SPRUJ79 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. â–º C29x SYSTEM RESOURCES
    1.     Technical Reference Manual Overview
  4. F29x Processor
    1. 2.1 CPU Architecture
      1. 2.1.1 C29x Related Collateral
    2. 2.2 Lock and Commit Registers
    3. 2.3 C29x CPU Registers
      1. 2.3.1 C29CPU Base Address Table
      2. 2.3.2 C29_RTINT_STACK Registers
      3. 2.3.3 C29_SECCALL_STACK Registers
      4. 2.3.4 C29_SECURE_REGS Registers
      5. 2.3.5 C29_DIAG_REGS Registers
      6. 2.3.6 C29_SELFTEST_REGS Registers
  5. System Control and Interrupts
    1. 3.1  C29x System Control Introduction
    2. 3.2  System Control Functional Description
      1. 3.2.1 Device Identification
      2. 3.2.2 Device Configuration Registers
    3. 3.3  Resets
      1. 3.3.1 Reset Sources
      2. 3.3.2 External Reset (XRS)
      3. 3.3.3 Simulate External Reset
      4. 3.3.4 Power-On Reset (POR)
      5. 3.3.5 Debugger Reset (SYSRS)
      6. 3.3.6 Watchdog Reset (WDRS)
      7. 3.3.7 ESM NMI Watchdog Reset (NMIWDRS)
      8. 3.3.8 EtherCAT Slave Controller (ESC) Module Reset Output
    4. 3.4  Safety Features
      1. 3.4.1 Write Protection on Registers
        1. 3.4.1.1 LOCK Protection on System Configuration Registers
        2. 3.4.1.2 EALLOW Protection
      2. 3.4.2 PIPE Vector Address Validity Check
      3. 3.4.3 NMIWDs
      4. 3.4.4 System Control Registers Parity Protection
      5. 3.4.5 ECC Enabled RAMs, Shared RAMs Protection
      6. 3.4.6 ECC Enabled Flash Memory
      7. 3.4.7 ERRORSTS Pin
    5. 3.5  Clocking
      1. 3.5.1 Clock Sources
        1. 3.5.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.5.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.5.1.3 External Oscillator (XTAL)
        4. 3.5.1.4 Auxiliary Clock Input (AUXCLKIN)
      2. 3.5.2 Derived Clocks
        1. 3.5.2.1 Oscillator Clock (OSCCLK)
        2. 3.5.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.5.3 Device Clock Domains
        1. 3.5.3.1 System Clock (PLLSYSCLK)
        2. 3.5.3.2 CPU Clock (CPUCLK)
        3. 3.5.3.3 Peripheral Clock (PERx.SYSCLK)
        4. 3.5.3.4 MCAN Bit Clock
        5. 3.5.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.5.4 External Clock Output (XCLKOUT)
      5. 3.5.5 Clock Connectivity
      6. 3.5.6 Using an External Crystal or Resonator
        1. 3.5.6.1 X1/X2 Precondition Circuit
      7. 3.5.7 PLL
        1. 3.5.7.1 System Clock Setup
        2. 3.5.7.2 SYS PLL Bypass
      8. 3.5.8 Clock (OSCCLK) Failure Detection
        1. 3.5.8.1 Missing Clock Detection Logic
        2. 3.5.8.2 Dual Clock Comparator (DCC)
    6. 3.6  Bus Architecture
      1. 3.6.1 Safe Interconnect
        1. 3.6.1.1 Safe Interconnect for Read Operation
        2. 3.6.1.2 Safe Interconnect for Write Operation
      2. 3.6.2 Peripheral Access Configuration using FRAMESEL
      3. 3.6.3 Bus Arbitration
    7. 3.7  32-Bit CPU Timers 0/1/2
    8. 3.8  Watchdog Timers
      1. 3.8.1 Servicing the Watchdog Timer
      2. 3.8.2 Minimum Window Check
      3. 3.8.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.8.4 Watchdog Operation in Low-Power Modes
      5. 3.8.5 Emulation Considerations
    9. 3.9  Low-Power Modes
      1. 3.9.1 IDLE
      2. 3.9.2 STANDBY
    10. 3.10 Memory Subsystem (MEMSS)
      1. 3.10.1 Introduction
      2. 3.10.2 Features
      3. 3.10.3 Configuration Bits
        1. 3.10.3.1 Memory Initialization
      4. 3.10.4 RAM
        1. 3.10.4.1  MEMSS Architecture
        2. 3.10.4.2  RAM Memory Controller Overview
        3. 3.10.4.3  Memory Controllers
          1. 3.10.4.3.1 128-Bit LPx and CPx Memory Controller
          2. 3.10.4.3.2 64-Bit LDx and CDx Memory Controller
          3. 3.10.4.3.3 M0 Memory Controller
        4. 3.10.4.4  RTDMA Burst Support
        5. 3.10.4.5  Atomic Memory Operations
        6. 3.10.4.6  RAM ECC
        7. 3.10.4.7  Read-Modify-Write Operations
        8. 3.10.4.8  Dataline Buffer
        9. 3.10.4.9  HSM Sync Bridge
        10. 3.10.4.10 Access Bridges
          1. 3.10.4.10.1 Debug Access Bridge
          2. 3.10.4.10.2 Global Access Bridge
          3. 3.10.4.10.3 Program Access Bridge
      5. 3.10.5 ROM
        1. 3.10.5.1 ROM Dataline Buffer
        2. 3.10.5.2 ROM Prefetch
      6. 3.10.6 Arbitration
      7. 3.10.7 Test Modes
      8. 3.10.8 Emulation Mode
    11. 3.11 System Control Register Configuration Restrictions
    12. 3.12 Software
      1. 3.12.1  SYSCTL Registers to Driverlib Functions
      2. 3.12.2  MEMSS Registers to Driverlib Functions
      3. 3.12.3  CPU Registers to Driverlib Functions
      4. 3.12.4  WD Registers to Driverlib Functions
      5. 3.12.5  CPUTIMER Registers to Driverlib Functions
      6. 3.12.6  XINT Registers to Driverlib Functions
      7. 3.12.7  LPOST Registers to Driverlib Functions
      8. 3.12.8  SYSCTL Examples
        1. 3.12.8.1 Missing clock detection (MCD) - SINGLE_CORE
        2. 3.12.8.2 XCLKOUT (External Clock Output) Configuration - SINGLE_CORE
      9. 3.12.9  TIMER Examples
        1. 3.12.9.1 Timer Academy Lab - SINGLE_CORE
        2. 3.12.9.2 CPU Timers - SINGLE_CORE
        3. 3.12.9.3 CPU Timers - SINGLE_CORE
      10. 3.12.10 WATCHDOG Examples
        1. 3.12.10.1 Watchdog - SINGLE_CORE
      11. 3.12.11 LPM Examples
        1. 3.12.11.1 Low Power Modes: Device Idle Mode and Wakeup using GPIO - SINGLE_CORE
        2. 3.12.11.2 Low Power Modes: Device Idle Mode and Wakeup using Watchdog - SINGLE_CORE
        3. 3.12.11.3 Low Power Modes: Device Standby Mode and Wakeup using GPIO - SINGLE_CORE
        4. 3.12.11.4 Low Power Modes: Device Standby Mode and Wakeup using Watchdog - SINGLE_CORE
    13. 3.13 SYSCTRL Registers
      1. 3.13.1  SYSCTRL Base Address Table
      2. 3.13.2  DEV_CFG_REGS Registers
      3. 3.13.3  MEMSS_L_CONFIG_REGS Registers
      4. 3.13.4  MEMSS_C_CONFIG_REGS Registers
      5. 3.13.5  MEMSS_M_CONFIG_REGS Registers
      6. 3.13.6  MEMSS_MISCI_REGS Registers
      7. 3.13.7  CPU_SYS_REGS Registers
      8. 3.13.8  CPU_PER_CFG_REGS Registers
      9. 3.13.9  WD_REGS Registers
      10. 3.13.10 CPUTIMER_REGS Registers
      11. 3.13.11 XINT_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Device Boot Flow
      2. 4.5.2 CPU1 Boot Flow
      3. 4.5.3 Emulation Boot Flow
      4. 4.5.4 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 MPOST and LPOST Configurations
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Memory Maps
        1. 4.7.4.1 Boot ROM Memory-Maps
        2. 4.7.4.2 Reserved RAM Memory-Maps
      5. 4.7.5  ROM Structure and Status Information
      6. 4.7.6  Boot Modes and Loaders
        1. 4.7.6.1 Boot Modes
          1. 4.7.6.1.1 Flash Boot
          2. 4.7.6.1.2 RAM Boot
          3. 4.7.6.1.3 Wait Boot
        2. 4.7.6.2 Bootloaders
          1. 4.7.6.2.1 SPI Boot Mode
          2. 4.7.6.2.2 I2C Boot Mode
          3. 4.7.6.2.3 Parallel Boot Mode
          4. 4.7.6.2.4 CAN Boot Mode
          5. 4.7.6.2.5 CAN-FD Boot Mode
          6. 4.7.6.2.6 UART Boot Mode
      7. 4.7.7  GPIO Assignments
      8. 4.7.8  HSM and C29 ROM Task Ownership and Interactions
        1. 4.7.8.1 Application Authentication by HSM
      9. 4.7.9  Boot Status Information
        1. 4.7.9.1 Booting Status
      10. 4.7.10 BootROM Timing
    8. 4.8 Software
      1. 4.8.1 BOOT Examples
  7. Lockstep Compare Module (LCM)
    1. 5.1 Introduction
      1. 5.1.1 Features
      2. 5.1.2 Block Diagram
      3. 5.1.3 Lockstep Compare Modules
    2. 5.2 Enabling LCM Comparators
    3. 5.3 LCM Redundant Module Configuration
    4. 5.4 LCM Error Handling
    5. 5.5 Debug Mode with LCM
    6. 5.6 Register Parity Error Protection
    7. 5.7 Functional Logic
      1. 5.7.1 Comparator Logic
      2. 5.7.2 Self-Test Logic
        1. 5.7.2.1 Match Test Mode
        2. 5.7.2.2 Mismatch Test Mode
      3. 5.7.3 Error Injection Tests
        1. 5.7.3.1 Comparator Error Force Test
        2. 5.7.3.2 Register Parity Error Test
    8. 5.8 Software
      1. 5.8.1 LCM Registers to Driverlib Functions
    9. 5.9 LCM Registers
      1. 5.9.1 LCM Base Address Table
      2. 5.9.2 LCM_REGS Registers
  8. Peripheral Interrupt Priority and Expansion (PIPE)
    1. 6.1 Introduction
      1. 6.1.1 Features
      2. 6.1.2 Interrupt Concepts
      3. 6.1.3 PIPE Related Collateral
    2. 6.2 Interrupt Architecture
      1. 6.2.1 Dynamic Priority Arbitration Block
      2. 6.2.2 Post Processing Block
      3. 6.2.3 Memory-Mapped Registers
    3. 6.3 Interrupt Propagation
    4. 6.4 Configuring Interrupts
      1. 6.4.1 Enabling and Disabling Interrupts
      2. 6.4.2 Prioritization
        1. 6.4.2.1 User-Configured Interrupt Priority
        2. 6.4.2.2 Index-Based Fixed Interrupt Priority
      3. 6.4.3 Nesting and Priority Grouping
      4. 6.4.4 Stack Protection
      5. 6.4.5 Context
    5. 6.5 Safety and Security
      1. 6.5.1 Access Control
      2. 6.5.2 PIPE Errors
      3. 6.5.3 Register Data Integrity and Safety
      4. 6.5.4 Self-Test and Diagnostics
    6. 6.6 Software
      1. 6.6.1 PIPE Registers to Driverlib Functions
      2. 6.6.2 INTERRUPT Examples
        1. 6.6.2.1 RTINT vs INT Latency example - SINGLE_CORE
        2. 6.6.2.2 INT and RTINT Nesting Example - SINGLE_CORE
    7. 6.7 PIPE Registers
      1. 6.7.1 PIPE Base Address Table
      2. 6.7.2 PIPE_REGS Registers
  9. Error Signaling Module (ESM_C29)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 ESM Related Collateral
    2. 7.2 ESM Subsystem
      1. 7.2.1 System ESM
        1. 7.2.1.1 Error Pin Monitor Event
      2. 7.2.2 Safety Aggregator
        1. 7.2.2.1 EDC Controller Interface Description
          1. 7.2.2.1.1 EDC_REGS Registers
        2. 7.2.2.2 Read Operation on EDC Controller
        3. 7.2.2.3 Write Operation on EDC Controller
        4. 7.2.2.4 Safety Aggregator Error Injection
      3. 7.2.3 ESM Subsystem Integration View
    3. 7.3 ESM Functional Description
      1. 7.3.1 Error Event Inputs
      2. 7.3.2 Error Interrupt Outputs
        1. 7.3.2.1 High Priority Watchdog
        2. 7.3.2.2 Critical Priority Interrupt Output
      3. 7.3.3 Error Pin Output (ERR_O/ERRORSTS)
        1. 7.3.3.1 Minimum Time Interval
        2. 7.3.3.2 PWM Mode
      4. 7.3.4 Reset Type Information for ESM Registers
      5. 7.3.5 Clock Stop
      6. 7.3.6 Commit/Lock for MMRs
      7. 7.3.7 Safety Protection for MMRs
      8. 7.3.8 Register Configuration Tieoffs
        1. 7.3.8.1 Group0 High Priority Tieoff
        2. 7.3.8.2 High Priority Watchdog Enable Tieoff
    4. 7.4 ESM Configuration Guide
    5. 7.5 Interrupt Condition Control and Handling
      1. 7.5.1 ESM Low Priority Error Interrupt
      2. 7.5.2 ESM High Priority Error Interrupt
      3. 7.5.3 Critical Priority Error Interrupt
      4. 7.5.4 High Priority Watchdog Interrupt
      5. 7.5.5 Safety Aggregator Interrupt Control and Handling
    6. 7.6 Software
      1. 7.6.1 ESM_CPU Registers to Driverlib Functions
      2. 7.6.2 ESM_SYS Registers to Driverlib Functions
      3. 7.6.3 ESM_SAFETY_AGGREGATOR Registers to Driverlib Functions
      4. 7.6.4 ESM Examples
        1. 7.6.4.1 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        2. 7.6.4.2 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        3. 7.6.4.3 ESM - SINGLE_CORE
        4. 7.6.4.4 ESM - SINGLE_CORE
    7. 7.7 ESM Registers
      1. 7.7.1 ESM Base Address Table
      2. 7.7.2 ESM_CPU_REGS Registers
      3. 7.7.3 ESM_SYSTEM_REGS Registers
      4. 7.7.4 ESM_SAFETYAGG_REGS Registers
  10. Error Aggregator
    1. 8.1 Introduction
    2. 8.2 Error Aggregator Modules
    3. 8.3 Error Propagation Path from Source to CPU
    4. 8.4 Error Aggregator Interface
      1. 8.4.1 Functional Description
    5. 8.5 Error Condition Handling User Guide
    6. 8.6 Error Type Information
    7. 8.7 Error Sources Information
    8. 8.8 Software
      1. 8.8.1 ERROR_AGGREGATOR Registers to Driverlib Functions
    9. 8.9 ERRORAGGREGATOR Registers
      1. 8.9.1 ERRORAGGREGATOR Base Address Table
      2. 8.9.2 HSM_ERROR_AGGREGATOR_CONFIG_REGS Registers
      3. 8.9.3 ERROR_AGGREGATOR_CONFIG_REGS Registers
  11. Flash Module
    1. 9.1 Introduction to Flash Memory
      1. 9.1.1 FLASH Related Collateral
      2. 9.1.2 Features
      3. 9.1.3 Flash Tools
      4. 9.1.4 Block Diagram
    2. 9.2 Flash Subsystem Overview
    3. 9.3 Flash Banks and Pumps
    4. 9.4 Flash Read Interfaces
      1. 9.4.1 Bank Modes and Swapping
      2. 9.4.2 Flash Wait States
      3. 9.4.3 Buffer and Cache Mechanisms
        1. 9.4.3.1 Prefetch Mechanism and Block Cache
        2. 9.4.3.2 Data Line Buffer
        3. 9.4.3.3 Sequential Data Pre-read Mode
      4. 9.4.4 Flash Read Arbitration
      5. 9.4.5 Error Correction Code (ECC) Protection
      6. 9.4.6 Procedure to Change Flash Read Interface Registers
    5. 9.5 Flash Erase and Program
      1. 9.5.1 Flash Semaphore and Update Protection
      2. 9.5.2 Erase
      3. 9.5.3 Program
    6. 9.6 Migrating an Application from RAM to Flash
    7. 9.7 Flash Registers
      1. 9.7.1 FLASH Base Address Table
      2. 9.7.2 FLASH_CMD_REGS_FLC1 Registers
      3. 9.7.3 FLASH_CMD_REGS_FLC2 Registers
      4. 9.7.4 FRI_CTRL_REGS Registers
  12. 10Safety and Security Unit (SSU)
    1. 10.1  Introduction
      1. 10.1.1 SSU Related Collateral
      2. 10.1.2 Block Diagram
      3. 10.1.3 System SSU Configuration Example
    2. 10.2  Access Protection Ranges
      1. 10.2.1 Access Protection Inheritance
    3. 10.3  LINKs
    4. 10.4  STACKs
    5. 10.5  ZONEs
    6. 10.6  SSU-CPU Interface
      1. 10.6.1 SSU Operation in Lockstep Mode
    7. 10.7  SSU Operation Modes
    8. 10.8  Security Configuration and Flash Management
      1. 10.8.1 BANKMGMT Sectors
      2. 10.8.2 SECCFG Sectors
      3. 10.8.3 SECCFG Sector Address Mapping
      4. 10.8.4 SECCFG Sector Memory Map
      5. 10.8.5 SECCFG CRC
    9. 10.9  Flash Write/Erase Access Control
      1. 10.9.1 Permanent Flash Lock (Write/Erase Protection)
      2. 10.9.2 Updating Flash MAIN Sectors
      3. 10.9.3 Firmware-Over-The-Air Updates (FOTA)
      4. 10.9.4 Updating Flash SECCFG Sectors
      5. 10.9.5 Reading Flash SECCFG Sectors
    10. 10.10 RAMOPEN Feature
    11. 10.11 Debug Authorization
      1. 10.11.1 Global CPU Debug Enable
      2. 10.11.2 ZONE Debug
      3. 10.11.3 Authentication for Debug Access
        1. 10.11.3.1 Password-based Authentication
        2. 10.11.3.2 CPU-based Authentication
    12. 10.12 Hardcoded Protections
    13. 10.13 SSU Register Access Permissions
      1. 10.13.1 Permissions for SSU General Control Registers
      2. 10.13.2 Permissions for SSU CPU1 Configuration Registers
      3. 10.13.3 Permissions for SSU CPU2+ Configuration Registers
      4. 10.13.4 Permissions for CPU1 Access Protection Registers
      5. 10.13.5 Permissions for CPU2+ Access Protection Registers
    14. 10.14 SSU Fault Signals
    15. 10.15 Software
      1. 10.15.1 SSU Registers to Driverlib Functions
    16. 10.16 SSU Registers
      1. 10.16.1 SSU Base Address Table
      2. 10.16.2 SSU_GEN_REGS Registers
      3. 10.16.3 SSU_CPU1_CFG_REGS Registers
      4. 10.16.4 SSU_CPU2_CFG_REGS Registers
      5. 10.16.5 SSU_CPU3_CFG_REGS Registers
      6. 10.16.6 SSU_CPU1_AP_REGS Registers
      7. 10.16.7 SSU_CPU2_AP_REGS Registers
      8. 10.16.8 SSU_CPU3_AP_REGS Registers
  13. 11Configurable Logic Block (CLB)
    1. 11.1  Introduction
      1. 11.1.1 CLB Related Collateral
    2. 11.2  Description
      1. 11.2.1 CLB Clock
    3. 11.3  CLB Input/Output Connection
      1. 11.3.1 Overview
      2. 11.3.2 CLB Input Selection
      3. 11.3.3 CLB Output Selection
      4. 11.3.4 CLB Output Signal Multiplexer
    4. 11.4  CLB Tile
      1. 11.4.1 Static Switch Block
      2. 11.4.2 Counter Block
        1. 11.4.2.1 Counter Description
        2. 11.4.2.2 Counter Operation
        3. 11.4.2.3 Serializer Mode
        4. 11.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 11.4.3 FSM Block
      4. 11.4.4 LUT4 Block
      5. 11.4.5 Output LUT Block
      6. 11.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 11.4.7 High Level Controller (HLC)
        1. 11.4.7.1 High Level Controller Events
        2. 11.4.7.2 High Level Controller Instructions
        3. 11.4.7.3 <Src> and <Dest>
        4. 11.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 11.5  CPU Interface
      1. 11.5.1 Register Description
      2. 11.5.2 Non-Memory Mapped Registers
    6. 11.6  RTDMA Access
    7. 11.7  CLB Data Export Through SPI RX Buffer
    8. 11.8  CLB Pipeline Mode
    9. 11.9  Software
      1. 11.9.1 CLB Registers to Driverlib Functions
      2. 11.9.2 CLB Examples
    10. 11.10 CLB Registers
      1. 11.10.1 CLB Base Address Table
      2. 11.10.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 11.10.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 11.10.4 CLB_DATA_EXCHANGE_REGS Registers
  14. 12Dual-Clock Comparator (DCC)
    1. 12.1 Introduction
      1. 12.1.1 Features
      2. 12.1.2 Block Diagram
    2. 12.2 Module Operation
      1. 12.2.1 Configuring DCC Counters
      2. 12.2.2 Single-Shot Measurement Mode
      3. 12.2.3 Continuous Monitoring Mode
      4. 12.2.4 Error Conditions
    3. 12.3 Interrupts
    4. 12.4 Software
      1. 12.4.1 DCC Registers to Driverlib Functions
      2. 12.4.2 DCC Examples
        1. 12.4.2.1 DCC Single shot Clock verification - SINGLE_CORE
        2. 12.4.2.2 DCC Single shot Clock measurement - SINGLE_CORE
        3. 12.4.2.3 DCC Continuous clock monitoring - SINGLE_CORE
    5. 12.5 DCC Registers
      1. 12.5.1 DCC Base Address Table
      2. 12.5.2 DCC_REGS Registers
  15. 13Real-Time Direct Memory Access (RTDMA)
    1. 13.1  Introduction
      1. 13.1.1 Features
      2. 13.1.2 RTDMA Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2  RTDMA Trigger Source Options
    3. 13.3  RTDMA Bus
    4. 13.4  Address Pointer and Transfer Control
    5. 13.5  Pipeline Timing and Throughput
    6. 13.6  Channel Priority
      1. 13.6.1 Round-Robin Mode
      2. 13.6.2 Software Configurable Priority of Channels
    7. 13.7  Overrun Detection Feature
    8. 13.8  Burst Mode
    9. 13.9  Safety and Security
      1. 13.9.1 Safety
        1. 13.9.1.1 Lockstep Mode
        2. 13.9.1.2 Memory Protection Unit (MPU)
          1. 13.9.1.2.1 MPU Errors
      2. 13.9.2 Security
      3. 13.9.3 RTDMA Errors
      4. 13.9.4 Self-Test and Diagnostics
    10. 13.10 Software
      1. 13.10.1 RTDMA Registers to Driverlib Functions
      2. 13.10.2 RTDMA Examples
        1. 13.10.2.1 RTDMA Academy Lab - SINGLE_CORE
        2. 13.10.2.2 RTDMA Transfer - SINGLE_CORE
        3. 13.10.2.3 RTDMA Transfer with MPU - SINGLE_CORE
    11. 13.11 RTDMA Registers
      1. 13.11.1 RTDMA Base Address Table
      2. 13.11.2 RTDMA_REGS Registers
      3. 13.11.3 RTDMA_DIAG_REGS Registers
      4. 13.11.4 RTDMA_SELFTEST_REGS Registers
      5. 13.11.5 RTDMA_MPU_REGS Registers
      6. 13.11.6 RTDMA_CH_REGS Registers
  16. 14External Memory Interface (EMIF)
    1. 14.1 Introduction
      1. 14.1.1 Purpose of the Peripheral
      2. 14.1.2 Features
        1. 14.1.2.1 Asynchronous Memory Support
        2. 14.1.2.2 Synchronous DRAM Memory Support
      3. 14.1.3 Functional Block Diagram
      4. 14.1.4 Configuring Device Pins
    2. 14.2 EMIF Module Architecture
      1. 14.2.1  EMIF Clock Control
      2. 14.2.2  EMIF Requests
      3. 14.2.3  EMIF Signal Descriptions
      4. 14.2.4  EMIF Signal Multiplexing Control
      5. 14.2.5  SDRAM Controller and Interface
        1. 14.2.5.1  SDRAM Commands
        2. 14.2.5.2  Interfacing to SDRAM
        3. 14.2.5.3  SDRAM Configuration Registers
        4. 14.2.5.4  SDRAM Auto-Initialization Sequence
        5. 14.2.5.5  SDRAM Configuration Procedure
        6. 14.2.5.6  EMIF Refresh Controller
          1. 14.2.5.6.1 Determining the Appropriate Value for the RR Field
        7. 14.2.5.7  Self-Refresh Mode
        8. 14.2.5.8  Power-Down Mode
        9. 14.2.5.9  SDRAM Read Operation
        10. 14.2.5.10 SDRAM Write Operations
        11. 14.2.5.11 Mapping from Logical Address to EMIF Pins
      6. 14.2.6  Asynchronous Controller and Interface
        1. 14.2.6.1 Interfacing to Asynchronous Memory
        2. 14.2.6.2 Accessing Larger Asynchronous Memories
        3. 14.2.6.3 Configuring EMIF for Asynchronous Accesses
        4. 14.2.6.4 Read and Write Operations in Normal Mode
          1. 14.2.6.4.1 Asynchronous Read Operations (Normal Mode)
          2. 14.2.6.4.2 Asynchronous Write Operations (Normal Mode)
        5. 14.2.6.5 Read and Write Operation in Select Strobe Mode
          1. 14.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode)
          2. 14.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode)
        6. 14.2.6.6 Extended Wait Mode and the EM1WAIT Pin
      7. 14.2.7  Data Bus Parking
      8. 14.2.8  Reset and Initialization Considerations
      9. 14.2.9  Interrupt Support
        1. 14.2.9.1 Interrupt Events
      10. 14.2.10 RTDMA Event Support
      11. 14.2.11 EMIF Signal Multiplexing
      12. 14.2.12 Memory Map
      13. 14.2.13 Priority and Arbitration
      14. 14.2.14 System Considerations
        1. 14.2.14.1 Asynchronous Request Times
      15. 14.2.15 Power Management
        1. 14.2.15.1 Power Management Using Self-Refresh Mode
        2. 14.2.15.2 Power Management Using Power Down Mode
      16. 14.2.16 Emulation Considerations
    3. 14.3 EMIF Subsystem (EMIFSS)
      1. 14.3.1 Burst Support
      2. 14.3.2 EMIFSS Performance Improvement
      3. 14.3.3 Buffer Module
        1. 14.3.3.1 CPU Write FIFO
      4. 14.3.4 Emulation Mode
    4. 14.4 Example Configuration
      1. 14.4.1 Hardware Interface
      2. 14.4.2 Software Configuration
        1. 14.4.2.1 Configuring the SDRAM Interface
          1. 14.4.2.1.1 PLL Programming for EMIF to K4S641632H-TC(L)70 Interface
          2. 14.4.2.1.2 SDRAM Timing Register (SDRAM_TR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          3. 14.4.2.1.3 SDRAM Self Refresh Exit Timing Register (SDR_EXT_TMNG) Settings for EMIF to K4S641632H-TC(L)70 Interface
          4. 14.4.2.1.4 SDRAM Refresh Control Register (SDRAM_RCR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          5. 14.4.2.1.5 SDRAM Configuration Register (SDRAM_CR) Settings for EMIF to K4S641632H-TC(L)70 Interface
        2. 14.4.2.2 Configuring the Flash Interface
          1. 14.4.2.2.1 Asynchronous 1 Configuration Register (ASYNC_CS2_CFG) Settings for EMIF to LH28F800BJE-PTTL90 Interface
    5. 14.5 Software
      1. 14.5.1 EMIF Registers to Driverlib Functions
      2. 14.5.2 EMIF Examples
    6. 14.6 EMIF Registers
      1. 14.6.1 EMIF Base Address Table
      2. 14.6.2 EMIF_REGS Registers
  17. 15General-Purpose Input/Output (GPIO)
    1. 15.1  Introduction
      1. 15.1.1 GPIO Related Collateral
    2. 15.2  Configuration Overview
    3. 15.3  Digital Inputs on ADC Pins (AIOs)
    4. 15.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 15.5  Digital General-Purpose I/O Control
    6. 15.6  Input Qualification
      1. 15.6.1 No Synchronization (Asynchronous Input)
      2. 15.6.2 Synchronization to SYSCLKOUT Only
      3. 15.6.3 Qualification Using a Sampling Window
    7. 15.7  PMBUS and I2C Signals
    8. 15.8  GPIO and Peripheral Muxing
      1. 15.8.1 GPIO Muxing
      2. 15.8.2 Peripheral Muxing
    9. 15.9  Internal Pullup Configuration Requirements
    10. 15.10 Software
      1. 15.10.1 GPIO Registers to Driverlib Functions
      2. 15.10.2 GPIO Examples
        1. 15.10.2.1 Device GPIO Toggle - SINGLE_CORE
        2. 15.10.2.2 XINT/XBAR example - SINGLE_CORE
      3. 15.10.3 LED Examples
        1. 15.10.3.1 LED Blinky Example - MULTI_CORE
        2. 15.10.3.2 LED Blinky Example (CPU1,CPU3) - MULTI_CORE
        3. 15.10.3.3 LED Blinky example - SINGLE_CORE
        4. 15.10.3.4 LED Blinky Example (CPU1|CPU2|CPU3) - MULTI_CORE
        5. 15.10.3.5 LED Blinky Example (CPU2) - MULTI_CORE
        6. 15.10.3.6 LED Blinky Example (CPU3) - MULTI_CORE
    11. 15.11 GPIO Registers
      1. 15.11.1 GPIO Base Address Table
      2. 15.11.2 GPIO_CTRL_REGS Registers
      3. 15.11.3 GPIO_DATA_REGS Registers
      4. 15.11.4 GPIO_DATA_READ_REGS Registers
  18. 16Interprocessor Communication (IPC)
    1. 16.1 Introduction
    2. 16.2 IPC Flags and Interrupts
    3. 16.3 IPC Command Registers
    4. 16.4 Free-Running Counter
    5. 16.5 IPC Communication Protocol
    6. 16.6 Software
      1. 16.6.1 IPC Registers to Driverlib Functions
      2. 16.6.2 IPC Examples
        1. 16.6.2.1 IPC basic message passing example with interrupt - MULTI_CORE
        2. 16.6.2.2 IPC basic message passing example with interrupt - MULTI_CORE
        3. 16.6.2.3 IPC basic message passing example with interrupt - MULTI_CORE
        4. 16.6.2.4 IPC basic message passing example with interrupt - MULTI_CORE
    7. 16.7 IPC Registers
      1. 16.7.1 IPC Base Address Table
      2. 16.7.2 IPC_COUNTER_REGS Registers
      3. 16.7.3 CPU1_IPC_SEND_REGS Registers
      4. 16.7.4 CPU2_IPC_SEND_REGS Registers
      5. 16.7.5 CPU3_IPC_SEND_REGS Registers
      6. 16.7.6 CPU1_IPC_RCV_REGS Registers
      7. 16.7.7 CPU2_IPC_RCV_REGS Registers
      8. 16.7.8 CPU3_IPC_RCV_REGS Registers
  19. 17Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 17.1 Introduction
    2. 17.2 Enhanced Bus Comparator Unit
      1. 17.2.1 Enhanced Bus Comparator Unit Operations
      2. 17.2.2 Stack Qualification
      3. 17.2.3 Event Masking and Exporting
    3. 17.3 System Event Counter Unit
      1. 17.3.1 System Event Counter Modes
        1. 17.3.1.1 Counting Active Levels Versus Edges
        2. 17.3.1.2 Max and Min Mode
        3. 17.3.1.3 Cumulative Mode
        4. 17.3.1.4 Input Signal Selection
      2. 17.3.2 Reset on Event
      3. 17.3.3 Operation Conditions
    4. 17.4 Program Counter Trace
      1. 17.4.1 Functional Block Diagram
      2. 17.4.2 Trace Qualification Modes
        1. 17.4.2.1 Trace Input Signal Conditioning
      3. 17.4.3 Trace Memory
      4. 17.4.4 PC Trace Software Operation
      5. 17.4.5 Trace Operation in Debug Mode
    5. 17.5 ERAD Ownership, Initialization, and Reset
      1. 17.5.1 Feature Level Ownership
      2. 17.5.2 Feature Access Security Mechanism
      3. 17.5.3 PC Trace Access Security Mechanism
    6. 17.6 ERAD Programming Sequence
      1. 17.6.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 17.6.2 Timer and Counter Programming Sequence
    7. 17.7 Software
      1. 17.7.1 ERAD Registers to Driverlib Functions
    8. 17.8 ERAD Registers
      1. 17.8.1 ERAD Base Address Table
        1. 17.8.1.1 ERAD_REGS Registers
  20. 18Data Logger and Trace (DLT)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 DLT Related Collateral
      3. 18.1.3 Interfaces
        1. 18.1.3.1 Block Diagram
    2. 18.2 Functional Overview
      1. 18.2.1 DLT Configuration
        1. 18.2.1.1 LINK Filter
        2. 18.2.1.2 TAG Filter
        3. 18.2.1.3 ERAD Event Trigger
        4. 18.2.1.4 Concurrent FILTERING modes
      2. 18.2.2 Time-stamping
      3. 18.2.3 FIFO Construction
        1. 18.2.3.1 FIFO Interrupt
    3. 18.3 Software
      1. 18.3.1 DLT Registers to Driverlib Functions
      2. 18.3.2 DLT Examples
        1. 18.3.2.1 DLT TAG filter example - SINGLE_CORE
        2. 18.3.2.2 DLT TAG filter example - SINGLE_CORE
        3. 18.3.2.3 DLT ERAD filter example - SINGLE_CORE
    4. 18.4 DLT Registers
      1. 18.4.1 DLT Base Address Table
      2. 18.4.2 DLT_CORE_REGS Registers
      3. 18.4.3 DLT_FIFO_REGS Registers
  21. 19Waveform Analyzer Diagnostic (WADI)
    1. 19.1 WADI Overview
      1. 19.1.1 Features
      2. 19.1.2 WADI Related Collateral
      3. 19.1.3 Block Diagram
      4. 19.1.4 Description
    2. 19.2 Signal and Trigger Input Configuration
      1. 19.2.1 SIG1 and SIG2 Configuration
      2. 19.2.2 Trigger 1 and Trigger 2
    3. 19.3 WADI Block
      1. 19.3.1 Overview
      2. 19.3.2 Counters
      3. 19.3.3 Pulse Width
        1. 19.3.3.1 Pulse Width Single Measurement
        2. 19.3.3.2 Pulse Width Aggregation
        3. 19.3.3.3 Pulse Width Average and Peak
      4. 19.3.4 Edge Count
        1. 19.3.4.1 Edge Count with Fixed Window
        2. 19.3.4.2 Edge Count with Moving Window
      5. 19.3.5 Signal1 to Signal2 Comparison
      6. 19.3.6 Dead Band and Phase
      7. 19.3.7 Simultaneous Measurement
    4. 19.4 Safe State Sequencer (SSS)
      1. 19.4.1 SSS Configuration
    5. 19.5 Lock and Commit Registers
    6. 19.6 Interrupt and Error Handling
    7. 19.7 RTDMA Interfaces
      1. 19.7.1 RTDMA Trigger
    8. 19.8 Software
      1. 19.8.1 WADI Registers to Driverlib Functions
      2. 19.8.2 WADI Examples
        1. 19.8.2.1 WADI Duty and Frequency check - SINGLE_CORE
    9. 19.9 WADI Registers
      1. 19.9.1 WADI Base Address Table
      2. 19.9.2 WADI_CONFIG_REGS Registers
      3. 19.9.3 WADI_OPER_SSS_REGS Registers
  22. 20Crossbar (X-BAR)
    1. 20.1 X-BAR Related Collateral
    2. 20.2 Input X-BAR, ICL XBAR, MINDB XBAR,
      1. 20.2.1 ICL and MINDB X-BAR
    3. 20.3 ePWM , CLB, and GPIO Output X-BAR
      1. 20.3.1 ePWM X-BAR
        1. 20.3.1.1 ePWM X-BAR Architecture
      2. 20.3.2 CLB X-BAR
        1. 20.3.2.1 CLB X-BAR Architecture
      3. 20.3.3 GPIO Output X-BAR
        1. 20.3.3.1 GPIO Output X-BAR Architecture
      4. 20.3.4 X-BAR Flags
    4. 20.4 Software
      1. 20.4.1 INPUT_XBAR Registers to Driverlib Functions
      2. 20.4.2 EPWM_XBAR Registers to Driverlib Functions
      3. 20.4.3 CLB_XBAR Registers to Driverlib Functions
      4. 20.4.4 OUTPUT_XBAR Registers to Driverlib Functions
      5. 20.4.5 MDL_XBAR Registers to Driverlib Functions
      6. 20.4.6 ICL_XBAR Registers to Driverlib Functions
      7. 20.4.7 XBAR Registers to Driverlib Functions
      8. 20.4.8 XBAR Examples
        1. 20.4.8.1 Input XBAR to Output XBAR Connection - SINGLE_CORE
        2. 20.4.8.2 Output XBAR Pulse Stretch - SINGLE_CORE
    5. 20.5 XBAR Registers
      1. 20.5.1 XBAR Base Address Table
      2. 20.5.2 INPUT_XBAR_REGS Registers
      3. 20.5.3 EPWM_XBAR_REGS Registers
      4. 20.5.4 CLB_XBAR_REGS Registers
      5. 20.5.5 OUTPUTXBAR_REGS Registers
      6. 20.5.6 MDL_XBAR_REGS Registers
      7. 20.5.7 ICL_XBAR_REGS Registers
      8. 20.5.8 OUTPUTXBAR_FLAG_REGS Registers
      9. 20.5.9 XBAR_REGS Registers
  23. 21Embedded Pattern Generator (EPG)
    1. 21.1 Introduction
      1. 21.1.1 Features
      2. 21.1.2 EPG Block Diagram
      3. 21.1.3 EPG Related Collateral
    2. 21.2 Clock Generator Modules
      1. 21.2.1 DCLK (50% duty cycle clock)
      2. 21.2.2 Clock Stop
    3. 21.3 Signal Generator Module
    4. 21.4 EPG Peripheral Signal Mux Selection
    5. 21.5 Application Software Notes
    6. 21.6 EPG Example Use Cases
      1. 21.6.1 EPG Example: Synchronous Clocks with Offset
        1. 21.6.1.1 Synchronous Clocks with Offset Register Configuration
      2. 21.6.2 EPG Example: Serial Data Bit Stream (LSB first)
        1. 21.6.2.1 Serial Data Bit Stream (LSB first) Register Configuration
      3. 21.6.3 EPG Example: Serial Data Bit Stream (MSB first)
        1. 21.6.3.1 Serial Data Bit Stream (MSB first) Register Configuration
      4. 21.6.4 EPG Example: Clock and Data Pair
        1. 21.6.4.1 Clock and Data Pair Register Configuration
      5. 21.6.5 EPG Example: Clock and Skewed Data Pair
        1. 21.6.5.1 Clock and Skewed Data Pair Register Configuration
      6. 21.6.6 EPG Example: Capturing Serial Data with a Known Baud Rate
        1. 21.6.6.1 Capturing Serial Data with a Known Baud Rate Register Configuration
    7. 21.7 EPG Interrupt
    8. 21.8 Software
      1. 21.8.1 EPG Registers to Driverlib Functions
      2. 21.8.2 EPG Examples
        1. 21.8.2.1 EPG Generating Synchronous Clocks - SINGLE_CORE
        2. 21.8.2.2 EPG Generating Two Offset Clocks - SINGLE_CORE
        3. 21.8.2.3 EPG Generating Two Offset Clocks With SIGGEN - SINGLE_CORE
        4. 21.8.2.4 EPG Generate Serial Data - SINGLE_CORE
        5. 21.8.2.5 EPG Generate Serial Data Shift Mode - SINGLE_CORE
    9. 21.9 EPG Registers
      1. 21.9.1 EPG Base Address Table
      2. 21.9.2 EPG_REGS Registers
      3. 21.9.3 EPG_MUX_REGS Registers
  24. 22â–º ANALOG PERIPHERALS
    1.     Technical Reference Manual Overview
  25. 23Analog Subsystem
    1. 23.1 Introduction
      1. 23.1.1 Features
      2. 23.1.2 Block Diagram
    2. 23.2 Optimizing Power-Up Time
    3. 23.3 Digital Inputs on ADC Pins (AIOs)
    4. 23.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 23.5 Analog Pins and Internal Connections
    6. 23.6 Software
      1. 23.6.1 ASYSCTL Registers to Driverlib Functions
    7. 23.7 Lock Registers
    8. 23.8 ASBSYS Registers
      1. 23.8.1 ASBSYS Base Address Table
      2. 23.8.2 ANALOG_SUBSYS_REGS Registers
  26. 24Analog-to-Digital Converter (ADC)
    1. 24.1  Introduction
      1. 24.1.1 ADC Related Collateral
      2. 24.1.2 Features
      3. 24.1.3 Block Diagram
    2. 24.2  ADC Configurability
      1. 24.2.1 Clock Configuration
      2. 24.2.2 Resolution
      3. 24.2.3 Voltage Reference
        1. 24.2.3.1 External Reference Mode
        2. 24.2.3.2 Internal Reference Mode
        3. 24.2.3.3 Ganged References
        4. 24.2.3.4 Selecting Reference Mode
      4. 24.2.4 Signal Mode
      5. 24.2.5 Expected Conversion Results
      6. 24.2.6 Interpreting Conversion Results
    3. 24.3  SOC Principle of Operation
      1. 24.3.1 SOC Configuration
      2. 24.3.2 Trigger Operation
        1. 24.3.2.1 Global Software Trigger
        2. 24.3.2.2 Trigger Repeaters
          1. 24.3.2.2.1 Oversampling Mode
          2. 24.3.2.2.2 Undersampling Mode
          3. 24.3.2.2.3 Trigger Phase Delay
          4. 24.3.2.2.4 Re-trigger Spread
          5. 24.3.2.2.5 Trigger Repeater Configuration
            1. 24.3.2.2.5.1 Register Shadow Updates
          6. 24.3.2.2.6 Re-Trigger Logic
          7. 24.3.2.2.7 Multi-Path Triggering Behavior
      3. 24.3.3 ADC Acquisition (Sample and Hold) Window
      4. 24.3.4 ADC Input Models
      5. 24.3.5 Channel Selection
        1. 24.3.5.1 External Channel Selection
          1. 24.3.5.1.1 External Channel Selection Timing
    4. 24.4  SOC Configuration Examples
      1. 24.4.1 Single Conversion from ePWM Trigger
      2. 24.4.2 Oversampled Conversion from ePWM Trigger
      3. 24.4.3 Multiple Conversions from CPU Timer Trigger
      4. 24.4.4 Software Triggering of SOCs
    5. 24.5  ADC Conversion Priority
    6. 24.6  Burst Mode
      1. 24.6.1 Burst Mode Example
      2. 24.6.2 Burst Mode Priority Example
    7. 24.7  EOC and Interrupt Operation
      1. 24.7.1 Interrupt Overflow
      2. 24.7.2 Continue to Interrupt Mode
      3. 24.7.3 Early Interrupt Configuration Mode
    8. 24.8  Post-Processing Blocks
      1. 24.8.1 PPB Offset Correction
      2. 24.8.2 PPB Error Calculation
      3. 24.8.3 PPB Result Delta Calculation
      4. 24.8.4 PPB Limit Detection and Zero-Crossing Detection
        1. 24.8.4.1 PPB Digital Trip Filter
      5. 24.8.5 PPB Sample Delay Capture
      6. 24.8.6 PPB Oversampling
        1. 24.8.6.1 Accumulation, Minimum, Maximum, and Average Functions
        2. 24.8.6.2 Outlier Rejection
    9. 24.9  Result Safety Checker
      1. 24.9.1 Result Safety Checker Operation
      2. 24.9.2 Result Safety Checker Interrupts and Events
    10. 24.10 Opens/Shorts Detection Circuit (OSDETECT)
      1. 24.10.1 Implementation
      2. 24.10.2 Detecting an Open Input Pin
      3. 24.10.3 Detecting a Shorted Input Pin
    11. 24.11 Power-Up Sequence
    12. 24.12 ADC Calibration
      1. 24.12.1 ADC Zero Offset Calibration
    13. 24.13 ADC Timings
      1. 24.13.1 ADC Timing Diagrams
      2. 24.13.2 Post-Processing Block Timings
    14. 24.14 Additional Information
      1. 24.14.1 Ensuring Synchronous Operation
        1. 24.14.1.1 Basic Synchronous Operation
        2. 24.14.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 24.14.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 24.14.1.4 Synchronous Operation with Different Resolutions
        5. 24.14.1.5 Non-overlapping Conversions
      2. 24.14.2 Choosing an Acquisition Window Duration
      3. 24.14.3 Achieving Simultaneous Sampling
      4. 24.14.4 Result Register Mapping
      5. 24.14.5 Internal Temperature Sensor
      6. 24.14.6 Designing an External Reference Circuit
      7. 24.14.7 Internal Test Mode
      8. 24.14.8 ADC Gain and Offset Calibration
    15. 24.15 Software
      1. 24.15.1 ADC Registers to Driverlib Functions
      2. 24.15.2 ADC Examples
        1. 24.15.2.1  ADC Software Triggering - SINGLE_CORE
        2. 24.15.2.2  ADC ePWM Triggering - SINGLE_CORE
        3. 24.15.2.3  ADC Temperature Sensor Conversion - SINGLE_CORE
        4. 24.15.2.4  ADC Synchronous SOC Software Force (adc_soc_software_sync) - SINGLE_CORE
        5. 24.15.2.5  ADC Continuous Triggering (adc_soc_continuous) - SINGLE_CORE
        6. 24.15.2.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma) - SINGLE_CORE
        7. 24.15.2.7  ADC PPB Offset (adc_ppb_offset) - SINGLE_CORE
        8. 24.15.2.8  ADC PPB Limits (adc_ppb_limits) - SINGLE_CORE
        9. 24.15.2.9  ADC PPB Delay Capture (adc_ppb_delay) - SINGLE_CORE
        10. 24.15.2.10 ADC ePWM Triggering Multiple SOC - SINGLE_CORE
        11. 24.15.2.11 ADC Burst Mode - SINGLE_CORE
        12. 24.15.2.12 ADC Burst Mode Oversampling - SINGLE_CORE
        13. 24.15.2.13 ADC SOC Oversampling - SINGLE_CORE
        14. 24.15.2.14 ADC PPB PWM trip (adc_ppb_pwm_trip) - SINGLE_CORE
        15. 24.15.2.15 ADC Trigger Repeater Oversampling - SINGLE_CORE
        16. 24.15.2.16 ADC Trigger Repeater Undersampling - SINGLE_CORE
        17. 24.15.2.17 ADC Safety Checker - SINGLE_CORE
    16. 24.16 ADC Registers
      1. 24.16.1 ADC Base Address Table
      2. 24.16.2 ADC_RESULT_REGS Registers
      3. 24.16.3 ADC_REGS Registers
      4. 24.16.4 ADC_SAFECHECK_REGS Registers
      5. 24.16.5 ADC_SAFECHECK_INTEVT_REGS Registers
      6. 24.16.6 ADC_GLOBAL_REGS Registers
  27. 25Buffered Digital-to-Analog Converter (DAC)
    1. 25.1 Introduction
      1. 25.1.1 DAC Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Block Diagram
    2. 25.2 Using the DAC
      1. 25.2.1 Initialization Sequence
      2. 25.2.2 DAC Offset Adjustment
      3. 25.2.3 EPWMSYNCPER Signal
    3. 25.3 Lock Registers
    4. 25.4 Software
      1. 25.4.1 DAC Registers to Driverlib Functions
      2. 25.4.2 DAC Examples
        1. 25.4.2.1 Buffered DAC Enable - SINGLE_CORE
        2. 25.4.2.2 Buffered DAC Random - SINGLE_CORE
    5. 25.5 DAC Registers
      1. 25.5.1 DAC Base Address Table
      2. 25.5.2 DAC_REGS Registers
  28. 26Comparator Subsystem (CMPSS)
    1. 26.1 Introduction
      1. 26.1.1 CMPSS Related Collateral
      2. 26.1.2 Features
      3. 26.1.3 Block Diagram
    2. 26.2 Comparator
    3. 26.3 Reference DAC
    4. 26.4 Ramp Generator
      1. 26.4.1 Ramp Generator Overview
      2. 26.4.2 Ramp Generator Behavior
      3. 26.4.3 Ramp Generator Behavior at Corner Cases
    5. 26.5 Digital Filter
      1. 26.5.1 Filter Initialization Sequence
    6. 26.6 Using the CMPSS
      1. 26.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 26.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 26.6.3 Calibrating the CMPSS
      4. 26.6.4 Enabling and Disabling the CMPSS Clock
    7. 26.7 Software
      1. 26.7.1 CMPSS Registers to Driverlib Functions
      2. 26.7.2 CMPSS Examples
        1. 26.7.2.1 CMPSS Asynchronous Trip - SINGLE_CORE
        2. 26.7.2.2 CMPSS Digital Filter Configuration - SINGLE_CORE
    8. 26.8 CMPSS Registers
      1. 26.8.1 CMPSS Base Address Table
      2. 26.8.2 CMPSS_REGS Registers
  29. 27â–º CONTROL PERIPHERALS
    1.     Technical Reference Manual Overview
  30. 28Enhanced Capture (eCAP)
    1. 28.1 Introduction
      1. 28.1.1 Features
      2. 28.1.2 ECAP Related Collateral
    2. 28.2 Description
    3. 28.3 Configuring Device Pins for the eCAP
    4. 28.4 Capture and APWM Operating Mode
    5. 28.5 Capture Mode Description
      1. 28.5.1  Event Prescaler
      2. 28.5.2  Glitch Filter
      3. 28.5.3  Edge Polarity Select and Qualifier
      4. 28.5.4  Continuous/One-Shot Control
      5. 28.5.5  32-Bit Counter and Phase Control
      6. 28.5.6  CAP1-CAP4 Registers
      7. 28.5.7  eCAP Synchronization
        1. 28.5.7.1 Example 1 - Using SWSYNC with ECAP Module
      8. 28.5.8  Interrupt Control
      9. 28.5.9  RTDMA Interrupt
      10. 28.5.10 ADC SOC Event
      11. 28.5.11 Shadow Load and Lockout Control
      12. 28.5.12 APWM Mode Operation
      13. 28.5.13 Signal Monitoring Unit
        1. 28.5.13.1 Pulse Width and Period Monitoring
        2. 28.5.13.2 Edge Monitoring
    6. 28.6 Application of the eCAP Module
      1. 28.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 28.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 28.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 28.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 28.7 Application of the APWM Mode
      1. 28.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 28.8 Software
      1. 28.8.1 ECAP Registers to Driverlib Functions
      2. 28.8.2 ECAP Examples
        1. 28.8.2.1 eCAP APWM Example - SINGLE_CORE
        2. 28.8.2.2 eCAP Capture PWM Example - SINGLE_CORE
        3. 28.8.2.3 eCAP APWM Phase-shift Example - SINGLE_CORE
    9. 28.9 ECAP Registers
      1. 28.9.1 ECAP Base Address Table
      2. 28.9.2 ECAP_REGS Registers
      3. 28.9.3 ECAP_SIGNAL_MONITORING Registers
      4. 28.9.4 HRCAP_REGS Registers
  31. 29High Resolution Capture (HRCAP)
    1. 29.1 Introduction
      1. 29.1.1 HRCAP Related Collateral
      2. 29.1.2 Features
      3. 29.1.3 Description
    2. 29.2 Operational Details
      1. 29.2.1 HRCAP Clocking
      2. 29.2.2 HRCAP Initialization Sequence
      3. 29.2.3 HRCAP Interrupts
      4. 29.2.4 HRCAP Calibration
        1. 29.2.4.1 Applying the Scale Factor
    3. 29.3 Known Exceptions
    4. 29.4 Software
      1. 29.4.1 HRCAP Examples
        1. 29.4.1.1 HRCAP Capture and Calibration Example - SINGLE_CORE
    5. 29.5 HRCAP Registers
      1. 29.5.1 HRCAP Base Address Table
      2. 29.5.2 HRCAP_REGS Registers
  32. 30Enhanced Pulse Width Modulator (ePWM)
    1. 30.1  Introduction
      1. 30.1.1 EPWM Related Collateral
      2. 30.1.2 Submodule Overview
    2. 30.2  Configuring Device Pins
    3. 30.3  ePWM Modules Overview
    4. 30.4  Time-Base (TB) Submodule
      1. 30.4.1 Purpose of the Time-Base Submodule
      2. 30.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 30.4.3 Calculating PWM Period and Frequency
        1. 30.4.3.1 Time-Base Period Shadow Register
        2. 30.4.3.2 Time-Base Clock Synchronization
        3. 30.4.3.3 Time-Base Counter Synchronization
        4. 30.4.3.4 ePWM SYNC Selection
      4. 30.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 30.4.5 Simultaneous Writes Between ePWM Register Instances
      6. 30.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 30.4.7 Global Load
        1. 30.4.7.1 Global Load Pulse Pre-Scalar
        2. 30.4.7.2 One-Shot Load Mode
        3. 30.4.7.3 One-Shot Sync Mode
    5. 30.5  Counter-Compare (CC) Submodule
      1. 30.5.1 Purpose of the Counter-Compare Submodule
      2. 30.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 30.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 30.5.4 Count Mode Timing Waveforms
    6. 30.6  Action-Qualifier (AQ) Submodule
      1. 30.6.1 Purpose of the Action-Qualifier Submodule
      2. 30.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 30.6.3 Action-Qualifier Event Priority
      4. 30.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 30.6.5 Configuration Requirements for Common Waveforms
    7. 30.7  XCMP Complex Waveform Generator Mode
      1. 30.7.1 XCMP Allocation to CMPA and CMPB
      2. 30.7.2 XCMP Shadow Buffers
      3. 30.7.3 XCMP Operation
    8. 30.8  Dead-Band Generator (DB) Submodule
      1. 30.8.1 Purpose of the Dead-Band Submodule
      2. 30.8.2 Dead-band Submodule Additional Operating Modes
      3. 30.8.3 Operational Highlights for the Dead-Band Submodule
    9. 30.9  PWM Chopper (PC) Submodule
      1. 30.9.1 Purpose of the PWM Chopper Submodule
      2. 30.9.2 Operational Highlights for the PWM Chopper Submodule
      3. 30.9.3 Waveforms
        1. 30.9.3.1 One-Shot Pulse
        2. 30.9.3.2 Duty Cycle Control
    10. 30.10 Trip-Zone (TZ) Submodule
      1. 30.10.1 Purpose of the Trip-Zone Submodule
      2. 30.10.2 Operational Highlights for the Trip-Zone Submodule
        1. 30.10.2.1 Trip-Zone Configurations
      3. 30.10.3 Generating Trip Event Interrupts
    11. 30.11 Diode Emulation (DE) Submodule
      1. 30.11.1 DEACTIVE Mode
      2. 30.11.2 Exiting DE Mode
      3. 30.11.3 Re-Entering DE Mode
      4. 30.11.4 DE Monitor
    12. 30.12 Minimum Dead-Band (MINDB) + Illegal Combination Logic (ICL) Submodules
      1. 30.12.1 Minimum Dead-Band (MINDB)
      2. 30.12.2 Illegal Combo Logic (ICL)
    13. 30.13 Event-Trigger (ET) Submodule
      1. 30.13.1 Operational Overview of the ePWM Event-Trigger Submodule
    14. 30.14 Digital Compare (DC) Submodule
      1. 30.14.1 Purpose of the Digital Compare Submodule
      2. 30.14.2 Enhanced Trip Action Using CMPSS
      3. 30.14.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 30.14.4 Operation Highlights of the Digital Compare Submodule
        1. 30.14.4.1 Digital Compare Events
        2. 30.14.4.2 Event Filtering
        3. 30.14.4.3 Valley Switching
        4. 30.14.4.4 Event Detection
          1. 30.14.4.4.1 Input Signal Detection
          2. 30.14.4.4.2 MIN and MAX Detection Circuit
    15. 30.15 ePWM Crossbar (X-BAR)
    16. 30.16 Applications to Power Topologies
      1. 30.16.1  Overview of Multiple Modules
      2. 30.16.2  Key Configuration Capabilities
      3. 30.16.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 30.16.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 30.16.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 30.16.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 30.16.7  Practical Applications Using Phase Control Between PWM Modules
      8. 30.16.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 30.16.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 30.16.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 30.16.11 Controlling H-Bridge LLC Resonant Converter
    17. 30.17 Register Lock Protection
    18. 30.18 High-Resolution Pulse Width Modulator (HRPWM)
      1. 30.18.1 Operational Description of HRPWM
        1. 30.18.1.1 Controlling the HRPWM Capabilities
        2. 30.18.1.2 HRPWM Source Clock
        3. 30.18.1.3 Configuring the HRPWM
        4. 30.18.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 30.18.1.5 Principle of Operation
          1. 30.18.1.5.1 Edge Positioning
          2. 30.18.1.5.2 Scaling Considerations
          3. 30.18.1.5.3 Duty Cycle Range Limitation
          4. 30.18.1.5.4 High-Resolution Period
            1. 30.18.1.5.4.1 High-Resolution Period Configuration
        6. 30.18.1.6 Deadband High-Resolution Operation
        7. 30.18.1.7 Scale Factor Optimizing Software (SFO)
        8. 30.18.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 30.18.1.8.1 #Defines for HRPWM Header Files
          2. 30.18.1.8.2 Implementing a Simple Buck Converter
            1. 30.18.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 30.18.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 30.18.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 30.18.1.8.3.1 PWM DAC Function Initialization Code
            2. 30.18.1.8.3.2 PWM DAC Function Run-Time Code
      2. 30.18.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 30.18.2.1 Scale Factor Optimizer Function - int SFO()
        2. 30.18.2.2 Software Usage
          1. 30.18.2.2.1 A Sample of How to Add "Include" Files
          2.        1131
          3. 30.18.2.2.2 Declaring an Element
          4.        1133
          5. 30.18.2.2.3 Initializing With a Scale Factor Value
          6.        1135
          7. 30.18.2.2.4 SFO Function Calls
    19. 30.19 Software
      1. 30.19.1 EPWM Registers to Driverlib Functions
      2. 30.19.2 HRPWMCAL Registers to Driverlib Functions
      3. 30.19.3 EPWM Examples
        1. 30.19.3.1  ePWM Trip Zone - SINGLE_CORE
        2. 30.19.3.2  ePWM Up Down Count Action Qualifier - SINGLE_CORE
        3. 30.19.3.3  ePWM Synchronization - SINGLE_CORE
        4. 30.19.3.4  ePWM Digital Compare - SINGLE_CORE
        5. 30.19.3.5  ePWM Digital Compare Event Filter Blanking Window - SINGLE_CORE
        6. 30.19.3.6  ePWM Valley Switching - SINGLE_CORE
        7. 30.19.3.7  ePWM Digital Compare Edge Filter - SINGLE_CORE
        8. 30.19.3.8  ePWM Deadband - SINGLE_CORE
        9. 30.19.3.9  ePWM DMA - SINGLE_CORE
        10. 30.19.3.10 ePWM Chopper - SINGLE_CORE
        11. 30.19.3.11 EPWM Configure Signal - SINGLE_CORE
        12. 30.19.3.12 Realization of Monoshot mode - SINGLE_CORE
        13. 30.19.3.13 EPWM Action Qualifier (epwm_up_aq) - SINGLE_CORE
        14. 30.19.3.14 ePWM XCMP Mode - SINGLE_CORE
        15. 30.19.3.15 ePWM Event Detection - SINGLE_CORE
    20. 30.20 EPWM Registers
      1. 30.20.1 EPWM Base Address Table
      2. 30.20.2 EPWM_REGS Registers
      3. 30.20.3 EPWM_XCMP_REGS Registers
      4. 30.20.4 DE_REGS Registers
      5. 30.20.5 MINDB_LUT_REGS Registers
      6. 30.20.6 HRPWMCAL_REGS Registers
  33. 31Enhanced Quadrature Encoder Pulse (eQEP)
    1. 31.1  Introduction
      1. 31.1.1 EQEP Related Collateral
    2. 31.2  Configuring Device Pins
    3. 31.3  Description
      1. 31.3.1 EQEP Inputs
      2. 31.3.2 Functional Description
      3. 31.3.3 eQEP Memory Map
    4. 31.4  Quadrature Decoder Unit (QDU)
      1. 31.4.1 Position Counter Input Modes
        1. 31.4.1.1 Quadrature Count Mode
        2. 31.4.1.2 Direction-Count Mode
        3. 31.4.1.3 Up-Count Mode
        4. 31.4.1.4 Down-Count Mode
      2. 31.4.2 eQEP Input Polarity Selection
      3. 31.4.3 Position-Compare Sync Output
    5. 31.5  Position Counter and Control Unit (PCCU)
      1. 31.5.1 Position Counter Operating Modes
        1. 31.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 31.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 31.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 31.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 31.5.2 Position Counter Latch
        1. 31.5.2.1 Index Event Latch
        2. 31.5.2.2 Strobe Event Latch
      3. 31.5.3 Position Counter Initialization
      4. 31.5.4 eQEP Position-compare Unit
    6. 31.6  eQEP Edge Capture Unit
    7. 31.7  eQEP Watchdog
    8. 31.8  eQEP Unit Timer Base
    9. 31.9  QMA Module
      1. 31.9.1 Modes of Operation
        1. 31.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 31.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 31.9.2 Interrupt and Error Generation
    10. 31.10 eQEP Interrupt Structure
    11. 31.11 Software
      1. 31.11.1 EQEP Registers to Driverlib Functions
      2. 31.11.2 EQEP Examples
        1. 31.11.2.1 Frequency Measurement Using eQEP via unit timeout interrupt - SINGLE_CORE
        2. 31.11.2.2 Motor speed and direction measurement using eQEP via unit timeout interrupt - SINGLE_CORE
    12. 31.12 EQEP Registers
      1. 31.12.1 EQEP Base Address Table
      2. 31.12.2 EQEP_REGS Registers
  34. 32Sigma Delta Filter Module (SDFM)
    1. 32.1  Introduction
      1. 32.1.1 SDFM Related Collateral
      2. 32.1.2 Features
      3. 32.1.3 Block Diagram
    2. 32.2  Configuring Device Pins
    3. 32.3  Input Qualification
    4. 32.4  Input Control Unit
    5. 32.5  SDFM Clock Control
    6. 32.6  Sinc Filter
      1. 32.6.1 Data Rate and Latency of the Sinc Filter
    7. 32.7  Data (Primary) Filter Unit
      1. 32.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 32.7.2 Data FIFO
      3. 32.7.3 SDSYNC Event
    8. 32.8  Comparator (Secondary) Filter Unit
      1. 32.8.1 Higher Threshold (HLT) Comparators
      2. 32.8.2 Lower Threshold (LLT) Comparators
      3. 32.8.3 Digital Filter
    9. 32.9  Theoretical SDFM Filter Output
    10. 32.10 Interrupt Unit
      1. 32.10.1 SDFM (SDyERR) Interrupt Sources
      2. 32.10.2 Data Ready (DRINT) Interrupt Sources
    11. 32.11 Software
      1. 32.11.1 SDFM Registers to Driverlib Functions
      2. 32.11.2 SDFM Examples
    12. 32.12 SDFM Registers
      1. 32.12.1 SDFM Base Address Table
      2. 32.12.2 SDFM_REGS Registers
  35. 33â–º COMMUNICATION PERIPHERALS
    1.     Technical Reference Manual Overview
  36. 34Modular Controller Area Network (MCAN)
    1. 34.1 MCAN Introduction
      1. 34.1.1 MCAN Related Collateral
      2. 34.1.2 MCAN Features
    2. 34.2 MCAN Environment
    3. 34.3 CAN Network Basics
    4. 34.4 MCAN Integration
    5. 34.5 MCAN Functional Description
      1. 34.5.1  Module Clocking Requirements
      2. 34.5.2  Interrupt Requests
      3. 34.5.3  Operating Modes
        1. 34.5.3.1 Software Initialization
        2. 34.5.3.2 Normal Operation
        3. 34.5.3.3 CAN FD Operation
      4. 34.5.4  Transmitter Delay Compensation
        1. 34.5.4.1 Description
        2. 34.5.4.2 Transmitter Delay Compensation Measurement
      5. 34.5.5  Restricted Operation Mode
      6. 34.5.6  Bus Monitoring Mode
      7. 34.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 34.5.7.1 Frame Transmission in DAR Mode
      8. 34.5.8  Clock Stop Mode
        1. 34.5.8.1 Suspend Mode
        2. 34.5.8.2 Wakeup Request
      9. 34.5.9  Test Modes
        1. 34.5.9.1 External Loop Back Mode
        2. 34.5.9.2 Internal Loop Back Mode
      10. 34.5.10 Timestamp Generation
        1. 34.5.10.1 External Timestamp Counter
      11. 34.5.11 Timeout Counter
      12. 34.5.12 Safety
        1. 34.5.12.1 ECC Wrapper
        2. 34.5.12.2 ECC Aggregator
          1. 34.5.12.2.1 ECC Aggregator Overview
          2. 34.5.12.2.2 ECC Aggregator Registers
        3. 34.5.12.3 Reads to ECC Control and Status Registers
        4. 34.5.12.4 ECC Interrupts
      13. 34.5.13 Rx Handling
        1. 34.5.13.1 Acceptance Filtering
          1. 34.5.13.1.1 Range Filter
          2. 34.5.13.1.2 Filter for Specific IDs
          3. 34.5.13.1.3 Classic Bit Mask Filter
          4. 34.5.13.1.4 Standard Message ID Filtering
          5. 34.5.13.1.5 Extended Message ID Filtering
        2. 34.5.13.2 Rx FIFOs
          1. 34.5.13.2.1 Rx FIFO Blocking Mode
          2. 34.5.13.2.2 Rx FIFO Overwrite Mode
        3. 34.5.13.3 Dedicated Rx Buffers
          1. 34.5.13.3.1 Rx Buffer Handling
      14. 34.5.14 Tx Handling
        1. 34.5.14.1 Transmit Pause
        2. 34.5.14.2 Dedicated Tx Buffers
        3. 34.5.14.3 Tx FIFO
        4. 34.5.14.4 Tx Queue
        5. 34.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 34.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 34.5.14.7 Transmit Cancellation
        8. 34.5.14.8 Tx Event Handling
      15. 34.5.15 FIFO Acknowledge Handling
      16. 34.5.16 Message RAM
        1. 34.5.16.1 Message RAM Configuration
        2. 34.5.16.2 Rx Buffer and FIFO Element
        3. 34.5.16.3 Tx Buffer Element
        4. 34.5.16.4 Tx Event FIFO Element
        5. 34.5.16.5 Standard Message ID Filter Element
        6. 34.5.16.6 Extended Message ID Filter Element
    6. 34.6 Software
      1. 34.6.1 MCAN Examples
        1. 34.6.1.1 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
        2. 34.6.1.2 MCAN Loopback with Polling Example Using SYSCONFIG Tool - SINGLE_CORE
        3. 34.6.1.3 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
    7. 34.7 MCAN Registers
      1. 34.7.1 MCAN Base Address Table
      2. 34.7.2 MCANSS_REGS Registers
      3. 34.7.3 MCAN_REGS Registers
      4. 34.7.4 MCAN_ERROR_REGS Registers
  37. 35EtherCAT® SubordinateDevice Controller (ESC)
    1. 35.1 Introduction
      1. 35.1.1  EtherCAT Related Collateral
      2. 35.1.2  ESC Features
      3. 35.1.3  ESC Subsystem Integrated Features
      4. 35.1.4  ESC versus Beckhoff ET1100
      5. 35.1.5  EtherCAT IP Block Diagram
      6. 35.1.6  ESC Functional Blocks
        1. 35.1.6.1  Interface to EtherCAT MainDevice
        2. 35.1.6.2  Process Data Interface
        3. 35.1.6.3  General-Purpose Inputs and Outputs
        4. 35.1.6.4  EtherCAT Processing Unit (EPU)
        5. 35.1.6.5  Fieldbus Memory Management Unit (FMMU)
        6. 35.1.6.6  Sync Manager
        7. 35.1.6.7  Monitoring
        8. 35.1.6.8  Reset Controller
        9. 35.1.6.9  PHY Management
        10. 35.1.6.10 Distributed Clock (DC)
        11. 35.1.6.11 EEPROM
        12. 35.1.6.12 Status / LEDs
      7. 35.1.7  EtherCAT Physical Layer
        1. 35.1.7.1 MII Interface
        2. 35.1.7.2 PHY Management Interface
          1. 35.1.7.2.1 PHY Address Configuration
          2. 35.1.7.2.2 PHY Reset Signal
          3. 35.1.7.2.3 PHY Clock
      8. 35.1.8  EtherCAT Protocol
      9. 35.1.9  EtherCAT State Machine (ESM)
      10. 35.1.10 More Information on EtherCAT
      11. 35.1.11 Beckhoff® Automation EtherCAT IP Errata
    2. 35.2 ESC and ESCSS Description
      1. 35.2.1  ESC RAM Parity and Memory Address Maps
        1. 35.2.1.1 ESC RAM Parity Logic
        2. 35.2.1.2 CPU1 ESC Memory Address Map
        3. 35.2.1.3 CPU2 ESC Memory Address Map
      2. 35.2.2  Local Host Communication
        1. 35.2.2.1 Byte Accessibility Through PDI
        2. 35.2.2.2 Software Details for Operation Across Clock Domains
      3. 35.2.3  Debug Emulation Mode Operation
      4. 35.2.4  ESC SubSystem
        1. 35.2.4.1 CPU1 Bus Interface
        2. 35.2.4.2 CPU2/CPU3 Bus Interface
      5. 35.2.5  Interrupts and Interrupt Mapping
      6. 35.2.6  Power, Clocks, and Resets
        1. 35.2.6.1 Power
        2. 35.2.6.2 Clocking
        3. 35.2.6.3 Resets
          1. 35.2.6.3.1 Chip-Level Reset
          2. 35.2.6.3.2 EtherCAT Soft Resets
          3. 35.2.6.3.3 Reset Out (RESET_OUT)
      7. 35.2.7  LED Controls
      8. 35.2.8  SubordinateDevice Node Configuration and EEPROM
      9. 35.2.9  General-Purpose Inputs and Outputs
        1. 35.2.9.1 General-Purpose Inputs
        2. 35.2.9.2 General-Purpose Output
      10. 35.2.10 Distributed Clocks – Sync and Latch
        1. 35.2.10.1 Clock Synchronization
        2. 35.2.10.2 SYNC Signals
          1. 35.2.10.2.1 Seeking Host Intervention
        3. 35.2.10.3 LATCH Signals
          1. 35.2.10.3.1 Timestamping
        4. 35.2.10.4 Device Control and Synchronization
          1. 35.2.10.4.1 Synchronization of PWM
          2. 35.2.10.4.2 ECAP SYNC Inputs
          3. 35.2.10.4.3 SYNC Signal Conditioning and Rerouting
    3. 35.3 Software Initialization Sequence and Allocating Ownership
    4. 35.4 ESC Configuration Constants
    5. 35.5 Software
      1. 35.5.1 ECAT_SS Registers to Driverlib Functions
      2. 35.5.2 ETHERNET Examples
    6. 35.6 ETHERCAT Registers
      1. 35.6.1 ETHERCAT Base Address Table
      2. 35.6.2 ESCSS_REGS Registers
      3. 35.6.3 ESCSS_CONFIG_REGS Registers
  38. 36Fast Serial Interface (FSI)
    1. 36.1 Introduction
      1. 36.1.1 FSI Related Collateral
      2. 36.1.2 FSI Features
    2. 36.2 System-level Integration
      1. 36.2.1 CPU Interface
      2. 36.2.2 Signal Description
        1. 36.2.2.1 Configuring Device Pins
      3. 36.2.3 FSI Interrupts
        1. 36.2.3.1 Transmitter Interrupts
        2. 36.2.3.2 Receiver Interrupts
        3. 36.2.3.3 Configuring Interrupts
        4. 36.2.3.4 Handling Interrupts
      4. 36.2.4 RTDMA Interface
      5. 36.2.5 External Frame Trigger Mux
    3. 36.3 FSI Functional Description
      1. 36.3.1 Introduction to Operation
      2. 36.3.2 FSI Transmitter Module
        1. 36.3.2.1 Initialization
        2. 36.3.2.2 FSI_TX Clocking
        3. 36.3.2.3 Transmitting Frames
          1. 36.3.2.3.1 Software Triggered Frames
          2. 36.3.2.3.2 Externally Triggered Frames
          3. 36.3.2.3.3 Ping Frame Generation
            1. 36.3.2.3.3.1 Automatic Ping Frames
            2. 36.3.2.3.3.2 Software Triggered Ping Frame
            3. 36.3.2.3.3.3 Externally Triggered Ping Frame
          4. 36.3.2.3.4 Transmitting Frames with RTDMA
        4. 36.3.2.4 Transmit Buffer Management
        5. 36.3.2.5 CRC Submodule
        6. 36.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 36.3.2.7 Reset
      3. 36.3.3 FSI Receiver Module
        1. 36.3.3.1  Initialization
        2. 36.3.3.2  FSI_RX Clocking
        3. 36.3.3.3  Receiving Frames
          1. 36.3.3.3.1 Receiving Frames with RTDMA
        4. 36.3.3.4  Ping Frame Watchdog
        5. 36.3.3.5  Frame Watchdog
        6. 36.3.3.6  Delay Line Control
        7. 36.3.3.7  Buffer Management
        8. 36.3.3.8  CRC Submodule
        9. 36.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 36.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 36.3.3.11 FSI_RX Reset
      4. 36.3.4 Frame Format
        1. 36.3.4.1 FSI Frame Phases
        2. 36.3.4.2 Frame Types
          1. 36.3.4.2.1 Ping Frames
          2. 36.3.4.2.2 Error Frames
          3. 36.3.4.2.3 Data Frames
        3. 36.3.4.3 Multi-Lane Transmission
      5. 36.3.5 Flush Sequence
      6. 36.3.6 Internal Loopback
      7. 36.3.7 CRC Generation
      8. 36.3.8 ECC Module
      9. 36.3.9 FSI-SPI Compatibility Mode
        1. 36.3.9.1 Available SPI Modes
          1. 36.3.9.1.1 FSITX as SPI Controller, Transmit Only
            1. 36.3.9.1.1.1 Initialization
            2. 36.3.9.1.1.2 Operation
          2. 36.3.9.1.2 FSIRX as SPI Peripheral, Receive Only
            1. 36.3.9.1.2.1 Initialization
            2. 36.3.9.1.2.2 Operation
          3. 36.3.9.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Controller
            1. 36.3.9.1.3.1 Initialization
            2. 36.3.9.1.3.2 Operation
    4. 36.4 FSI Programing Guide
      1. 36.4.1 Establishing the Communication Link
        1. 36.4.1.1 Establishing the Communication Link from the Main Device
        2. 36.4.1.2 Establishing the Communication Link from the Remote Device
      2. 36.4.2 Register Protection
      3. 36.4.3 Emulation Mode
    5. 36.5 Software
      1. 36.5.1 FSI Registers to Driverlib Functions
      2. 36.5.2 FSI Examples
        1. 36.5.2.1 FSI Loopback:CPU Control - SINGLE_CORE
        2. 36.5.2.2 FSI data transfers upon CPU Timer event - SINGLE_CORE
    6. 36.6 FSI Registers
      1. 36.6.1 FSI Base Address Table
      2. 36.6.2 FSI_TX_REGS Registers
      3. 36.6.3 FSI_RX_REGS Registers
  39. 37Inter-Integrated Circuit Module (I2C)
    1. 37.1 Introduction
      1. 37.1.1 I2C Related Collateral
      2. 37.1.2 Features
      3. 37.1.3 Features Not Supported
      4. 37.1.4 Functional Overview
      5. 37.1.5 Clock Generation
      6. 37.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 37.1.6.1 Formula for the Controller Clock Period
    2. 37.2 Configuring Device Pins
    3. 37.3 I2C Module Operational Details
      1. 37.3.1  Input and Output Voltage Levels
      2. 37.3.2  Selecting Pullup Resistors
      3. 37.3.3  Data Validity
      4. 37.3.4  Operating Modes
      5. 37.3.5  I2C Module START and STOP Conditions
      6. 37.3.6  Non-repeat Mode versus Repeat Mode
      7. 37.3.7  Serial Data Formats
        1. 37.3.7.1 7-Bit Addressing Format
        2. 37.3.7.2 10-Bit Addressing Format
        3. 37.3.7.3 Free Data Format
        4. 37.3.7.4 Using a Repeated START Condition
      8. 37.3.8  Clock Synchronization
      9. 37.3.9  Clock Stretching
      10. 37.3.10 Arbitration
      11. 37.3.11 Digital Loopback Mode
      12. 37.3.12 NACK Bit Generation
    4. 37.4 Interrupt Requests Generated by the I2C Module
      1. 37.4.1 Basic I2C Interrupt Requests
      2. 37.4.2 I2C FIFO Interrupts
    5. 37.5 Resetting or Disabling the I2C Module
    6. 37.6 Software
      1. 37.6.1 I2C Registers to Driverlib Functions
      2. 37.6.2 I2C Examples
        1. 37.6.2.1 I2C Digital Loopback with FIFO Interrupts - SINGLE_CORE
        2. 37.6.2.2 I2C EEPROM - SINGLE_CORE
        3. 37.6.2.3 I2C Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        4. 37.6.2.4 I2C Extended Clock Stretching Controller TX - SINGLE_CORE
        5. 37.6.2.5 I2C Extended Clock Stretching Target RX - SINGLE_CORE
    7. 37.7 I2C Registers
      1. 37.7.1 I2C Base Address Table
      2. 37.7.2 I2C_REGS Registers
  40. 38Power Management Bus Module (PMBus)
    1. 38.1 Introduction
      1. 38.1.1 PMBUS Related Collateral
      2. 38.1.2 Features
      3. 38.1.3 Block Diagram
    2. 38.2 Configuring Device Pins
    3. 38.3 Target Mode Operation
      1. 38.3.1 Configuration
      2. 38.3.2 Message Handling
        1. 38.3.2.1  Quick Command
        2. 38.3.2.2  Send Byte
        3. 38.3.2.3  Receive Byte
        4. 38.3.2.4  Write Byte and Write Word
        5. 38.3.2.5  Read Byte and Read Word
        6. 38.3.2.6  Process Call
        7. 38.3.2.7  Block Write
        8. 38.3.2.8  Block Read
        9. 38.3.2.9  Block Write-Block Read Process Call
        10. 38.3.2.10 Alert Response
        11. 38.3.2.11 Extended Command
        12. 38.3.2.12 Group Command
    4. 38.4 Controller Mode Operation
      1. 38.4.1 Configuration
      2. 38.4.2 Message Handling
        1. 38.4.2.1  Quick Command
        2. 38.4.2.2  Send Byte
        3. 38.4.2.3  Receive Byte
        4. 38.4.2.4  Write Byte and Write Word
        5. 38.4.2.5  Read Byte and Read Word
        6. 38.4.2.6  Process Call
        7. 38.4.2.7  Block Write
        8. 38.4.2.8  Block Read
        9. 38.4.2.9  Block Write-Block Read Process Call
        10. 38.4.2.10 Alert Response
        11. 38.4.2.11 Extended Command
        12. 38.4.2.12 Group Command
    5. 38.5 Software
      1. 38.5.1 PMBUS Registers to Driverlib Functions
    6. 38.6 PMBUS Registers
      1. 38.6.1 PMBUS Base Address Table
      2. 38.6.2 PMBUS_REGS Registers
  41. 39Universal Asynchronous Receiver/Transmitter (UART)
    1. 39.1 Introduction
      1. 39.1.1 Features
      2. 39.1.2 UART Related Collateral
      3. 39.1.3 Block Diagram
    2. 39.2 Functional Description
      1. 39.2.1 Transmit and Receive Logic
      2. 39.2.2 Baud-Rate Generation
      3. 39.2.3 Data Transmission
      4. 39.2.4 Serial IR (SIR)
      5. 39.2.5 9-Bit UART Mode
      6. 39.2.6 FIFO Operation
      7. 39.2.7 Interrupts
      8. 39.2.8 Loopback Operation
      9. 39.2.9 RTDMA Operation
        1. 39.2.9.1 Receiving Data Using UART with RTDMA
        2. 39.2.9.2 Transmitting Data Using UART with RTDMA
    3. 39.3 Initialization and Configuration
    4. 39.4 Software
      1. 39.4.1 UART Registers to Driverlib Functions
      2. 39.4.2 UART Examples
        1. 39.4.2.1 UART Loopback - SINGLE_CORE
        2. 39.4.2.2 UART Loopback with Interrupt - SINGLE_CORE
        3. 39.4.2.3 UART Loopback with DMA - SINGLE_CORE
        4. 39.4.2.4 UART Echoback - SINGLE_CORE
    5. 39.5 UART Registers
      1. 39.5.1 UART Base Address Table
      2. 39.5.2 UART_REGS Registers
      3. 39.5.3 UART_REGS_WRITE Registers
  42. 40Local Interconnect Network (LIN)
    1. 40.1 LIN Overview
      1. 40.1.1 LIN Mode Features
      2. 40.1.2 SCI Mode Features
      3. 40.1.3 Block Diagram
    2. 40.2 Serial Communications Interface Module
      1. 40.2.1 SCI Communication Formats
        1. 40.2.1.1 SCI Frame Formats
        2. 40.2.1.2 SCI Asynchronous Timing Mode
        3. 40.2.1.3 SCI Baud Rate
          1. 40.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 40.2.1.4 SCI Multiprocessor Communication Modes
          1. 40.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 40.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 40.2.1.5 SCI Multibuffered Mode
      2. 40.2.2 SCI Interrupts
        1. 40.2.2.1 Transmit Interrupt
        2. 40.2.2.2 Receive Interrupt
        3. 40.2.2.3 WakeUp Interrupt
        4. 40.2.2.4 Error Interrupts
      3. 40.2.3 SCI RTDMA Interface
        1. 40.2.3.1 Receive RTDMA Requests
        2. 40.2.3.2 Transmit RTDMA Requests
      4. 40.2.4 SCI Configurations
        1. 40.2.4.1 Receiving Data
          1. 40.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 40.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 40.2.4.2 Transmitting Data
          1. 40.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 40.2.5 SCI Low-Power Mode
        1. 40.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 40.3 Local Interconnect Network Module
      1. 40.3.1 LIN Communication Formats
        1. 40.3.1.1  LIN Standards
        2. 40.3.1.2  Message Frame
          1. 40.3.1.2.1 Message Header
          2. 40.3.1.2.2 Response
        3. 40.3.1.3  Synchronizer
        4. 40.3.1.4  Baud Rate
          1. 40.3.1.4.1 Fractional Divider
          2. 40.3.1.4.2 Superfractional Divider
            1. 40.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 40.3.1.5  Header Generation
          1. 40.3.1.5.1 Event Triggered Frame Handling
          2. 40.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 40.3.1.6  Extended Frames Handling
        7. 40.3.1.7  Timeout Control
          1. 40.3.1.7.1 No-Response Error (NRE)
          2. 40.3.1.7.2 Bus Idle Detection
          3. 40.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 40.3.1.8  TXRX Error Detector (TED)
          1. 40.3.1.8.1 Bit Errors
          2. 40.3.1.8.2 Physical Bus Errors
          3. 40.3.1.8.3 ID Parity Errors
          4. 40.3.1.8.4 Checksum Errors
        9. 40.3.1.9  Message Filtering and Validation
        10. 40.3.1.10 Receive Buffers
        11. 40.3.1.11 Transmit Buffers
      2. 40.3.2 LIN Interrupts
      3. 40.3.3 Servicing LIN Interrupts
      4. 40.3.4 LIN RTDMA Interface
        1. 40.3.4.1 LIN Receive RTDMA Requests
        2. 40.3.4.2 LIN Transmit RTDMA Requests
      5. 40.3.5 LIN Configurations
        1. 40.3.5.1 Receiving Data
          1. 40.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 40.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 40.3.5.2 Transmitting Data
          1. 40.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 40.4 Low-Power Mode
      1. 40.4.1 Entering Sleep Mode
      2. 40.4.2 Wakeup
      3. 40.4.3 Wakeup Timeouts
    5. 40.5 Emulation Mode
    6. 40.6 Software
      1. 40.6.1 LIN Registers to Driverlib Functions
      2. 40.6.2 LIN Examples
        1. 40.6.2.1 LIN Internal Loopback with Interrupts - SINGLE_CORE
        2. 40.6.2.2 LIN SCI Mode Internal Loopback with Interrupts - SINGLE_CORE
        3. 40.6.2.3 LIN SCI MODE Internal Loopback with DMA - SINGLE_CORE
        4. 40.6.2.4 LIN Internal Loopback without interrupts (polled mode) - SINGLE_CORE
        5. 40.6.2.5 LIN SCI MODE (Single Buffer) Internal Loopback with DMA - SINGLE_CORE
    7. 40.7 LIN Registers
      1. 40.7.1 LIN Base Address Table
      2. 40.7.2 LIN_REGS Registers
  43. 41Serial Peripheral Interface (SPI)
    1. 41.1 Introduction
      1. 41.1.1 Features
      2. 41.1.2 Block Diagram
    2. 41.2 System-Level Integration
      1. 41.2.1 SPI Module Signals
      2. 41.2.2 Configuring Device Pins
        1. 41.2.2.1 GPIOs Required for High-Speed Mode
      3. 41.2.3 SPI Interrupts
      4. 41.2.4 RTDMA Support
    3. 41.3 SPI Operation
      1. 41.3.1  Introduction to Operation
      2. 41.3.2  Controller Mode
      3. 41.3.3  Peripheral Mode
      4. 41.3.4  Data Format
        1. 41.3.4.1 Transmission of Bit from SPIRXBUF
      5. 41.3.5  Baud Rate Selection
        1. 41.3.5.1 Baud Rate Determination
        2. 41.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
        3. 41.3.5.3 Baud Rate Calculation
      6. 41.3.6  SPI Clocking Schemes
      7. 41.3.7  SPI FIFO Description
      8. 41.3.8  SPI RTDMA Transfers
        1. 41.3.8.1 Transmitting Data Using SPI with RTDMA
        2. 41.3.8.2 Receiving Data Using SPI with RTDMA
      9. 41.3.9  SPI High-Speed Mode
      10. 41.3.10 SPI 3-Wire Mode Description
    4. 41.4 Programming Procedure
      1. 41.4.1 Initialization Upon Reset
      2. 41.4.2 Configuring the SPI
      3. 41.4.3 Configuring the SPI for High-Speed Mode
      4. 41.4.4 Data Transfer Example
      5. 41.4.5 SPI 3-Wire Mode Code Examples
        1. 41.4.5.1 3-Wire Controller Mode Transmit
        2.       1703
          1. 41.4.5.2.1 3-Wire Controller Mode Receive
        3.       1705
          1. 41.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       1707
          1. 41.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 41.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 41.5 Software
      1. 41.5.1 SPI Registers to Driverlib Functions
      2. 41.5.2 SPI Examples
        1. 41.5.2.1 SPI Digital Loopback - SINGLE_CORE
        2. 41.5.2.2 SPI Digital Loopback with FIFO Interrupts - SINGLE_CORE
        3. 41.5.2.3 SPI Digital External Loopback without FIFO Interrupts - SINGLE_CORE
        4. 41.5.2.4 SPI Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        5. 41.5.2.5 SPI Digital Loopback with DMA - SINGLE_CORE
    6. 41.6 SPI Registers
      1. 41.6.1 SPI Base Address Table
      2. 41.6.2 SPI_REGS Registers
  44. 42Single Edge Nibble Transmission (SENT)
    1. 42.1 Introduction
      1. 42.1.1 Features
      2. 42.1.2 SENT Related Collateral
    2. 42.2 Advanced Topologies: MTPG
      1. 42.2.1 MTPG Features
      2. 42.2.2 MTPG Description
      3. 42.2.3 Channel Triggers
      4. 42.2.4 Timeout
    3. 42.3 Protocol Description
      1. 42.3.1 Nibble Frame Format
      2. 42.3.2 CRC
      3. 42.3.3 Short Serial Message Format
      4. 42.3.4 Enhanced Serial Message Format
      5. 42.3.5 Enhanced Serial Message Format CRC
      6. 42.3.6 Receive Modes
    4. 42.4 RTDMA Trigger
    5. 42.5 Interrupts Configuration
    6. 42.6 Glitch Filter
    7. 42.7 Software
      1. 42.7.1 SENT Registers to Driverlib Functions
      2. 42.7.2 SENT Examples
        1. 42.7.2.1 SENT Single Sensor - SINGLE_CORE
    8. 42.8 SENT Registers
      1. 42.8.1 SENT Base Address Table
      2. 42.8.2 SENT_CFG Registers
      3. 42.8.3 SENT_MEM Registers
      4. 42.8.4 SENT_MTPG Registers
  45. 43â–º SECURITY PERIPHERALS
    1.     Technical Reference Manual Overview
  46. 44Security Modules
    1. 44.1 Hardware Security Module (HSM)
      1. 44.1.1 HSM Related Collateral
    2. 44.2 Cryptographic Accelerators
  47. 45Revision History

FSI_RX_REGS Registers

Table 36-42 lists the memory-mapped registers for the FSI_RX_REGS registers. All register offset addresses not listed in Table 36-42 should be considered as reserved locations and the register contents should not be modified.

Table 36-42 FSI_RX_REGS Registers
OffsetAcronymRegister NameProtection
0hRX_MAIN_CTRLReceive main control register
8hRX_OPER_CTRLReceive operation control registerand LOCK
ChRX_FRAME_INFOReceive frame control register
EhRX_FRAME_TAG_UDATAReceive frame tag and user data register
10hRX_DMA_CTRLReceive DMA event control registerand LOCK
14hRX_EVT_STSReceive event and error status flag register
16hRX_CRC_INFOReceive CRC info of received and computed CRC
18hRX_EVT_CLRReceive event and error clear register
1AhRX_EVT_FRCReceive event and error flag force register
1ChRX_BUF_PTR_LOADReceive buffer pointer load register
1EhRX_BUF_PTR_STSReceive buffer pointer status register
20hRX_FRAME_WD_CTRLReceive frame watchdog control registerand LOCK
24hRX_FRAME_WD_REFReceive frame watchdog counter referenceand LOCK
28hRX_FRAME_WD_CNTReceive frame watchdog current count
2ChRX_PING_WD_CTRLReceive ping watchdog control registerand LOCK
2EhRX_PING_TAGReceive ping tag register
30hRX_PING_WD_REFReceive ping watchdog counter referenceand LOCK
34hRX_PING_WD_CNTReceive pingwatchdog current count
38hRX_INT1_CTRLReceive interrupt control register for RX_INT1and LOCK
3AhRX_INT2_CTRLReceive interrupt control register for RX_INT2and LOCK
3ChRX_LOCK_CTRLReceive lock control registerand LOCK
40hRX_ECC_DATAReceive ECC data register
44hRX_ECC_VALReceive ECC value register
48hRX_ECC_SEC_DATAReceive ECC corrected data register
4ChRX_ECC_LOGReceive ECC log and status register
50hRX_FRAME_TAG_CMPReceive frame tag compare registerand LOCK
52hRX_PING_TAG_CMPReceive ping tag compare registerand LOCK
58hRX_TRIG_CTRL_0Receive Trigger Control register 0and LOCK
5ChRX_TRIG_WIDTH_0Receive Trigger Wdith register 0and LOCK
60hRX_DLYLINE_CTRLReceive delay line control registerand LOCK
64hRX_TRIG_CTRL_1Receive Trigger Control register 1and LOCK
68hRX_TRIG_CTRL_2Receive Trigger Control register 2and LOCK
6ChRX_TRIG_CTRL_3Receive Trigger Control register 3and LOCK
70hRX_VIS_1Receive debug visibility register 1
74hRX_UDATA_FILTERReceive User Data Filter Control registerand LOCK
80h + formulaRX_BUF_BASE_yBase address for receive data buffer

Complex bit access types are encoded to fit into small table cells. Table 36-43 shows the codes that are used for access types in this section.

Table 36-43 FSI_RX_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
Write Type
WWWrite
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

36.6.3.1 RX_MAIN_CTRL Register (Offset = 0h) [Reset = 0000h]

RX_MAIN_CTRL is shown in Figure 36-37 and described in Table 36-44.

Return to the Summary Table.

Receive main control register

Figure 36-37 RX_MAIN_CTRL Register
15141312111098
KEY
W-0h
76543210
RESERVEDDATA_FILTER_ENINPUT_ISOLATESPI_PAIRINGINT_LOOPBACKCORE_RST
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 36-44 RX_MAIN_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-8KEYW0hWrite Key.
In order to write to this register, 0xA5 must be written to this field at the same time. Otherwise, writes are ignored. The key is cleared immediately after writing, so it must be written again for every change to this register.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4DATA_FILTER_ENR/W0hData Filter Enable Bit.
0h (R/W) = Data filtering is disabled.
1h (R/W) = Data filtering is enabled.

Reset type: SYSRSn

3INPUT_ISOLATER/W0hWhen set to 1, the FSI RX inputs (RXCLK, RXD0 and RXD1) will be isolated from what is driven from the device pins and will be held at inactive level of '1'.This isolation facilitates the user to switch the RX inputs to a different set of device pins and hence any potential glitch that could occur during the process of switching will not affect the RX module itself.

Reset type: SYSRSn

2SPI_PAIRINGR/W0hClock Pairing for SPI-like Behavior Enable bit
This bit enables the internal clock pairing with the FSI TX module. This feature internally connects the TXCLK to RXCLK allowing the FSI TX module, acting as a SPI controller, to clock data into the receiver and out of the transmitter like a standard SPI module. This configuration is valid when the Module is in SPI mode only (RX_OPER_CTRL.SPI_MODE = 1)

0h (R/W) = SPI clock pairing is not enabled.
1h (R/W) = SPI clock pairing is enabled. The RXCLK will be internally connected to the TXCLK of the corresponding FSI module.

Note: The KEY field must contatin 0xA5 for any write to this bit to take effect.

Reset type: SYSRSn

1INT_LOOPBACKR/W0hInternal Loopback Enable bit
This bit enables the internal loopback functionality of the FSI receiver. By enabling this bit, a mux will select the signals coming directly from the corresponding FSI transmitter module rather than from the pins.

0h (R/W) = Internal loopback is disabled. The FSI RX module will receive signals coming from the pins.
1h (R/W) = Internal loopback is enabled. The FSI RX module will receive signals from the directly from FSI TX module rather than the pins.

Note: The KEY field must contatin 0xA5 for any write to this bit to take effect.

Reset type: SYSRSn

0CORE_RSTR/W0hReceiver Main Core Reset bit
This bit controls the receiver main core reset. In order to receive any frame, this bit must be cleared.
Note: For reset to take affect, the FSI RX module must be held in reset for at least 4 SYSCLK cycles.

0h (R/W) = Receiver core is not in reset and can receive frames.
1h (R/W) = Receiver core is held in reset.

Note: The KEY field must contatin 0xA5 for any write to this bit to take effect.

Reset type: SYSRSn

36.6.3.2 RX_OPER_CTRL Register (Offset = 8h) [Reset = 0000h]

RX_OPER_CTRL is shown in Figure 36-38 and described in Table 36-45.

Return to the Summary Table.

Receive operation control register

Figure 36-38 RX_OPER_CTRL Register
15141312111098
RESERVEDPING_WD_RST_MODE
R-0hR/W-0h
76543210
ECC_SELN_WORDSSPI_MODEDATA_WIDTH
R/W-0hR/W-0hR/W-0hR/W-0h
Table 36-45 RX_OPER_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-9RESERVEDR0hReserved
8PING_WD_RST_MODER/W0hPing Watchdog Timeout Mode Select bit
This bit selects the mode by which the ping watchdog counter is reset. The watchdog counter can be reset and restarted only by ping frames or by any received frame.

0h (R/W) = The ping watchdog counter will reset and restart only by ping frames.
1h (R/W) = The ping watchdog counter will reset and restart by any received frame.

Reset type: SYSRSn

7ECC_SELR/W0hECC Data Width Select bit
This bit selects between whether the ECC computation is done on 16-bit or 32-bit words.

0h (R/W) = 32-bit ECC is used.
1h (R/W) = 16-bit ECC is used.

Reset type: SYSRSn

6-3N_WORDSR/W0hNumber of Words to Receive
This field defines the number of words which will be received in a DATA_N_WORD frame. This is a user-defined field that must match the corresponding field in the transmitter. Set this bitfield to be one less than the number of words to be received. This value is only applicable when the frame type received is DATA_N_WORD.

0h (R/W) = 1 data word frame (16-bit data).
1h (R/W) = 2 data word frame (32-bit data).
..
Fh (R/W) = 16 data word frame (256-bit data).

Reset type: SYSRSn

2SPI_MODER/W0hSPI Mode Enable bit
This bit enables and disables the SPI compatibility mode of the FSI RX. The received data must be formatted as an FSI frame in order for the data to properly be received. SPI compatibility mode will allow FSI RX to receive data that is sent using SPI signal format. Refer to the applicable section in the FSI TRM chapter for more information.

0h (R/W) = FSI is in normal mode of operation.
1h (R/W) = FSI is operating in SPI compatibility mode.

Reset type: SYSRSn

1-0DATA_WIDTHR/W0hReceive Data Width Select bit
These bits decide the number of data lines used for receiving data.

0h (R/W) = Data will be received on one data line, RXD0.
1h (R/W) = Data will be received on two data lines, RXD0 and RXD1.
2h, 3h (R/W) = Reserved

Reset type: SYSRSn

36.6.3.3 RX_FRAME_INFO Register (Offset = Ch) [Reset = 0000h]

RX_FRAME_INFO is shown in Figure 36-39 and described in Table 36-46.

Return to the Summary Table.

Receive frame control register

Figure 36-39 RX_FRAME_INFO Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDFRAME_TYPE
R-0hR-0h
Table 36-46 RX_FRAME_INFO Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3-0FRAME_TYPER0hReceived Frame Type
This field indicates the type of non-ping frame that was successfully received last.

Note: Ping frame reception does not update this field, we want to retain the last successful non-ping frame FRAME_TYPE and PING_FRAME_RCVD flag already conveys PING info to the user.

0100b (R/W) = A DATA_1_WORD frame was received (16-bit data).
0101b (R/W) = A DATA_2_WORD frame was received (32-bit data).
0110b (R/W) = A DATA_4_WORD frame was received (64-bit data).
0111b (R/W) = A DATA_6_WORD frame was received (96-bit data).
0011b (R/W) = A DATA_N_WORD frame was received. The N_WORD field will determine the number of words (1 to 16) to be sent. The number of words received must equal the value programmed in RX_OPER_CTRL.N_WORDS.
1111b (R/W) = An error frame was received. This frame can be used during error conditions or any condition where the transmitter wants to signal the receiver for attention. However, the user software is at liberty to use this for any purpose.

0001b, 0010b, and 1000b through 1110b are Reserved and should not be used.

Reset type: SYSRSn

36.6.3.4 RX_FRAME_TAG_UDATA Register (Offset = Eh) [Reset = 0000h]

RX_FRAME_TAG_UDATA is shown in Figure 36-40 and described in Table 36-47.

Return to the Summary Table.

Receive frame tag and user data register

Figure 36-40 RX_FRAME_TAG_UDATA Register
15141312111098
USER_DATA
R-0h
76543210
RESERVEDFRAME_TAGRESERVED
R-0hR-0hR-0h
Table 36-47 RX_FRAME_TAG_UDATA Register Field Descriptions
BitFieldTypeResetDescription
15-8USER_DATAR0hReceived User Data
This field contains the 8-bit user data field of the last successfully received frame.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4-1FRAME_TAGR0hReceived Frame Tag
This field contains the 4-bit frame tag from the last successfully received frame. This is intentionally shifted into bits 4:1 so that the register can be used as a 32-bit address index based on the received tag.

Reset type: SYSRSn

0RESERVEDR0hReserved

36.6.3.5 RX_DMA_CTRL Register (Offset = 10h) [Reset = 0000h]

RX_DMA_CTRL is shown in Figure 36-41 and described in Table 36-48.

Return to the Summary Table.

Receive DMA event control register

Figure 36-41 RX_DMA_CTRL Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDDMA_EVT_EN
R-0hR/W-0h
Table 36-48 RX_DMA_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-1RESERVEDR0hReserved
0DMA_EVT_ENR/W0hDMA Event Enable bit
This bit will enable a DMA Event to be generated upon the completion of a frame reception.

0h (R/W) = A DMA event will not be generated.
1h (R/W) = A DMA event will be generated upon the reception of a frame.

Note: The DMA event will only be generated for data frames.

Reset type: SYSRSn

36.6.3.6 RX_EVT_STS Register (Offset = 14h) [Reset = 0000h]

RX_EVT_STS is shown in Figure 36-42 and described in Table 36-49.

Return to the Summary Table.

Receive event and error status flag register

Figure 36-42 RX_EVT_STS Register
15141312111098
RESERVEDERROR_TAG_MATCHDATA_TAG_MATCHPING_TAG_MATCHDATA_FRAMEFRAME_OVERRUNPING_FRAMEERR_FRAME
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
76543210
BUF_UNDERRUNFRAME_DONEBUF_OVERRUNEOF_ERRTYPE_ERRCRC_ERRFRAME_WD_TOPING_WD_TO
R-0hR-0hR-0hR-0hR-0hR-0hR-0hR-0h
Table 36-49 RX_EVT_STS Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14ERROR_TAG_MATCHR0hError Tag Match Flag
This bit indicates that an error frame was received with a tag comparison matching the masked tag reference. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No tag-matched error frame received.
1h (R) = A tag-matched error frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

13DATA_TAG_MATCHR0hData Tag Match Flag
This bit indicates that a dataframe was received with a tag comparison matching the masked tag reference. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No tag-matched data frame received.
1h (R) = A tag-matched data frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

12PING_TAG_MATCHR0hPing Tag Match Flag
This bit indicates that a ping frame was received with a tag comparison matching the masked tag reference. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No tag-matched ping frame received.
1h (R) = A tag-matched ping frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

11DATA_FRAMER0hData Frame Received Flag
This bit indicates that an data frame has been received. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No data frame has been received.
1h (R) = A data frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

10FRAME_OVERRUNR0hFrame Overrun Flag
This bit indicates that a frame overrun condition has occured. This bit gets set to 1 when a new DATA/ERROR frame is received and the corresponding DATA_FRAME_RCVD/ERROR_FRAME_RCVD flag is still set to 1. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Frame overrun has not ocurred.
1h (R) = Frame overrun has ocurred.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

9PING_FRAMER0hPing Frame Received Flag
This bit indicates that an ping frame has been received. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No ping frame has been received.
1h (R) = A ping frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

8ERR_FRAMER0hError Frame Received Flag
This bit indicates that an error frame has been received. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No error frame has been received.
1h (R) = An error frame has been received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

7BUF_UNDERRUNR0hReceive Buffer Underrun Flag
This bit indicates that a buffer underrun condition has occured in the receive buffer. This will happen when software reads the buffer which is empty and has no valid data. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Receive Buffer Underrun has not ocurred.
1h (R) = Receive Buffer Underrun has ocurred.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

6FRAME_DONER0hFrame Done Flag
This bit indicates that a frame has been successfully received without error. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = No frame has been successfully received.
1h (R) = A frame has been successfully received.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

5BUF_OVERRUNR0hReceive Buffer Overrun Flag
This bit indicates that a buffer overrun condition has occured in the receive buffer. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Receive buffer overrun has not ocurred.
1h (R) = Receive buffer overrun has ocurred.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

4EOF_ERRR0hEnd-of-Frame Error Flag
This bit indicates that an invalid end-of-frame bit pattern has been received. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Invalid end-of-frame has not been received.
1h (R) = Invalid end-of-frame has been received

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

3TYPE_ERRR0hFrame Type Error Flag
This bit inditcates that an invalid frame type has been received. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Invalid frame type has not been received.
1h (R) = Invalid frame type has been received

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

2CRC_ERRR0hCRC Error Flag
This bit indicates that a CRC error has occured. A CRC error will be generated on a data frame where the received CRC and the computed CRC do not match. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = CRC error has not occured.
1h (R) = CRC error has occured.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

1FRAME_WD_TOR0hFrame Watchdog Timeout Flag
This bit indicates that the frame watchdog timer has timed out. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Frame watchdog timeout has not occured.
1h (R) = Frame watchdog timeout has occured.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

0PING_WD_TOR0hPing Watchdog Timeout Flag
This bit indicates that the ping watchdog timer has timed out. Software can also force this bit to get set by writing to the RX_EVT_FRC register.

0h (R) = Ping watchdog timeout has not occured.
1h (R) = Ping watchdog timeout has occured.

To clear this bit, write to the corresponding bit in the RX_EVT_CLR register.

Reset type: SYSRSn

36.6.3.7 RX_CRC_INFO Register (Offset = 16h) [Reset = 0000h]

RX_CRC_INFO is shown in Figure 36-43 and described in Table 36-50.

Return to the Summary Table.

Receive CRC info of received and computed CRC

Figure 36-43 RX_CRC_INFO Register
15141312111098
CALC_CRC
R-0h
76543210
RX_CRC
R-0h
Table 36-50 RX_CRC_INFO Register Field Descriptions
BitFieldTypeResetDescription
15-8CALC_CRCR0hHarware Calculated CRC Value
This bitfield contains the CRC value that was calculated on the last received data. The contents of this bitfield are valid only when data frames are received.

Note: The contents of this bitfield are invalid for ping and error frames.

Reset type: SYSRSn

7-0RX_CRCR0hReceived CRC Value
This bitfield contains the CRC value that was last received a frame. The contents of this bitfield are valid only when data frames are received.

Note: The contents of this bitfield are invalid for ping and error frames.

Reset type: SYSRSn

36.6.3.8 RX_EVT_CLR Register (Offset = 18h) [Reset = 0000h]

RX_EVT_CLR is shown in Figure 36-44 and described in Table 36-51.

Return to the Summary Table.

Receive event and error clear register

Figure 36-44 RX_EVT_CLR Register
15141312111098
RESERVEDERROR_TAG_MATCHDATA_TAG_MATCHPING_TAG_MATCHDATA_FRAMEFRAME_OVERRUNPING_FRAMEERR_FRAME
R-0hW-0hW-0hW-0hW-0hW-0hW-0hW-0h
76543210
BUF_UNDERRUNFRAME_DONEBUF_OVERRUNEOF_ERRTYPE_ERRCRC_ERRFRAME_WD_TOPING_WD_TO
W-0hW-0hW-0hW-0hW-0hW-0hW-0hW-0h
Table 36-51 RX_EVT_CLR Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14ERROR_TAG_MATCHW0hError Tag Match Glag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

13DATA_TAG_MATCHW0hData Tag Match Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

12PING_TAG_MATCHW0hPing Tag Match Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

11DATA_FRAMEW0hData Frame Received Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

10FRAME_OVERRUNW0hFrame Overrun Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

9PING_FRAMEW0hPing Frame Received Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

8ERR_FRAMEW0hError Frame Received Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

7BUF_UNDERRUNW0hReceive Buffer Underrun Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (R/W) = Writing a 0 to this bit will have no effect.
1h (R/W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

6FRAME_DONEW0hFrame Done Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

5BUF_OVERRUNW0hReceive Buffer Overrun Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

4EOF_ERRW0hEnd-of-Frame Error Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

3TYPE_ERRW0hFrame Type Error Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

2CRC_ERRW0hCRC Error Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

1FRAME_WD_TOW0hFrame Watchdog Timeout Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

0PING_WD_TOW0hPing Watchdog Timeout Flag Clear bit
This bit clears the corresponding bit in the RX_EVT_STS register.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Writing a 1 to this bit will clear the corresponding bit in the RX_EVT_STS register to 0.

Reset type: SYSRSn

36.6.3.9 RX_EVT_FRC Register (Offset = 1Ah) [Reset = 0000h]

RX_EVT_FRC is shown in Figure 36-45 and described in Table 36-52.

Return to the Summary Table.

Receive event and error flag force register

Figure 36-45 RX_EVT_FRC Register
15141312111098
RESERVEDERROR_TAG_MATCHDATA_TAG_MATCHPING_TAG_MATCHDATA_FRAMEFRAME_OVERRUNPING_FRAMEERR_FRAME
R-0hW-0hW-0hW-0hW-0hW-0hW-0hW-0h
76543210
BUF_UNDERRUNFRAME_DONEBUF_OVERRUNEOF_ERRTYPE_ERRCRC_ERRFRAME_WD_TOPING_WD_TO
W-0hW-0hW-0hW-0hW-0hW-0hW-0hW-0h
Table 36-52 RX_EVT_FRC Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14ERROR_TAG_MATCHW0hError Tag Match Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

13DATA_TAG_MATCHW0hData Tag Match Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

12PING_TAG_MATCHW0hPing Tag Match Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

11DATA_FRAMEW0hData Frame Received Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

10FRAME_OVERRUNW0hFrame Overrun Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

9PING_FRAMEW0hPing Frame Received Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

8ERR_FRAMEW0hError Frame Received Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

7BUF_UNDERRUNW0hReceive Buffer Underrun Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

6FRAME_DONEW0hFrame Done Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

5BUF_OVERRUNW0hReceive Buffer Overrun Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

4EOF_ERRW0hEnd-of-Frame Error Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

3TYPE_ERRW0hFrame Type Error Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

2CRC_ERRW0hCRC Error Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

1FRAME_WD_TOW0hFrame Watchdog Timeout Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

0PING_WD_TOW0hPing Watchdog Timeout Flag Force bit
This bit will cause the corresponding bit in the RX_EVT_STS register to get set. The purpose of this register is to allow software to simulate the effect of the event and test the associated software/ISR.

0h (W) = Writing a 0 to this bit will have no effect.
1h (W) = Force the corresponding bit in the RX_EVT_STS Register.

Reset type: SYSRSn

36.6.3.10 RX_BUF_PTR_LOAD Register (Offset = 1Ch) [Reset = 0000h]

RX_BUF_PTR_LOAD is shown in Figure 36-46 and described in Table 36-53.

Return to the Summary Table.

Receive buffer pointer load register

Figure 36-46 RX_BUF_PTR_LOAD Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDBUF_PTR_LOAD
R-0hR/W-0h
Table 36-53 RX_BUF_PTR_LOAD Register Field Descriptions
BitFieldTypeResetDescription
15-4RESERVEDR0hReserved
3-0BUF_PTR_LOADR/W0hBuffer Pointer Load.
This is the value to be loaded into the receive word pointer when written. This is to allow software to force the receiver to start storing the received data starting at a specific location in the buffer.

NOTE: The value of the CURR_BUF_PTR in the RX_BUF_PTR_STS will not get reflected immediately. This will take effect only when there is a valid receive operation with incoming clocks after (3 RXCLK + 3 SYCLK) cycles.

Reset type: SYSRSn

36.6.3.11 RX_BUF_PTR_STS Register (Offset = 1Eh) [Reset = 0000h]

RX_BUF_PTR_STS is shown in Figure 36-47 and described in Table 36-54.

Return to the Summary Table.

Receive buffer pointer status register

Figure 36-47 RX_BUF_PTR_STS Register
15141312111098
RESERVEDCURR_WORD_CNT
R-0hR-0h
76543210
RESERVEDCURR_BUF_PTR
R-0hR-0h
Table 36-54 RX_BUF_PTR_STS Register Field Descriptions
BitFieldTypeResetDescription
15-13RESERVEDR0hReserved
12-8CURR_WORD_CNTR0hWords Available in the Receive Buffer
This bitfield indicates the number of valid data words present in the receive buffer that have not been read by the application software. This bitfield is only valid when there is no active transfer.

Note: This value will not be valid if there has been a buffer overrun or underrun condition.

Reset type: SYSRSn

7-4RESERVEDR0hReserved
3-0CURR_BUF_PTRR0hCurrent Buffer Pointer Index
This bitfield will show the current index of the buffer pointer. This value is only valid when there is no active transmission.

Reset type: SYSRSn

36.6.3.12 RX_FRAME_WD_CTRL Register (Offset = 20h) [Reset = 0000h]

RX_FRAME_WD_CTRL is shown in Figure 36-48 and described in Table 36-55.

Return to the Summary Table.

Receive frame watchdog control register

Figure 36-48 RX_FRAME_WD_CTRL Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDFRAME_WD_ENFRAME_WD_CNT_RST
R-0hR/W-0hR/W-0h
Table 36-55 RX_FRAME_WD_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-2RESERVEDR0hReserved
1FRAME_WD_ENR/W0hFrame Watchdog Counter Enable bit
This bit will enable or disable the frame watchdog counter. The counter (RX_FRAME_WD_CNT) will begin counting from 0 when a valid start-of-frame pattern is received. When the reference value (RX_FRAME_WD_REF) is reached, it will generate a frame watchdog timeout event (RX_EVT_STS.FRAME_WD_TO) and the counter value will reset to 0 and continue counting on the next valid start-of-frame.

0h (R/W) = The frame watchdog counter is disabled and not running.
1h (R/W) = The frame watchdog counter logic is enabled and running.

Reset type: SYSRSn

0FRAME_WD_CNT_RSTR/W0hFrame Watchdog Counter Reset bit
This bit will reset the frame watchdog counter to 0. Writing a 1 to this bit will reset the frame watchdog counter to 0. The counter will stay in reset as long as this bit is set to 1. This bit needs to be cleared to 0 to use the counter

0h (R/W) = Clear the FRAME_WD_CNT_RST.
1h (W) = The frame watchdog counter will be reset to 0.

Reset type: SYSRSn

36.6.3.13 RX_FRAME_WD_REF Register (Offset = 24h) [Reset = 00000000h]

RX_FRAME_WD_REF is shown in Figure 36-49 and described in Table 36-56.

Return to the Summary Table.

Receive frame watchdog counter reference

Figure 36-49 RX_FRAME_WD_REF Register
313029282726252423222120191817161514131211109876543210
FRAME_WD_REF
R/W-0h
Table 36-56 RX_FRAME_WD_REF Register Field Descriptions
BitFieldTypeResetDescription
31-0FRAME_WD_REFR/W0hFrame Watchdog Counter Reference Value
This is the 32-bit reference value for the frame watchdog timeout counter. The counter will count up starting from 0 at a valid start-of-frame pattern and continue counting until this value is reached.

Reset type: SYSRSn

36.6.3.14 RX_FRAME_WD_CNT Register (Offset = 28h) [Reset = 00000000h]

RX_FRAME_WD_CNT is shown in Figure 36-50 and described in Table 36-57.

Return to the Summary Table.

Receive frame watchdog current count

Figure 36-50 RX_FRAME_WD_CNT Register
313029282726252423222120191817161514131211109876543210
FRAME_WD_CNT
R-0h
Table 36-57 RX_FRAME_WD_CNT Register Field Descriptions
BitFieldTypeResetDescription
31-0FRAME_WD_CNTR0hFrame Watchdog Counter Value
This is the 32-bit read-only register which shows the current value of the frame watchdog counter. This counter is reset to 0 in a variety of ways: A write to FRME_WD_CNT_RST, a match with FRAME_WD_REF, or the reception of a successful data frame.

Reset type: SYSRSn

36.6.3.15 RX_PING_WD_CTRL Register (Offset = 2Ch) [Reset = 0000h]

RX_PING_WD_CTRL is shown in Figure 36-51 and described in Table 36-58.

Return to the Summary Table.

Receive ping watchdog control register

Figure 36-51 RX_PING_WD_CTRL Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDPING_WD_ENPING_WD_RST
R-0hR/W-0hR/W-0h
Table 36-58 RX_PING_WD_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-2RESERVEDR0hReserved
1PING_WD_ENR/W0hPing Watchdog Counter Enable bit
This bit will enable or disable the ping watchdog counter. The counter (RX_PING_WD_CNT) will begin counting from 0 when it is enabled. When the reference value (RX_PING_WD_REF) is reached, it will generate a ping watchdog timeout event (RX_EVT_STS.PING_WD_TO) and the counter value will reset to 0, and resume counting

0h (R/W) = The ping watchdog counter is disabled and not running.
1h (R/W) = The ping watchdog counter logic is enabled and running.

Reset type: SYSRSn

0PING_WD_RSTR/W0hPing Watchdog Counter Reset bit
This bit will reset the ping watchdog counter to 0. Writing a 1 to this bit will reset the ping watchdog counter to 0. The counter will stay in reset as long as this bit is set to 1. This bit needs to be cleared to 0 to use the counter

0h (R/W) = Clear the PING_WD_RST.
1h (W) = The ping watchdog counter will be reset to 0.

Reset type: SYSRSn

36.6.3.16 RX_PING_TAG Register (Offset = 2Eh) [Reset = 0000h]

RX_PING_TAG is shown in Figure 36-52 and described in Table 36-59.

Return to the Summary Table.

Receive ping tag register

Figure 36-52 RX_PING_TAG Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDPING_TAGRESERVED
R-0hR-0hR-0h
Table 36-59 RX_PING_TAG Register Field Descriptions
BitFieldTypeResetDescription
15-5RESERVEDR0hReserved
4-1PING_TAGR0hReceived Ping Frame Tag
This field contains the 4-bit frame tag from the last successfully received ping frame. This is intentionally shifted into bits 4:1 so that the register can be used as a 32-bit address index based on the received tag.

Reset type: SYSRSn

0RESERVEDR0hReserved

36.6.3.17 RX_PING_WD_REF Register (Offset = 30h) [Reset = 00000000h]

RX_PING_WD_REF is shown in Figure 36-53 and described in Table 36-60.

Return to the Summary Table.

Receive ping watchdog counter reference

Figure 36-53 RX_PING_WD_REF Register
313029282726252423222120191817161514131211109876543210
PING_WD_REF
R/W-0h
Table 36-60 RX_PING_WD_REF Register Field Descriptions
BitFieldTypeResetDescription
31-0PING_WD_REFR/W0hPing Watchdog Counter Reference Value
This is the 32-bit reference value for the ping watchdog timeout counter. The counter will count up starting from 0 and continue counting until this value is reached.

Reset type: SYSRSn

36.6.3.18 RX_PING_WD_CNT Register (Offset = 34h) [Reset = 00000000h]

RX_PING_WD_CNT is shown in Figure 36-54 and described in Table 36-61.

Return to the Summary Table.

Receive pingwatchdog current count

Figure 36-54 RX_PING_WD_CNT Register
313029282726252423222120191817161514131211109876543210
PING_WD_CNT
R-0h
Table 36-61 RX_PING_WD_CNT Register Field Descriptions
BitFieldTypeResetDescription
31-0PING_WD_CNTR0hPing Watchdog Counter Value
This is the 32-bit read-only register which shows the current value of the ping watchdog counter. This counter is reset to 0 in a variety of ways: A write to PING_WD_RST, a match with PING_WD_REF, or the reception of a ping frame.

Reset type: SYSRSn

36.6.3.19 RX_INT1_CTRL Register (Offset = 38h) [Reset = 0000h]

RX_INT1_CTRL is shown in Figure 36-55 and described in Table 36-62.

Return to the Summary Table.

Receive interrupt control register for RX_INT1

Figure 36-55 RX_INT1_CTRL Register
15141312111098
RESERVEDINT1_EN_ERROR_TAG_MATCHINT1_EN_DATA_TAG_MATCHINT1_EN_PING_TAG_MATCHINT1_EN_DATA_FRAMEINT1_EN_FRAME_OVERRUNINT1_EN_PING_FRAMEINT1_EN_ERR_FRAME
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
INT1_EN_UNDERRUNINT1_EN_FRAME_DONEINT1_EN_OVERRUNINT1_EN_EOF_ERRINT1_EN_TYPE_ERRINT1_EN_CRC_ERRINT1_EN_FRAME_WD_TOINT1_EN_PING_WD_TO
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 36-62 RX_INT1_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14INT1_EN_ERROR_TAG_MATCHR/W0hEnable Error Frame Received with Tag Match Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = An error frame received with matching tag will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

13INT1_EN_DATA_TAG_MATCHR/W0hEnable Data Frame Received with Tag Match Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A data frame received with matching tag will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

12INT1_EN_PING_TAG_MATCHR/W0hEnable Ping Frame Received with Tag Match Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A ping frame received with matching tag will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

11INT1_EN_DATA_FRAMER/W0hEnable Data Frame Received Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A data frame received event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

10INT1_EN_FRAME_OVERRUNR/W0hEnable Frame Overrun Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A frame overrun event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

9INT1_EN_PING_FRAMER/W0hEnable Ping Frame Received Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A ping frame received event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

8INT1_EN_ERR_FRAMER/W0hEnable ERROR Frame Received Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A error frame received event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

7INT1_EN_UNDERRUNR/W0hEnable Buffer Underrun Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A buffer underrun event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

6INT1_EN_FRAME_DONER/W0hEnable Frame Done Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A frame done event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

5INT1_EN_OVERRUNR/W0hEnable Receive Buffer Overrun Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A receive buffer overrun event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

4INT1_EN_EOF_ERRR/W0hEnable End-of-Frame Error Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = An end-of-frame error event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

3INT1_EN_TYPE_ERRR/W0hEnable Frame Type Error Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A frame type error event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

2INT1_EN_CRC_ERRR/W0hEnable CRC Error Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A CRC error will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

1INT1_EN_FRAME_WD_TOR/W0hEnable Frame Watchdog Timeout Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A frame watchdog timeout event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

0INT1_EN_PING_WD_TOR/W0hEnable Ping Watchdog Timeout Interrupt to INT1 bit
This is an enable register which decides whether an interrupt (RX_INT1) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT1.
1h (R/W) = A ping watchdog timeout event will trigger an interrupt on RX_INT1. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

36.6.3.20 RX_INT2_CTRL Register (Offset = 3Ah) [Reset = 0000h]

RX_INT2_CTRL is shown in Figure 36-56 and described in Table 36-63.

Return to the Summary Table.

Receive interrupt control register for RX_INT2

Figure 36-56 RX_INT2_CTRL Register
15141312111098
RESERVEDINT2_EN_ERROR_TAG_MATCHINT2_EN_DATA_TAG_MATCHINT2_EN_PING_TAG_MATCHINT2_EN_DATA_FRAMEINT2_EN_FRAME_OVERRUNINT2_EN_PING_FRAMEINT2_EN_ERR_FRAME
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
INT2_EN_UNDERRUNINT2_EN_FRAME_DONEINT2_EN_OVERRUNINT2_EN_EOF_ERRINT2_EN_TYPE_ERRINT2_EN_CRC_ERRINT2_EN_FRAME_WD_TOINT2_EN_PING_WD_TO
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 36-63 RX_INT2_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14INT2_EN_ERROR_TAG_MATCHR/W0hEnable Error Frame Received with Tag Match Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = An error frame received with matching tag will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

13INT2_EN_DATA_TAG_MATCHR/W0hEnable Data Frame Received with Tag Match Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A data frame received with matching tag will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

12INT2_EN_PING_TAG_MATCHR/W0hEnable Ping Frame Received with Tag Match Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A ping frame received with matching tag will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

11INT2_EN_DATA_FRAMER/W0hEnable Data Frame Received Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A data frame received event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

10INT2_EN_FRAME_OVERRUNR/W0hEnable Frame Overrun Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A frame overrun event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

9INT2_EN_PING_FRAMER/W0hEnable Ping Frame Received Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A ping frame received event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

8INT2_EN_ERR_FRAMER/W0hEnable Error Frame Received Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A error frame received event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

7INT2_EN_UNDERRUNR/W0hEnable Buffer Underrun Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A buffer underrun event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

6INT2_EN_FRAME_DONER/W0hEnable Frame Done Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A frame done event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

5INT2_EN_OVERRUNR/W0hEnable Buffer Overrun Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A buffer overrun event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

4INT2_EN_EOF_ERRR/W0hEnable End-of-Frame Error Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = An end-of-frame error event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

3INT2_EN_TYPE_ERRR/W0hEnable Frame Type Error Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A frame type error event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

2INT2_EN_CRC_ERRR/W0hEnable CRC Error Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A CRC error will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

1INT2_EN_FRAME_WD_TOR/W0hEnable Frame Watchdog Timeout Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A frame watchdog timeout event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

0INT2_EN_PING_WD_TOR/W0hEnable Ping Watchdog Timeout Interrupt to INT2 bit
This is an enable register which decides whether an interrupt (RX_INT2) will be generated on the enabled event.

0h (R/W) = This event will not trigger an interrupt on RX_INT2.
1h (R/W) = A ping watchdog timeout event will trigger an interrupt on RX_INT2. The event itself will be latched in the corresponding bit in the RX_EVT_STS Register

Reset type: SYSRSn

36.6.3.21 RX_LOCK_CTRL Register (Offset = 3Ch) [Reset = 0000h]

RX_LOCK_CTRL is shown in Figure 36-57 and described in Table 36-64.

Return to the Summary Table.

Receive lock control register

Figure 36-57 RX_LOCK_CTRL Register
15141312111098
KEY
W-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 36-64 RX_LOCK_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15-8KEYW0hWrite Key.
In order to write to this register, 0xA5 must be written to this field at the same time. Otherwise, writes are ignored. The key is cleared immediately after writing, so it must be written again for every change to this register.

Reset type: SYSRSn

7-1RESERVEDR0hReserved
0LOCKR/W0hControl Register Lock Enable bit
This bit locks the contents of all the receive control registers that support a lock protection. Once locked, further writes will not take effect until SYSRS unlocks the register. Once set, further writes even to this bit will be ignored.

0h (R/W) = Receive control registers can be modified and are not locked.
1h (R/W) = Receive control registers are locked and cannot be modified until this bit is cleared by SYSRS. Any further writes to this bit are ignored.

Note: The KEY field must contatin 0xA5 for any write to this bit to take effect.

Reset type: SYSRSn

36.6.3.22 RX_ECC_DATA Register (Offset = 40h) [Reset = 00000000h]

RX_ECC_DATA is shown in Figure 36-58 and described in Table 36-65.

Return to the Summary Table.

Receive ECC data register

Figure 36-58 RX_ECC_DATA Register
313029282726252423222120191817161514131211109876543210
DATA_HIGHDATA_LOW
R/W-0hR/W-0h
Table 36-65 RX_ECC_DATA Register Field Descriptions
BitFieldTypeResetDescription
31-16DATA_HIGHR/W0hUpper 16 bits of ECC Data
Writing to this bitfield will cause the ECC logic to compute the ECC(SEC-DED) the entire 32-bit register and update TX_ECC_VAL register with the results. Software should write to these 16 bits of the register in a 32-bit write when needing to compute ECC for 32-bits for the full TX_ECC_DATA register.

Reset type: SYSRSn

15-0DATA_LOWR/W0hLower 16 bits of ECC Data
Writing to this bitfield will cause the ECC logic to compute the ECC(SEC-DED) for these 16 bits and update the TX_ECC_VAL register with the results. Software should write to these register bits as a 16-bit write when needing to compute ECC for 16-bits.

Reset type: SYSRSn

36.6.3.23 RX_ECC_VAL Register (Offset = 44h) [Reset = 0000h]

RX_ECC_VAL is shown in Figure 36-59 and described in Table 36-66.

Return to the Summary Table.

Receive ECC value register

Figure 36-59 RX_ECC_VAL Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDECC_VAL
R-0hR/W-0h
Table 36-66 RX_ECC_VAL Register Field Descriptions
BitFieldTypeResetDescription
15-7RESERVEDR0hReserved
6-0ECC_VALR/W0hECC Value for SEC-DED check
This field contains the ECC value to be used for SEC-DED either for 16-bit or 32-bit data in the RX_ECC_DATA register.

Reset type: SYSRSn

36.6.3.24 RX_ECC_SEC_DATA Register (Offset = 48h) [Reset = 00000000h]

RX_ECC_SEC_DATA is shown in Figure 36-60 and described in Table 36-67.

Return to the Summary Table.

Receive ECC corrected data register

Figure 36-60 RX_ECC_SEC_DATA Register
313029282726252423222120191817161514131211109876543210
SEC_DATA
R-0h
Table 36-67 RX_ECC_SEC_DATA Register Field Descriptions
BitFieldTypeResetDescription
31-0SEC_DATAR0hECC Single Error Corrected Data
The ECC corrected data will be available in this register. This value is valid only when there are no bit errors, or a single bit error was detected. Otherwise, the contents of this register are invalid and should not be used.

Reset type: SYSRSn

36.6.3.25 RX_ECC_LOG Register (Offset = 4Ch) [Reset = 0003h]

RX_ECC_LOG is shown in Figure 36-61 and described in Table 36-68.

Return to the Summary Table.

Receive ECC log and status register

Figure 36-61 RX_ECC_LOG Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDMBESBE
R-0hR-1hR-1h
Table 36-68 RX_ECC_LOG Register Field Descriptions
BitFieldTypeResetDescription
15-2RESERVEDR0hReserved
1MBER1hMultiple Bit Errors Detected
This bit indicates the occurrence of multiple bit errors.The data is corrupted and cannot be corrected. If this bit is set, the data present in RX_ECC_SEC_DATA is invalid and should not be used.

0h (R) Multiple Bit Errors were not detected. Check the SBE bit for single bit errors.
1h (R) Multiple Bit Errors were detected. The data is not able to be corrected. The value present in RX_ECC_SEC_DATA is invalid and should not be used.

Reset type: SYSRSn

0SBER1hSingle Bit Error Detected
This bit indicates the occurrence of a single bit error in the data. The data is autocorrected and placed into the RX_ECC_SEC_DATA register. This bit is valid only if MBE is 0.

0h (R) No bit errors were detected. The value in RX_ECC_SEC_DATA is correct.
1h (R) A single bit error was detected and corrected. The corrected data is present in RX_ECC_SEC_DATA.

Reset type: SYSRSn

36.6.3.26 RX_FRAME_TAG_CMP Register (Offset = 50h) [Reset = 0000h]

RX_FRAME_TAG_CMP is shown in Figure 36-62 and described in Table 36-69.

Return to the Summary Table.

Receive frame tag compare register

Figure 36-62 RX_FRAME_TAG_CMP Register
15141312111098
RESERVEDBROADCAST_ENCMP_EN
R-0hR/W-0hR/W-0h
76543210
TAG_MASKTAG_REF
R/W-0hR/W-0h
Table 36-69 RX_FRAME_TAG_CMP Register Field Descriptions
BitFieldTypeResetDescription
15-10RESERVEDR0hReserved
9BROADCAST_ENR/W0hBroadcast Enable bit
This will enable the reception of a ping frame broadcast. When this bit is set, bit 3 of the received tag will be treated as a broadcast notification. If bit 3 of the received tag is set to 1, a ping tag match event will be triggered regardless of the. A match caused by the comparison of TAG_MASK and TAG_REF will still be considered a match and the frame tag match event will be triggered as normal

This bit only takes effect only if CMP_EN is set to 1.

0h (R/W) Broadcast frame match disabled.
1h (R/W) Broadcast frame match enabled.

Reset type: SYSRSn

8CMP_ENR/W0hFrame Tag Compare Enable bit
Set this bit to enable the comparison of an incoming frame tag and the value stored in the frame tag reference. A match caused by the comparison of TAG_MASK, TAG_REF, and the incoming frame tag will trigger the apprpriate frame tag match event.

0h (R/W) Frame tag comparison is disabled.
1h (R/W) Frame tag comparison is enabled.

Reset type: SYSRSn

7-4TAG_MASKR/W0hFrame Tag Mask
Any bit position in this register set to 0 will be used in the comparison of the incoming frame tag and the value stored in TAG_REF. A bit position set to 1 will be ignored in the tag comparison.

This mask value is used only for non-ping frames.

Reset type: SYSRSn

3-0TAG_REFR/W0hFrame Tag Reference
The reference tag to check against when comparing the TAG_MASK and the incoming frame tag.

This reference value is used only for non-ping frames.

Reset type: SYSRSn

36.6.3.27 RX_PING_TAG_CMP Register (Offset = 52h) [Reset = 0000h]

RX_PING_TAG_CMP is shown in Figure 36-63 and described in Table 36-70.

Return to the Summary Table.

Receive ping tag compare register

Figure 36-63 RX_PING_TAG_CMP Register
15141312111098
RESERVEDBROADCAST_ENCMP_EN
R-0hR/W-0hR/W-0h
76543210
TAG_MASKTAG_REF
R/W-0hR/W-0h
Table 36-70 RX_PING_TAG_CMP Register Field Descriptions
BitFieldTypeResetDescription
15-10RESERVEDR0hReserved
9BROADCAST_ENR/W0hBroadcast Enable bit
This will enable the reception of a ping frame broadcast. When this bit is set, bit 3 of the received tag will be treated as a broadcast notification. If bit 3 of the received tag is set to 1, a ping tag match event will be triggered regardless of the. A match caused by the comparison of TAG_MASK and TAG_REF will still be considered a match and the ping tag match event will be triggered as normal

This bit only takes effect only if CMP_EN is set to 1.

0h (R/W) Broadcast frame match disabled.
1h (R/W) Broadcast frame match enabled.

Reset type: SYSRSn

8CMP_ENR/W0hPing Tag Compare Enable bit
Set this bit to enable the comparison of an incoming ping tag and the value stored in the ping tag reference. A match caused by the comparison of TAG_MASK, TAG_REF, and the incoming ping tag will trigger a ping frame tag match event.

0h (R/W) Ping tag comparison is disabled.
1h (R/W) Ping tag comparison is enabled.

Reset type: SYSRSn

7-4TAG_MASKR/W0hPing Tag Mask
Any bit position in this register set to 0 will be used in the comparison of the incoming ping frame tag and the value stored in TAG_REF. A bit position set to 1 will be ignored in the tag comparison.

This mask value is used only for ping frames.

Reset type: SYSRSn

3-0TAG_REFR/W0hPing Tag Reference
The reference tag to check against when comparing the TAG_MASK and the incoming ping tag.

This reference value is used only for ping frames.

Reset type: SYSRSn

36.6.3.28 RX_TRIG_CTRL_0 Register (Offset = 58h) [Reset = 00000000h]

RX_TRIG_CTRL_0 is shown in Figure 36-64 and described in Table 36-71.

Return to the Summary Table.

Receive Trigger Control register 0

Figure 36-64 RX_TRIG_CTRL_0 Register
3130292827262524
RX_TRIG_DLY
R/W-0h
2322212019181716
RX_TRIG_DLY
R/W-0h
15141312111098
RX_TRIG_DLY
R/W-0h
76543210
RESERVEDTRIG_SELTRIG_EN
R-0hR/W-0hR/W-0h
Table 36-71 RX_TRIG_CTRL_0 Register Field Descriptions
BitFieldTypeResetDescription
31-8RX_TRIG_DLYR/W0hThis is the 24 bit count of the trigger delay in SYSCLK cycles. If enabled, the Trigger-1 output of the trigger module will generate a 3 SYSCLK wide trigger pulse after the selected input trigger source sees a rising edge with a delay defined by this 24-bt value.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4-1TRIG_SELR/W0hThis is the mux select value which selects which of the inputs will be used as the trigger source.

Reset type: SYSRSn

0TRIG_ENR/W0hThis is the enable for the RX output trigger generation. The output triggers will be generated only if this bit is set to 1. If this bit is 0, then no trigger will be generated by this module.

Reset type: SYSRSn

36.6.3.29 RX_TRIG_WIDTH_0 Register (Offset = 5Ch) [Reset = 00000000h]

RX_TRIG_WIDTH_0 is shown in Figure 36-65 and described in Table 36-72.

Return to the Summary Table.

Receive Trigger Wdith register 0

Figure 36-65 RX_TRIG_WIDTH_0 Register
313029282726252423222120191817161514131211109876543210
RESERVEDRX_TRIG_WIDTH
R-0hR/W-0h
Table 36-72 RX_TRIG_WIDTH_0 Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-0RX_TRIG_WIDTHR/W0hThis register decides the width(in SYSCLK cycles) of wide pulse output of the RX trigger module.

Reset type: SYSRSn

36.6.3.30 RX_DLYLINE_CTRL Register (Offset = 60h) [Reset = 0000h]

RX_DLYLINE_CTRL is shown in Figure 36-66 and described in Table 36-73.

Return to the Summary Table.

Receive delay line control register

Figure 36-66 RX_DLYLINE_CTRL Register
15141312111098
RESERVEDRXD1_DLYRXD0_DLY
R-0hR/W-0hR/W-0h
76543210
RXD0_DLYRXCLK_DLY
R/W-0hR/W-0h
Table 36-73 RX_DLYLINE_CTRL Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14-10RXD1_DLYR/W0hDelay Line Tap Select for RXD1
This bitfield selects the number of delay elements inserted into the RXD1 path from the pin boundary to the receiver core.

0h (R/W) Zero delay elements are included in the RXD1 path. RXD1 is taken directly from the pin.
1h (R/W) One delay element is included in the RXD1 path.
2h (R/W) Two delay elements are included in the RXD1 path.
...
1Fh (R/W) 31 delay elements are included in the RXD1 path, the maximum.

Reset type: SYSRSn

9-5RXD0_DLYR/W0hDelay Line Tap Select for RXD0
This bitfield selects the number of delay elements inserted into the RXD0 path from the pin boundary to the receiver core.

0h (R/W) Zero delay elements are included in the RXD0 path. RXD0 is taken directly from the pin.
1h (R/W) One delay element is included in the RXD0 path.
2h (R/W) Two delay elements are included in the RXD0 path.
...
1Fh (R/W) 31 delay elements are included in the RXD0 path, the maximum.

Reset type: SYSRSn

4-0RXCLK_DLYR/W0hDelay Line Tap Select for RXCLK
This bitfield selects the number of delay elements inserted into the RXCLK path from the pin boundary to the receiver core.

0h (R/W) Zero delay elements are included in the RXCLK path. RXCLK is taken directly from the pin.
1h (R/W) One delay element is included in the RXCLK path.
2h (R/W) Two delay elements are included in the RXCLK path.
...
1Fh (R/W) 31 delay elements are included in the RXCLK path, the maximum.

Reset type: SYSRSn

36.6.3.31 RX_TRIG_CTRL_1 Register (Offset = 64h) [Reset = 00000000h]

RX_TRIG_CTRL_1 is shown in Figure 36-67 and described in Table 36-74.

Return to the Summary Table.

Receive Trigger Control register 1

Figure 36-67 RX_TRIG_CTRL_1 Register
3130292827262524
RX_TRIG_DLY
R/W-0h
2322212019181716
RX_TRIG_DLY
R/W-0h
15141312111098
RX_TRIG_DLY
R/W-0h
76543210
RESERVEDTRIG_SELTRIG_EN
R-0hR/W-0hR/W-0h
Table 36-74 RX_TRIG_CTRL_1 Register Field Descriptions
BitFieldTypeResetDescription
31-8RX_TRIG_DLYR/W0hThis is the 24 bit count of the trigger delay in SYSCLK cycles. If enabled, the Trigger-1 output of the trigger module will generate a 3 SYSCLK wide trigger pulse after the selected input trigger source sees a rising edge with a delay defined by this 24-bt value.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4-1TRIG_SELR/W0hThis is the mux select value which selects which of the inputs will be used as the trigger source.

Reset type: SYSRSn

0TRIG_ENR/W0hThis is the enable for the RX output trigger generation. The output triggers will be generated only if this bit is set to 1. If this bit is 0, then no trigger will be generated by this module.

Reset type: SYSRSn

36.6.3.32 RX_TRIG_CTRL_2 Register (Offset = 68h) [Reset = 00000000h]

RX_TRIG_CTRL_2 is shown in Figure 36-68 and described in Table 36-75.

Return to the Summary Table.

Receive Trigger Control register 2

Figure 36-68 RX_TRIG_CTRL_2 Register
3130292827262524
RX_TRIG_DLY
R/W-0h
2322212019181716
RX_TRIG_DLY
R/W-0h
15141312111098
RX_TRIG_DLY
R/W-0h
76543210
RESERVEDTRIG_SELTRIG_EN
R-0hR/W-0hR/W-0h
Table 36-75 RX_TRIG_CTRL_2 Register Field Descriptions
BitFieldTypeResetDescription
31-8RX_TRIG_DLYR/W0hThis is the 24 bit count of the trigger delay in SYSCLK cycles. If enabled, the Trigger-1 output of the trigger module will generate a 3 SYSCLK wide trigger pulse after the selected input trigger source sees a rising edge with a delay defined by this 24-bt value.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4-1TRIG_SELR/W0hThis is the mux select value which selects which of the inputs will be used as the trigger source.

Reset type: SYSRSn

0TRIG_ENR/W0hThis is the enable for the RX output trigger generation. The output triggers will be generated only if this bit is set to 1. If this bit is 0, then no trigger will be generated by this module.

Reset type: SYSRSn

36.6.3.33 RX_TRIG_CTRL_3 Register (Offset = 6Ch) [Reset = 00000000h]

RX_TRIG_CTRL_3 is shown in Figure 36-69 and described in Table 36-76.

Return to the Summary Table.

Receive Trigger Control register 3

Figure 36-69 RX_TRIG_CTRL_3 Register
3130292827262524
RX_TRIG_DLY
R/W-0h
2322212019181716
RX_TRIG_DLY
R/W-0h
15141312111098
RX_TRIG_DLY
R/W-0h
76543210
RESERVEDTRIG_SELTRIG_EN
R-0hR/W-0hR/W-0h
Table 36-76 RX_TRIG_CTRL_3 Register Field Descriptions
BitFieldTypeResetDescription
31-8RX_TRIG_DLYR/W0hThis is the 24 bit count of the trigger delay in SYSCLK cycles. If enabled, the Trigger-1 output of the trigger module will generate a 3 SYSCLK wide trigger pulse after the selected input trigger source sees a rising edge with a delay defined by this 24-bt value.

Reset type: SYSRSn

7-5RESERVEDR0hReserved
4-1TRIG_SELR/W0hThis is the mux select value which selects which of the inputs will be used as the trigger source.

Reset type: SYSRSn

0TRIG_ENR/W0hThis is the enable for the RX output trigger generation. The output triggers will be generated only if this bit is set to 1. If this bit is 0, then no trigger will be generated by this module.

Reset type: SYSRSn

36.6.3.34 RX_VIS_1 Register (Offset = 70h) [Reset = 00000000h]

RX_VIS_1 is shown in Figure 36-70 and described in Table 36-77.

Return to the Summary Table.

Receive debug visibility register 1

Figure 36-70 RX_VIS_1 Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDRX_CORE_STSRESERVED
R-0hR-0hR-0h
Table 36-77 RX_VIS_1 Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR0hReserved
3RX_CORE_STSR0hReceiver Core Status bit
This bit indicates the status of the receiver core. If this bit is set, the receiver should undergo a reset and subsequent resynchronization with the transmitter. This bit will be always be set when the receiver has detected and end of frame error or a frame type error. This bit can also be set if the receiver becomes corrupted due to noise on the signal lines. If the receiver has experienced a ping watchdog or frame watchdog timeout, this bit should be read to determine if the cause was due to a corrupt transaction, thus putting the receiver core into an unrecoverable state.

Only a soft reset will reset the recevier core and thus reset this bit.

0h (R) The receiver core is operating normally.
1h (R) The receiver core has entered into an error state and should be reset.

Reset type: SYSRSn

2-0RESERVEDR0hReserved

36.6.3.35 RX_UDATA_FILTER Register (Offset = 74h) [Reset = 0000h]

RX_UDATA_FILTER is shown in Figure 36-71 and described in Table 36-78.

Return to the Summary Table.

Receive User Data Filter Control register

Figure 36-71 RX_UDATA_FILTER Register
15141312111098
UDATA_MASK
R/W-0h
76543210
UDATA_REF
R/W-0h
Table 36-78 RX_UDATA_FILTER Register Field Descriptions
BitFieldTypeResetDescription
15-8UDATA_MASKR/W0hBit Mask to be used for comparing the USERDATA field when filtering is enabled. Every bit that is '1' in this register will be masked for comparison. If a bit position is '1', then it will be considered a successful match for that bit position.

Reset type: SYSRSn

7-0UDATA_REFR/W0hReference to be used for comparing the USERDATA field when filtering is enabled.

Reset type: SYSRSn

36.6.3.36 RX_BUF_BASE_y Register (Offset = 80h + formula) [Reset = 0000h]

RX_BUF_BASE_y is shown in Figure 36-72 and described in Table 36-79.

Return to the Summary Table.

Base address for receive data buffer

Offset = 80h + (y * 2h); where y = 0h to Fh

Figure 36-72 RX_BUF_BASE_y Register
15141312111098
BASE_ADDRESS
R-0h
76543210
BASE_ADDRESS
R-0h
Table 36-79 RX_BUF_BASE_y Register Field Descriptions
BitFieldTypeResetDescription
15-0BASE_ADDRESSR0hReceive Data Buffer Base Address
This is the base address of the 16-word data buffer used by the receiver.

Reset type: SYSRSn