clock divider granularity
This bit defines the granularity of channel clock divider: power of 2 or one clock cycle granularity.
When this bit is set the register MCSPI_CHCTRL_3[15-8] EXTCLK must be configured to reach a maximum of 4096 clock divider ratio.
Then the clock divider ratio is a concatenation of MCSPI_CHCONF_3[5-2] CLKD and MCSPI_CHCTRL_3[15-8] EXTCLK values

0h (R/W) = Clock granularity of power of 2

1h (R/W) = One clock cycle granularity

28FFERR/W0h

FIFO enabled for receive: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to receive data.

1h (R/W) = The buffer is used to receive data.

27FFEWR/W0h

FIFO enabled for transmit: Only one channel can have this bit field set.

0h (R/W) = The buffer is not used to transmit data.

1h (R/W) = The buffer is used to transmit data.

26-25TCS0R/W0h

Chip-select time control
This 2-bit field defines the number of interface clock cycles between CS toggling and first or last edge of MCSPI clock.

0h (R/W) = 0.5 clock cycle

1h (R/W) = 1.5 clock cycles

2h (R/W) = 2.5 clock cycles

3h (R/W) = 3.5 clock cycles

24SBPOLR/W0h

Start-bit polarity

0h (R/W) = Start-bit polarity is held to 0 during MCSPI transfer.

1h (R/W) = Start-bit polarity is held to 1 during MCSPI transfer.

23SBER/W0h

Start-bit enable for MCSPI transfer

0h (R/W) = Default MCSPI transfer length as specified by WL bit field

1h (R/W) = Start bit D/CX added before MCSPI transfer polarity is defined by MCSPI_CHCONF_3[24] SBPOL

22-21SPIENSLVR/W0h

Channel 0 only and slave mode only: MCSPI slave select signal detection.
Reserved bits for other cases.

0h (R/W) = Detection enabled only on SPIEN[0]

1h (R/W) = Detection enabled only on SPIEN[1]

2h (R/W) = Detection enabled only on SPIEN[2]

3h (R/W) = Detection enabled only on SPIEN[3]

20FORCER/W0h

Manual SPIEN assertion to keep SPIEN active between MCSPI words (single channel master mode only).

0h (R/W) = Writing 0 into this bit drives low the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it high when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

1h (R/W) = Writing 1 into this bit drives high the SPIEN line when MCSPI_CHCONF_0/1/2/3[6] EPOL=0, and drives it low when MCSPI_CHCONF_0/1/2/3[6] EPOL=1.

19TURBOR/W0h

Turbo mode

0h (R/W) = Turbo is deactivated (recommended for single MCSPI word transfer).

1h (R/W) = Turbo is activated to maximize the throughput for multiple MCSPI words transfer.

18ISR/W1h

Input Select

0h (R/W) = Data line 0 (SPIDAT[0]) selected for reception

1h (R/W) = Data line 1 (SPIDAT[1]) selected for reception

17DPE1R/W1h

Transmission enable for data line 1

0h (R/W) = Data line 1 (SPIDAT[1]) selected for transmission

1h (R/W) = No transmission on Data Line1 (SPIDAT[1])

16DPE0R/W0h

Transmission Enable for data line 0

0h (R/W) = Data Line0 (SPIDAT[0]) selected for transmission

1h (R/W) = No transmission on data line 0 (SPIDAT[0])

15DMARR/W0h

DMA read request
The DMA read request line is asserted when the channel is enabled and a new data is available in the receive register of the channel.
The DMA read request line is deasserted on read completion of the receive register of the channel.

0h (R/W) = DMA read request disabled

1h (R/W) = DMA read request enabled

14DMAWR/W0h

DMA write request.
The DMA write request line is asserted when The channel is enabled and the transmitter register of the channel is empty.
The DMA write request line is deasserted on load completion of the transmitter register of the channel.

0h (R/W) = DMA write request disabled

1h (R/W) = DMA write request enabled

13-12TRMR/W0h

Transmit/receive modes

0h (R/W) = Transmit-and-receive mode

1h (R/W) = Receive-only mode

2h (R/W) = Transmit-only mode

3h (R/W) = Reserved

11-7WLR/W0h

SPI word length

0h (R/W) = Reserved

1h (R/W) = Reserved

2h (R/W) = Reserved

3h (R/W) = The MCSPI word is 4 bits long

4h (R/W) = The MCSPI word is 5 bits long

5h (R/W) = The MCSPI word is 6 bits long

6h (R/W) = The MCSPI word is 7 bits long

7h (R/W) = The MCSPI word is 8 bits long

8h (R/W) = The MCSPI word is 9 bits long

9h (R/W) = The MCSPI word is 10 bits long

Ah (R/W) = The MCSPI word is 11 bits long

Bh (R/W) = The MCSPI word is 12 bits long

Ch (R/W) = The MCSPI word is 13 bits long

Dh (R/W) = The MCSPI word is 14 bits long

Eh (R/W) = The MCSPI word is 15 bits long

Fh (R/W) = The MCSPI word is 16 bits long

10h (R/W) = The MCSPI word is 17 bits long

11h (R/W) = The MCSPI word is 18 bits long

12h (R/W) = The MCSPI word is 19 bits long

13h (R/W) = The MCSPI word is 20 bits long

14h (R/W) = The MCSPI word is 21 bits long

15h (R/W) = The MCSPI word is 22 bits long

16h (R/W) = The MCSPI word is 23 bits long

17h (R/W) = The MCSPI word is 24 bits long

18h (R/W) = The MCSPI word is 25 bits long

19h (R/W) = The MCSPI word is 26 bits long

1Ah (R/W) = The MCSPI word is 27 bits long

1Bh (R/W) = The MCSPI word is 28 bits long

1Ch (R/W) = The MCSPI word is 29 bits long

1Dh (R/W) = The MCSPI word is 30 bits long

1Eh (R/W) = The MCSPI word is 31 bits long

1Fh (R/W) = The MCSPI word is 32 bits long

6EPOLR/W0h

SPIEN polarity

0h (R/W) = SPIEN is held high during the ACTIVE state.

1h (R/W) = SPIEN is held low during the ACTIVE state.

5-2CLKDR/W0h

Frequency divider for SPICLK (only when the module is a Master MCSPI device). A programmable clock divider divides the MCSPI reference clock (SPICLKREF) with a 4-bit value, and results in a new clock SPICLK available to shift-in and shift-out data. By default the clock divider ratio has a power of 2 granularity when MCSPI_CHCONF_0/1/2/3[29] CLKG is cleared. Otherwise this field is the 4-LSB bit of a 12-bit register concatenated with clock divider extension MCSPI_CHCTRL_3[15-8] EXTCLK register. The value description below defines the clock ratio when MCSPI_CHCONF_3 [29] CLKG is set to 0.

0h (R/W) = 1

1h (R/W) = 2

2h (R/W) = 4

3h (R/W) = 8

4h (R/W) = 16

5h (R/W) = 32

6h (R/W) = 64

7h (R/W) = 128

8h (R/W) = 256

9h (R/W) = 512

Ah (R/W) = 1024

Bh (R/W) = 2048

Ch (R/W) = 4096

Dh (R/W) = 8192

Eh (R/W) = 16384

Fh (R/W) = 32768

1POLR/W0h

SPICLK polarity (see Transfer Format)

0h (R/W) = SPICLK is held low during the INACTIVE state

1h (R/W) = SPICLK is held high during the INACTIVE state

0PHAR/W0h

SPICLK phase (see Transfer Format)

0h (R/W) = Data are latched on odd-numbered edges of SPICLK.

1h (R/W) = Data are latched on even-numbered edges of SPICLK.

1.5.6.28 MCSPI_CHSTAT_3 Register (Offset = 16Ch) [reset = 0h]

MCSPI_CHSTAT_3 is shown in Figure 12-376 and described in Table 12-710.

Return to Summary Table.

This register provides status information about transmitter and receiver registers of channel i.

Table 12-709 MCSPI_CHSTAT_3 Instances
InstancePhysical Address
MCSPI0_CFG0210 016Ch
MCSPI1_CFG0211 016Ch
MCSPI2_CFG0212 016Ch
MCSPI3_CFG0213 016Ch
MCSPI4_CFG0214 016Ch
MCU_MCSPI0_CFG4030 016Ch
MCU_MCSPI1_CFG4031 016Ch
MCU_MCSPI2_CFG4032 016Ch
Figure 12-376 MCSPI_CHSTAT_3 Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRXFFFRXFFETXFFFTXFFEEOTTXSRXS
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-710 MCSPI_CHSTAT_3 Register Field Descriptions
BitFieldTypeResetDescription
31-7RESERVEDR0h

Read returns 0.

6RXFFFR0h

Channel i FIFO receive buffer full status

0h (R) = FIFO receive buffer is not full

1h (R) = FIFO receive buffer is full

5RXFFER0h

Channel i FIFO receive buffer empty status

0h (R) = FIFO receive buffer is not empty

1h (R) = FIFO receive buffer is empty

4TXFFFR0h

Channel i FIFO transmit buffer full status

0h (R) = FIFO transmit buffer is not full

1h (R) = FIFO transmit buffer is full

3TXFFER0h

Channel i FIFO transmit buffer empty status

0h (R) = FIFO transmit buffer is not empty

1h (R) = FIFO transmit buffer is empty

2EOTR0h

Channel i end of transfer status. The definitions of beginning and end of transfer vary with master versus slave and the transfer format (transmit/receive modes, turbo mode). See dedicated chapters for details.

0h (R) = This flag is automatically cleared when the shift register is loaded with the data from the transmitter register (beginning of transfer).

1h (R) = This flag is automatically set to one at the end of an MCSPI transfer.

1TXSR0h

Channel i transmitter register status

0h (R) = Register is full.

1h (R) = Register is empty.

0RXSR0h

Channel i receiver register status

0h (R) = Register is empty.

1h (R) = Register is full.

1.5.6.29 MCSPI_CHCTRL_3 Register (Offset = 170h) [reset = 0h]

MCSPI_CHCTRL_3 is shown in Figure 12-377 and described in Table 12-712.

Return to Summary Table.

This register is dedicated to enable channel i.

Table 12-711 MCSPI_CHCTRL_3 Instances
InstancePhysical Address
MCSPI0_CFG0210 0170h
MCSPI1_CFG0211 0170h
MCSPI2_CFG0212 0170h
MCSPI3_CFG0213 0170h
MCSPI4_CFG0214 0170h
MCU_MCSPI0_CFG4030 0170h
MCU_MCSPI1_CFG4031 0170h
MCU_MCSPI2_CFG4032 0170h
Figure 12-377 MCSPI_CHCTRL_3 Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
EXTCLKRESERVEDEN
R/W-0hR-0hR/W-0h
LEGEND: R = Read Only; R/W = Read/Write; -n = value after reset
Table 12-712 MCSPI_CHCTRL_3 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0h

Read returns 0.

15-8EXTCLKR/W0h

Clock ratio extension:
This field is used to concatenate with MCSPI_CHCONF_0/1/2/3[5-2] CLKD register for clock ratio only when granularity is one clock cycle (MCSPI_CHCONF_0/1/2/3[29] CLKG set to 1). Then the maximum value reached is 4096 clock divider ratio.

0h (R/W) = Clock ratio is CLKD + 1.

1h (R/W) = Clock ratio is CLKD + 1 + 16.

FFh (R/W) = Clock ratio is CLKD + 1 + 4080.

7-1RESERVEDR0h

Read returns 0.

0ENR/W0h

Channel enable

0h (R/W) = Channel "i" is not active.

1h (R/W) = Channel "i" is active.

1.5.6.30 MCSPI_TX_3 Register (Offset = 174h) [reset = 0h]

MCSPI_TX_3 is shown in Figure 12-378 and described in Table 12-714.

Return to Summary Table.

This register contains a single MCSPI word for channel i to transmit on the serial link, whatever MCSPI word length is.

Table 12-713 MCSPI_TX_3 Instances
InstancePhysical Address
MCSPI0_CFG0210 0174h
MCSPI1_CFG0211 0174h
MCSPI2_CFG0212 0174h
MCSPI3_CFG0213 0174h
MCSPI4_CFG0214 0174h
MCU_MCSPI0_CFG4030 0174h
MCU_MCSPI1_CFG4031 0174h
MCU_MCSPI2_CFG4032 0174h
Figure 12-378 MCSPI_TX_3 Register
313029282726252423222120191817161514131211109876543210
TDATA
R/W-0h
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-714 MCSPI_TX_3 Register Field Descriptions
BitFieldTypeResetDescription
31-0TDATAR/W0h

Channel i data to transmit

1.5.6.31 MCSPI_RX_3 Register (Offset = 178h) [reset = 0h]

MCSPI_RX_3 is shown in Figure 12-379 and described in Table 12-716.

Return to Summary Table.

This register contains a single MCSPI word for channel i received through the serial link, whatever MCSPI word length is.

Table 12-715 MCSPI_RX_3 Instances
InstancePhysical Address
MCSPI0_CFG0210 0178h
MCSPI1_CFG0211 0178h
MCSPI2_CFG0212 0178h
MCSPI3_CFG0213 0178h
MCSPI4_CFG0214 0178h
MCU_MCSPI0_CFG4030 0178h
MCU_MCSPI1_CFG4031 0178h
MCU_MCSPI2_CFG4032 0178h
Figure 12-379 MCSPI_RX_3 Register
313029282726252423222120191817161514131211109876543210
RDATA
R-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-716 MCSPI_RX_3 Register Field Descriptions
BitFieldTypeResetDescription
31-0RDATAR0h

Channel i received data

1.5.6.32 MCSPI_XFERLEVEL Register (Offset = 17Ch) [reset = 0h]

MCSPI_XFERLEVEL is shown in Figure 12-380 and described in Table 12-718.

Return to Summary Table.

This register provides transfer levels needed while using FIFO buffer during transfer.

Table 12-717 MCSPI_XFERLEVEL Instances
InstancePhysical Address
MCSPI0_CFG0210 017Ch
MCSPI1_CFG0211 017Ch
MCSPI2_CFG0212 017Ch
MCSPI3_CFG0213 017Ch
MCSPI4_CFG0214 017Ch
MCU_MCSPI0_CFG4030 017Ch
MCU_MCSPI1_CFG4031 017Ch
MCU_MCSPI2_CFG4032 017Ch
Figure 12-380 MCSPI_XFERLEVEL Register
313029282726252423222120191817161514131211109876543210
WCNTAFLAEL
R/W-0hR/W-0hR/W-0h
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-718 MCSPI_XFERLEVEL Register Field Descriptions
BitFieldTypeResetDescription
31-16WCNTR/W0h

SPI word counter.
This field holds the programmable value of number of MCSPI word to be transferred on channel which is using the FIFO buffer. When transfer had started, a read back in this field returns the current MCSPI word transfer index.

0h (R/W) = Counter not used

1h (R/W) = One word

FFFEh (R/W) = 65534 MCSPI word

FFFFh (R/W) = 65535 MCSPI word

15-8AFLR/W0h

Buffer almost full
This field holds the programmable almost full level value used to determine almost full buffer condition. If the user wants an interrupt or a DMA read request to be issued during a receive operation when the data buffer holds at least n bytes, then the buffer MCSPI_XFERLEVEL[15-8] AFL must be set with n–1. The size of this field is defined by the generic parameter FFNBYTE.

0h (R/W) = 1 byte

1h (R/W) = 2 bytes

FEh (R/W) = 255bytes

FFh (R/W) = 256bytes

7-0AELR/W0h

Buffer almost empty.
This field holds the programmable almost empty level value used to determine almost empty buffer condition. If the user wants an interrupt or a DMA write request to be issued during a transmit operation when the data buffer is able to receive n bytes, then the buffer MCSPI_XFERLEVEL[7-0] AEL must be set with – 1.

0h (R/W) = 1 byte

1h (R/W) = 2 bytes

FEh (R/W) = 255 bytes

FFh (R/W) = 256bytes

1.5.6.33 MCSPI_DAFTX Register (Offset = 180h) [reset = 0h]

MCSPI_DAFTX is shown in Figure 12-381 and described in Table 12-720.

Return to Summary Table.

This register contains the MCSPI words to be transmitted on the MCSPI bus when FIFO is used and DMA address is aligned on 256 bit.
This register is an image of one of the MCSPI_TX registers corresponding to the channel which has its FIFO enabled.

Table 12-719 MCSPI_DAFTX Instances
InstancePhysical Address
MCSPI0_CFG0210 0180h
MCSPI1_CFG0211 0180h
MCSPI2_CFG0212 0180h
MCSPI3_CFG0213 0180h
MCSPI4_CFG0214 0180h
MCU_MCSPI0_CFG4030 0180h
MCU_MCSPI1_CFG4031 0180h
MCU_MCSPI2_CFG4032 0180h
Figure 12-381 MCSPI_DAFTX Register
313029282726252423222120191817161514131211109876543210
DAFTDATA
R/W-0h
LEGEND: R/W = Read/Write; -n = value after reset
Table 12-720 MCSPI_DAFTX Register Field Descriptions
BitFieldTypeResetDescription
31-0DAFTDATAR/W0h

FIFO data to transmit with DMA 256 bit aligned address. This field is only used when MCSPI_MODULCTRL[8] FDAA is set to 1h and only one of the enabled channels has the MCSPI_CHCONF_0/1/2/3[27] FFEW bit set to 1h. If these conditions are not met any access to this field returns a null value.

1.5.6.34 MCSPI_DAFRX Register (Offset = 1A0h) [reset = 0h]

MCSPI_DAFRX is shown in Figure 12-382 and described in Table 12-722.

Return to Summary Table.

This register contains the MCSPI words received from the MCSPI bus when FIFO is used and DMA address is aligned on 256 bit.
This register is an image of one of the MCSPI_RX registers corresponding to the channel which has its FIFO enabled.

Table 12-721 MCSPI_DAFRX Instances
InstancePhysical Address
MCSPI0_CFG0210 01A0h
MCSPI1_CFG0211 01A0h
MCSPI2_CFG0212 01A0h
MCSPI3_CFG0213 01A0h
MCSPI4_CFG0214 01A0h
MCU_MCSPI0_CFG4030 01A0h
MCU_MCSPI1_CFG4031 01A0h
MCU_MCSPI2_CFG4032 01A0h
Figure 12-382 MCSPI_DAFRX Register
313029282726252423222120191817161514131211109876543210
DAFRDATA
R-0h
LEGEND: R = Read Only; -n = value after reset
Table 12-722 MCSPI_DAFRX Register Field Descriptions
BitFieldTypeResetDescription
31-0DAFRDATAR0h

FIFO data received with DMA 256 bit aligned address. This field is only used when MCSPI_MODULCTRL[8] FDAA is set to 1h and only one of the enabled channels has the MCSPI_CHCONF_0/1/2/3[28] FFER bit set to 1h. If these conditions are not met any access to this field returns a null value.