SPRUJ79 November   2024 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. â–º C29x SYSTEM RESOURCES
    1.     Technical Reference Manual Overview
  4. F29x Processor
    1. 2.1 CPU Architecture
      1. 2.1.1 C29x Related Collateral
    2. 2.2 Lock and Commit Registers
    3. 2.3 C29x CPU Registers
      1. 2.3.1 C29CPU Base Address Table
      2. 2.3.2 C29_RTINT_STACK Registers
      3. 2.3.3 C29_SECCALL_STACK Registers
      4. 2.3.4 C29_SECURE_REGS Registers
      5. 2.3.5 C29_DIAG_REGS Registers
      6. 2.3.6 C29_SELFTEST_REGS Registers
  5. System Control and Interrupts
    1. 3.1  C29x System Control Introduction
    2. 3.2  System Control Functional Description
      1. 3.2.1 Device Identification
      2. 3.2.2 Device Configuration Registers
    3. 3.3  Resets
      1. 3.3.1 Reset Sources
      2. 3.3.2 External Reset (XRS)
      3. 3.3.3 Simulate External Reset
      4. 3.3.4 Power-On Reset (POR)
      5. 3.3.5 Debugger Reset (SYSRS)
      6. 3.3.6 Watchdog Reset (WDRS)
      7. 3.3.7 ESM NMI Watchdog Reset (NMIWDRS)
      8. 3.3.8 EtherCAT Slave Controller (ESC) Module Reset Output
    4. 3.4  Safety Features
      1. 3.4.1 Write Protection on Registers
        1. 3.4.1.1 LOCK Protection on System Configuration Registers
        2. 3.4.1.2 EALLOW Protection
      2. 3.4.2 PIPE Vector Address Validity Check
      3. 3.4.3 NMIWDs
      4. 3.4.4 System Control Registers Parity Protection
      5. 3.4.5 ECC Enabled RAMs, Shared RAMs Protection
      6. 3.4.6 ECC Enabled Flash Memory
      7. 3.4.7 ERRORSTS Pin
    5. 3.5  Clocking
      1. 3.5.1 Clock Sources
        1. 3.5.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.5.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.5.1.3 External Oscillator (XTAL)
        4. 3.5.1.4 Auxiliary Clock Input (AUXCLKIN)
      2. 3.5.2 Derived Clocks
        1. 3.5.2.1 Oscillator Clock (OSCCLK)
        2. 3.5.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.5.3 Device Clock Domains
        1. 3.5.3.1 System Clock (PLLSYSCLK)
        2. 3.5.3.2 CPU Clock (CPUCLK)
        3. 3.5.3.3 Peripheral Clock (PERx.SYSCLK)
        4. 3.5.3.4 MCAN Bit Clock
        5. 3.5.3.5 CPU Timer2 Clock (TIMER2CLK)
      4. 3.5.4 External Clock Output (XCLKOUT)
      5. 3.5.5 Clock Connectivity
      6. 3.5.6 Using an External Crystal or Resonator
        1. 3.5.6.1 X1/X2 Precondition Circuit
      7. 3.5.7 PLL
        1. 3.5.7.1 System Clock Setup
        2. 3.5.7.2 SYS PLL Bypass
      8. 3.5.8 Clock (OSCCLK) Failure Detection
        1. 3.5.8.1 Missing Clock Detection Logic
        2. 3.5.8.2 Dual Clock Comparator (DCC)
    6. 3.6  Bus Architecture
      1. 3.6.1 Safe Interconnect
        1. 3.6.1.1 Safe Interconnect for Read Operation
        2. 3.6.1.2 Safe Interconnect for Write Operation
      2. 3.6.2 Peripheral Access Configuration using FRAMESEL
      3. 3.6.3 Bus Arbitration
    7. 3.7  32-Bit CPU Timers 0/1/2
    8. 3.8  Watchdog Timers
      1. 3.8.1 Servicing the Watchdog Timer
      2. 3.8.2 Minimum Window Check
      3. 3.8.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.8.4 Watchdog Operation in Low-Power Modes
      5. 3.8.5 Emulation Considerations
    9. 3.9  Low-Power Modes
      1. 3.9.1 IDLE
      2. 3.9.2 STANDBY
    10. 3.10 Memory Subsystem (MEMSS)
      1. 3.10.1 Introduction
      2. 3.10.2 Features
      3. 3.10.3 Configuration Bits
        1. 3.10.3.1 Memory Initialization
      4. 3.10.4 RAM
        1. 3.10.4.1  MEMSS Architecture
        2. 3.10.4.2  RAM Memory Controller Overview
        3. 3.10.4.3  Memory Controllers
          1. 3.10.4.3.1 128-Bit LPx and CPx Memory Controller
          2. 3.10.4.3.2 64-Bit LDx and CDx Memory Controller
          3. 3.10.4.3.3 M0 Memory Controller
        4. 3.10.4.4  RTDMA Burst Support
        5. 3.10.4.5  Atomic Memory Operations
        6. 3.10.4.6  RAM ECC
        7. 3.10.4.7  Read-Modify-Write Operations
        8. 3.10.4.8  Dataline Buffer
        9. 3.10.4.9  HSM Sync Bridge
        10. 3.10.4.10 Access Bridges
          1. 3.10.4.10.1 Debug Access Bridge
          2. 3.10.4.10.2 Global Access Bridge
          3. 3.10.4.10.3 Program Access Bridge
      5. 3.10.5 ROM
        1. 3.10.5.1 ROM Dataline Buffer
        2. 3.10.5.2 ROM Prefetch
      6. 3.10.6 Arbitration
      7. 3.10.7 Test Modes
      8. 3.10.8 Emulation Mode
    11. 3.11 System Control Register Configuration Restrictions
    12. 3.12 Software
      1. 3.12.1  SYSCTL Registers to Driverlib Functions
      2. 3.12.2  MEMSS Registers to Driverlib Functions
      3. 3.12.3  CPU Registers to Driverlib Functions
      4. 3.12.4  WD Registers to Driverlib Functions
      5. 3.12.5  CPUTIMER Registers to Driverlib Functions
      6. 3.12.6  XINT Registers to Driverlib Functions
      7. 3.12.7  LPOST Registers to Driverlib Functions
      8. 3.12.8  SYSCTL Examples
        1. 3.12.8.1 Missing clock detection (MCD) - SINGLE_CORE
        2. 3.12.8.2 XCLKOUT (External Clock Output) Configuration - SINGLE_CORE
      9. 3.12.9  TIMER Examples
        1. 3.12.9.1 Timer Academy Lab - SINGLE_CORE
        2. 3.12.9.2 CPU Timers - SINGLE_CORE
        3. 3.12.9.3 CPU Timers - SINGLE_CORE
      10. 3.12.10 WATCHDOG Examples
        1. 3.12.10.1 Watchdog - SINGLE_CORE
      11. 3.12.11 LPM Examples
        1. 3.12.11.1 Low Power Modes: Device Idle Mode and Wakeup using GPIO - SINGLE_CORE
        2. 3.12.11.2 Low Power Modes: Device Idle Mode and Wakeup using Watchdog - SINGLE_CORE
        3. 3.12.11.3 Low Power Modes: Device Standby Mode and Wakeup using GPIO - SINGLE_CORE
        4. 3.12.11.4 Low Power Modes: Device Standby Mode and Wakeup using Watchdog - SINGLE_CORE
    13. 3.13 SYSCTRL Registers
      1. 3.13.1  SYSCTRL Base Address Table
      2. 3.13.2  DEV_CFG_REGS Registers
      3. 3.13.3  MEMSS_L_CONFIG_REGS Registers
      4. 3.13.4  MEMSS_C_CONFIG_REGS Registers
      5. 3.13.5  MEMSS_M_CONFIG_REGS Registers
      6. 3.13.6  MEMSS_MISCI_REGS Registers
      7. 3.13.7  CPU_SYS_REGS Registers
      8. 3.13.8  CPU_PER_CFG_REGS Registers
      9. 3.13.9  WD_REGS Registers
      10. 3.13.10 CPUTIMER_REGS Registers
      11. 3.13.11 XINT_REGS Registers
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
      1. 4.3.1 Default Boot Modes
      2. 4.3.2 Custom Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Device Boot Flow
      2. 4.5.2 CPU1 Boot Flow
      3. 4.5.3 Emulation Boot Flow
      4. 4.5.4 Standalone Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 MPOST and LPOST Configurations
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Memory Maps
        1. 4.7.4.1 Boot ROM Memory-Maps
        2. 4.7.4.2 Reserved RAM Memory-Maps
      5. 4.7.5  ROM Structure and Status Information
      6. 4.7.6  Boot Modes and Loaders
        1. 4.7.6.1 Boot Modes
          1. 4.7.6.1.1 Flash Boot
          2. 4.7.6.1.2 RAM Boot
          3. 4.7.6.1.3 Wait Boot
        2. 4.7.6.2 Bootloaders
          1. 4.7.6.2.1 SPI Boot Mode
          2. 4.7.6.2.2 I2C Boot Mode
          3. 4.7.6.2.3 Parallel Boot Mode
          4. 4.7.6.2.4 CAN Boot Mode
          5. 4.7.6.2.5 CAN-FD Boot Mode
          6. 4.7.6.2.6 UART Boot Mode
      7. 4.7.7  GPIO Assignments
      8. 4.7.8  HSM and C29 ROM Task Ownership and Interactions
        1. 4.7.8.1 Application Authentication by HSM
      9. 4.7.9  Boot Status Information
        1. 4.7.9.1 Booting Status
      10. 4.7.10 BootROM Timing
    8. 4.8 Software
      1. 4.8.1 BOOT Examples
  7. Lockstep Compare Module (LCM)
    1. 5.1 Introduction
      1. 5.1.1 Features
      2. 5.1.2 Block Diagram
      3. 5.1.3 Lockstep Compare Modules
    2. 5.2 Enabling LCM Comparators
    3. 5.3 LCM Redundant Module Configuration
    4. 5.4 LCM Error Handling
    5. 5.5 Debug Mode with LCM
    6. 5.6 Register Parity Error Protection
    7. 5.7 Functional Logic
      1. 5.7.1 Comparator Logic
      2. 5.7.2 Self-Test Logic
        1. 5.7.2.1 Match Test Mode
        2. 5.7.2.2 Mismatch Test Mode
      3. 5.7.3 Error Injection Tests
        1. 5.7.3.1 Comparator Error Force Test
        2. 5.7.3.2 Register Parity Error Test
    8. 5.8 Software
      1. 5.8.1 LCM Registers to Driverlib Functions
    9. 5.9 LCM Registers
      1. 5.9.1 LCM Base Address Table
      2. 5.9.2 LCM_REGS Registers
  8. Peripheral Interrupt Priority and Expansion (PIPE)
    1. 6.1 Introduction
      1. 6.1.1 Features
      2. 6.1.2 Interrupt Concepts
      3. 6.1.3 PIPE Related Collateral
    2. 6.2 Interrupt Architecture
      1. 6.2.1 Dynamic Priority Arbitration Block
      2. 6.2.2 Post Processing Block
      3. 6.2.3 Memory-Mapped Registers
    3. 6.3 Interrupt Propagation
    4. 6.4 Configuring Interrupts
      1. 6.4.1 Enabling and Disabling Interrupts
      2. 6.4.2 Prioritization
        1. 6.4.2.1 User-Configured Interrupt Priority
        2. 6.4.2.2 Index-Based Fixed Interrupt Priority
      3. 6.4.3 Nesting and Priority Grouping
      4. 6.4.4 Stack Protection
      5. 6.4.5 Context
    5. 6.5 Safety and Security
      1. 6.5.1 Access Control
      2. 6.5.2 PIPE Errors
      3. 6.5.3 Register Data Integrity and Safety
      4. 6.5.4 Self-Test and Diagnostics
    6. 6.6 Software
      1. 6.6.1 PIPE Registers to Driverlib Functions
      2. 6.6.2 INTERRUPT Examples
        1. 6.6.2.1 RTINT vs INT Latency example - SINGLE_CORE
        2. 6.6.2.2 INT and RTINT Nesting Example - SINGLE_CORE
    7. 6.7 PIPE Registers
      1. 6.7.1 PIPE Base Address Table
      2. 6.7.2 PIPE_REGS Registers
  9. Error Signaling Module (ESM_C29)
    1. 7.1 Introduction
      1. 7.1.1 Features
      2. 7.1.2 ESM Related Collateral
    2. 7.2 ESM Subsystem
      1. 7.2.1 System ESM
        1. 7.2.1.1 Error Pin Monitor Event
      2. 7.2.2 Safety Aggregator
        1. 7.2.2.1 EDC Controller Interface Description
          1. 7.2.2.1.1 EDC_REGS Registers
        2. 7.2.2.2 Read Operation on EDC Controller
        3. 7.2.2.3 Write Operation on EDC Controller
        4. 7.2.2.4 Safety Aggregator Error Injection
      3. 7.2.3 ESM Subsystem Integration View
    3. 7.3 ESM Functional Description
      1. 7.3.1 Error Event Inputs
      2. 7.3.2 Error Interrupt Outputs
        1. 7.3.2.1 High Priority Watchdog
        2. 7.3.2.2 Critical Priority Interrupt Output
      3. 7.3.3 Error Pin Output (ERR_O/ERRORSTS)
        1. 7.3.3.1 Minimum Time Interval
        2. 7.3.3.2 PWM Mode
      4. 7.3.4 Reset Type Information for ESM Registers
      5. 7.3.5 Clock Stop
      6. 7.3.6 Commit/Lock for MMRs
      7. 7.3.7 Safety Protection for MMRs
      8. 7.3.8 Register Configuration Tieoffs
        1. 7.3.8.1 Group0 High Priority Tieoff
        2. 7.3.8.2 High Priority Watchdog Enable Tieoff
    4. 7.4 ESM Configuration Guide
    5. 7.5 Interrupt Condition Control and Handling
      1. 7.5.1 ESM Low Priority Error Interrupt
      2. 7.5.2 ESM High Priority Error Interrupt
      3. 7.5.3 Critical Priority Error Interrupt
      4. 7.5.4 High Priority Watchdog Interrupt
      5. 7.5.5 Safety Aggregator Interrupt Control and Handling
    6. 7.6 Software
      1. 7.6.1 ESM_CPU Registers to Driverlib Functions
      2. 7.6.2 ESM_SYS Registers to Driverlib Functions
      3. 7.6.3 ESM_SAFETY_AGGREGATOR Registers to Driverlib Functions
      4. 7.6.4 ESM Examples
        1. 7.6.4.1 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        2. 7.6.4.2 ESM Multicore Example (CPU1,CPU3) - MULTI_CORE
        3. 7.6.4.3 ESM - SINGLE_CORE
        4. 7.6.4.4 ESM - SINGLE_CORE
    7. 7.7 ESM Registers
      1. 7.7.1 ESM Base Address Table
      2. 7.7.2 ESM_CPU_REGS Registers
      3. 7.7.3 ESM_SYSTEM_REGS Registers
      4. 7.7.4 ESM_SAFETYAGG_REGS Registers
  10. Error Aggregator
    1. 8.1 Introduction
    2. 8.2 Error Aggregator Modules
    3. 8.3 Error Propagation Path from Source to CPU
    4. 8.4 Error Aggregator Interface
      1. 8.4.1 Functional Description
    5. 8.5 Error Condition Handling User Guide
    6. 8.6 Error Type Information
    7. 8.7 Error Sources Information
    8. 8.8 Software
      1. 8.8.1 ERROR_AGGREGATOR Registers to Driverlib Functions
    9. 8.9 ERRORAGGREGATOR Registers
      1. 8.9.1 ERRORAGGREGATOR Base Address Table
      2. 8.9.2 HSM_ERROR_AGGREGATOR_CONFIG_REGS Registers
      3. 8.9.3 ERROR_AGGREGATOR_CONFIG_REGS Registers
  11. Flash Module
    1. 9.1 Introduction to Flash Memory
      1. 9.1.1 FLASH Related Collateral
      2. 9.1.2 Features
      3. 9.1.3 Flash Tools
      4. 9.1.4 Block Diagram
    2. 9.2 Flash Subsystem Overview
    3. 9.3 Flash Banks and Pumps
    4. 9.4 Flash Read Interfaces
      1. 9.4.1 Bank Modes and Swapping
      2. 9.4.2 Flash Wait States
      3. 9.4.3 Buffer and Cache Mechanisms
        1. 9.4.3.1 Prefetch Mechanism and Block Cache
        2. 9.4.3.2 Data Line Buffer
        3. 9.4.3.3 Sequential Data Pre-read Mode
      4. 9.4.4 Flash Read Arbitration
      5. 9.4.5 Error Correction Code (ECC) Protection
      6. 9.4.6 Procedure to Change Flash Read Interface Registers
    5. 9.5 Flash Erase and Program
      1. 9.5.1 Flash Semaphore and Update Protection
      2. 9.5.2 Erase
      3. 9.5.3 Program
    6. 9.6 Migrating an Application from RAM to Flash
    7. 9.7 Flash Registers
      1. 9.7.1 FLASH Base Address Table
      2. 9.7.2 FLASH_CMD_REGS_FLC1 Registers
      3. 9.7.3 FLASH_CMD_REGS_FLC2 Registers
      4. 9.7.4 FRI_CTRL_REGS Registers
  12. 10Safety and Security Unit (SSU)
    1. 10.1  Introduction
      1. 10.1.1 SSU Related Collateral
      2. 10.1.2 Block Diagram
      3. 10.1.3 System SSU Configuration Example
    2. 10.2  Access Protection Ranges
      1. 10.2.1 Access Protection Inheritance
    3. 10.3  LINKs
    4. 10.4  STACKs
    5. 10.5  ZONEs
    6. 10.6  SSU-CPU Interface
      1. 10.6.1 SSU Operation in Lockstep Mode
    7. 10.7  SSU Operation Modes
    8. 10.8  Security Configuration and Flash Management
      1. 10.8.1 BANKMGMT Sectors
      2. 10.8.2 SECCFG Sectors
      3. 10.8.3 SECCFG Sector Address Mapping
      4. 10.8.4 SECCFG Sector Memory Map
      5. 10.8.5 SECCFG CRC
    9. 10.9  Flash Write/Erase Access Control
      1. 10.9.1 Permanent Flash Lock (Write/Erase Protection)
      2. 10.9.2 Updating Flash MAIN Sectors
      3. 10.9.3 Firmware-Over-The-Air Updates (FOTA)
      4. 10.9.4 Updating Flash SECCFG Sectors
      5. 10.9.5 Reading Flash SECCFG Sectors
    10. 10.10 RAMOPEN Feature
    11. 10.11 Debug Authorization
      1. 10.11.1 Global CPU Debug Enable
      2. 10.11.2 ZONE Debug
      3. 10.11.3 Authentication for Debug Access
        1. 10.11.3.1 Password-based Authentication
        2. 10.11.3.2 CPU-based Authentication
    12. 10.12 Hardcoded Protections
    13. 10.13 SSU Register Access Permissions
      1. 10.13.1 Permissions for SSU General Control Registers
      2. 10.13.2 Permissions for SSU CPU1 Configuration Registers
      3. 10.13.3 Permissions for SSU CPU2+ Configuration Registers
      4. 10.13.4 Permissions for CPU1 Access Protection Registers
      5. 10.13.5 Permissions for CPU2+ Access Protection Registers
    14. 10.14 SSU Fault Signals
    15. 10.15 Software
      1. 10.15.1 SSU Registers to Driverlib Functions
    16. 10.16 SSU Registers
      1. 10.16.1 SSU Base Address Table
      2. 10.16.2 SSU_GEN_REGS Registers
      3. 10.16.3 SSU_CPU1_CFG_REGS Registers
      4. 10.16.4 SSU_CPU2_CFG_REGS Registers
      5. 10.16.5 SSU_CPU3_CFG_REGS Registers
      6. 10.16.6 SSU_CPU1_AP_REGS Registers
      7. 10.16.7 SSU_CPU2_AP_REGS Registers
      8. 10.16.8 SSU_CPU3_AP_REGS Registers
  13. 11Configurable Logic Block (CLB)
    1. 11.1  Introduction
      1. 11.1.1 CLB Related Collateral
    2. 11.2  Description
      1. 11.2.1 CLB Clock
    3. 11.3  CLB Input/Output Connection
      1. 11.3.1 Overview
      2. 11.3.2 CLB Input Selection
      3. 11.3.3 CLB Output Selection
      4. 11.3.4 CLB Output Signal Multiplexer
    4. 11.4  CLB Tile
      1. 11.4.1 Static Switch Block
      2. 11.4.2 Counter Block
        1. 11.4.2.1 Counter Description
        2. 11.4.2.2 Counter Operation
        3. 11.4.2.3 Serializer Mode
        4. 11.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 11.4.3 FSM Block
      4. 11.4.4 LUT4 Block
      5. 11.4.5 Output LUT Block
      6. 11.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 11.4.7 High Level Controller (HLC)
        1. 11.4.7.1 High Level Controller Events
        2. 11.4.7.2 High Level Controller Instructions
        3. 11.4.7.3 <Src> and <Dest>
        4. 11.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 11.5  CPU Interface
      1. 11.5.1 Register Description
      2. 11.5.2 Non-Memory Mapped Registers
    6. 11.6  RTDMA Access
    7. 11.7  CLB Data Export Through SPI RX Buffer
    8. 11.8  CLB Pipeline Mode
    9. 11.9  Software
      1. 11.9.1 CLB Registers to Driverlib Functions
      2. 11.9.2 CLB Examples
    10. 11.10 CLB Registers
      1. 11.10.1 CLB Base Address Table
      2. 11.10.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 11.10.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 11.10.4 CLB_DATA_EXCHANGE_REGS Registers
  14. 12Dual-Clock Comparator (DCC)
    1. 12.1 Introduction
      1. 12.1.1 Features
      2. 12.1.2 Block Diagram
    2. 12.2 Module Operation
      1. 12.2.1 Configuring DCC Counters
      2. 12.2.2 Single-Shot Measurement Mode
      3. 12.2.3 Continuous Monitoring Mode
      4. 12.2.4 Error Conditions
    3. 12.3 Interrupts
    4. 12.4 Software
      1. 12.4.1 DCC Registers to Driverlib Functions
      2. 12.4.2 DCC Examples
        1. 12.4.2.1 DCC Single shot Clock verification - SINGLE_CORE
        2. 12.4.2.2 DCC Single shot Clock measurement - SINGLE_CORE
        3. 12.4.2.3 DCC Continuous clock monitoring - SINGLE_CORE
    5. 12.5 DCC Registers
      1. 12.5.1 DCC Base Address Table
      2. 12.5.2 DCC_REGS Registers
  15. 13Real-Time Direct Memory Access (RTDMA)
    1. 13.1  Introduction
      1. 13.1.1 Features
      2. 13.1.2 RTDMA Related Collateral
      3. 13.1.3 Block Diagram
    2. 13.2  RTDMA Trigger Source Options
    3. 13.3  RTDMA Bus
    4. 13.4  Address Pointer and Transfer Control
    5. 13.5  Pipeline Timing and Throughput
    6. 13.6  Channel Priority
      1. 13.6.1 Round-Robin Mode
      2. 13.6.2 Software Configurable Priority of Channels
    7. 13.7  Overrun Detection Feature
    8. 13.8  Burst Mode
    9. 13.9  Safety and Security
      1. 13.9.1 Safety
        1. 13.9.1.1 Lockstep Mode
        2. 13.9.1.2 Memory Protection Unit (MPU)
          1. 13.9.1.2.1 MPU Errors
      2. 13.9.2 Security
      3. 13.9.3 RTDMA Errors
      4. 13.9.4 Self-Test and Diagnostics
    10. 13.10 Software
      1. 13.10.1 RTDMA Registers to Driverlib Functions
      2. 13.10.2 RTDMA Examples
        1. 13.10.2.1 RTDMA Academy Lab - SINGLE_CORE
        2. 13.10.2.2 RTDMA Transfer - SINGLE_CORE
        3. 13.10.2.3 RTDMA Transfer with MPU - SINGLE_CORE
    11. 13.11 RTDMA Registers
      1. 13.11.1 RTDMA Base Address Table
      2. 13.11.2 RTDMA_REGS Registers
      3. 13.11.3 RTDMA_DIAG_REGS Registers
      4. 13.11.4 RTDMA_SELFTEST_REGS Registers
      5. 13.11.5 RTDMA_MPU_REGS Registers
      6. 13.11.6 RTDMA_CH_REGS Registers
  16. 14External Memory Interface (EMIF)
    1. 14.1 Introduction
      1. 14.1.1 Purpose of the Peripheral
      2. 14.1.2 Features
        1. 14.1.2.1 Asynchronous Memory Support
        2. 14.1.2.2 Synchronous DRAM Memory Support
      3. 14.1.3 Functional Block Diagram
      4. 14.1.4 Configuring Device Pins
    2. 14.2 EMIF Module Architecture
      1. 14.2.1  EMIF Clock Control
      2. 14.2.2  EMIF Requests
      3. 14.2.3  EMIF Signal Descriptions
      4. 14.2.4  EMIF Signal Multiplexing Control
      5. 14.2.5  SDRAM Controller and Interface
        1. 14.2.5.1  SDRAM Commands
        2. 14.2.5.2  Interfacing to SDRAM
        3. 14.2.5.3  SDRAM Configuration Registers
        4. 14.2.5.4  SDRAM Auto-Initialization Sequence
        5. 14.2.5.5  SDRAM Configuration Procedure
        6. 14.2.5.6  EMIF Refresh Controller
          1. 14.2.5.6.1 Determining the Appropriate Value for the RR Field
        7. 14.2.5.7  Self-Refresh Mode
        8. 14.2.5.8  Power-Down Mode
        9. 14.2.5.9  SDRAM Read Operation
        10. 14.2.5.10 SDRAM Write Operations
        11. 14.2.5.11 Mapping from Logical Address to EMIF Pins
      6. 14.2.6  Asynchronous Controller and Interface
        1. 14.2.6.1 Interfacing to Asynchronous Memory
        2. 14.2.6.2 Accessing Larger Asynchronous Memories
        3. 14.2.6.3 Configuring EMIF for Asynchronous Accesses
        4. 14.2.6.4 Read and Write Operations in Normal Mode
          1. 14.2.6.4.1 Asynchronous Read Operations (Normal Mode)
          2. 14.2.6.4.2 Asynchronous Write Operations (Normal Mode)
        5. 14.2.6.5 Read and Write Operation in Select Strobe Mode
          1. 14.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode)
          2. 14.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode)
        6. 14.2.6.6 Extended Wait Mode and the EM1WAIT Pin
      7. 14.2.7  Data Bus Parking
      8. 14.2.8  Reset and Initialization Considerations
      9. 14.2.9  Interrupt Support
        1. 14.2.9.1 Interrupt Events
      10. 14.2.10 RTDMA Event Support
      11. 14.2.11 EMIF Signal Multiplexing
      12. 14.2.12 Memory Map
      13. 14.2.13 Priority and Arbitration
      14. 14.2.14 System Considerations
        1. 14.2.14.1 Asynchronous Request Times
      15. 14.2.15 Power Management
        1. 14.2.15.1 Power Management Using Self-Refresh Mode
        2. 14.2.15.2 Power Management Using Power Down Mode
      16. 14.2.16 Emulation Considerations
    3. 14.3 EMIF Subsystem (EMIFSS)
      1. 14.3.1 Burst Support
      2. 14.3.2 EMIFSS Performance Improvement
      3. 14.3.3 Buffer Module
        1. 14.3.3.1 CPU Write FIFO
      4. 14.3.4 Emulation Mode
    4. 14.4 Example Configuration
      1. 14.4.1 Hardware Interface
      2. 14.4.2 Software Configuration
        1. 14.4.2.1 Configuring the SDRAM Interface
          1. 14.4.2.1.1 PLL Programming for EMIF to K4S641632H-TC(L)70 Interface
          2. 14.4.2.1.2 SDRAM Timing Register (SDRAM_TR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          3. 14.4.2.1.3 SDRAM Self Refresh Exit Timing Register (SDR_EXT_TMNG) Settings for EMIF to K4S641632H-TC(L)70 Interface
          4. 14.4.2.1.4 SDRAM Refresh Control Register (SDRAM_RCR) Settings for EMIF to K4S641632H-TC(L)70 Interface
          5. 14.4.2.1.5 SDRAM Configuration Register (SDRAM_CR) Settings for EMIF to K4S641632H-TC(L)70 Interface
        2. 14.4.2.2 Configuring the Flash Interface
          1. 14.4.2.2.1 Asynchronous 1 Configuration Register (ASYNC_CS2_CFG) Settings for EMIF to LH28F800BJE-PTTL90 Interface
    5. 14.5 Software
      1. 14.5.1 EMIF Registers to Driverlib Functions
      2. 14.5.2 EMIF Examples
    6. 14.6 EMIF Registers
      1. 14.6.1 EMIF Base Address Table
      2. 14.6.2 EMIF_REGS Registers
  17. 15General-Purpose Input/Output (GPIO)
    1. 15.1  Introduction
      1. 15.1.1 GPIO Related Collateral
    2. 15.2  Configuration Overview
    3. 15.3  Digital Inputs on ADC Pins (AIOs)
    4. 15.4  Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 15.5  Digital General-Purpose I/O Control
    6. 15.6  Input Qualification
      1. 15.6.1 No Synchronization (Asynchronous Input)
      2. 15.6.2 Synchronization to SYSCLKOUT Only
      3. 15.6.3 Qualification Using a Sampling Window
    7. 15.7  PMBUS and I2C Signals
    8. 15.8  GPIO and Peripheral Muxing
      1. 15.8.1 GPIO Muxing
      2. 15.8.2 Peripheral Muxing
    9. 15.9  Internal Pullup Configuration Requirements
    10. 15.10 Software
      1. 15.10.1 GPIO Registers to Driverlib Functions
      2. 15.10.2 GPIO Examples
        1. 15.10.2.1 Device GPIO Toggle - SINGLE_CORE
        2. 15.10.2.2 XINT/XBAR example - SINGLE_CORE
      3. 15.10.3 LED Examples
        1. 15.10.3.1 LED Blinky Example - MULTI_CORE
        2. 15.10.3.2 LED Blinky Example (CPU1,CPU3) - MULTI_CORE
        3. 15.10.3.3 LED Blinky example - SINGLE_CORE
        4. 15.10.3.4 LED Blinky Example (CPU1|CPU2|CPU3) - MULTI_CORE
        5. 15.10.3.5 LED Blinky Example (CPU2) - MULTI_CORE
        6. 15.10.3.6 LED Blinky Example (CPU3) - MULTI_CORE
    11. 15.11 GPIO Registers
      1. 15.11.1 GPIO Base Address Table
      2. 15.11.2 GPIO_CTRL_REGS Registers
      3. 15.11.3 GPIO_DATA_REGS Registers
      4. 15.11.4 GPIO_DATA_READ_REGS Registers
  18. 16Interprocessor Communication (IPC)
    1. 16.1 Introduction
    2. 16.2 IPC Flags and Interrupts
    3. 16.3 IPC Command Registers
    4. 16.4 Free-Running Counter
    5. 16.5 IPC Communication Protocol
    6. 16.6 Software
      1. 16.6.1 IPC Registers to Driverlib Functions
      2. 16.6.2 IPC Examples
        1. 16.6.2.1 IPC basic message passing example with interrupt - MULTI_CORE
        2. 16.6.2.2 IPC basic message passing example with interrupt - MULTI_CORE
        3. 16.6.2.3 IPC basic message passing example with interrupt - MULTI_CORE
        4. 16.6.2.4 IPC basic message passing example with interrupt - MULTI_CORE
    7. 16.7 IPC Registers
      1. 16.7.1 IPC Base Address Table
      2. 16.7.2 IPC_COUNTER_REGS Registers
      3. 16.7.3 CPU1_IPC_SEND_REGS Registers
      4. 16.7.4 CPU2_IPC_SEND_REGS Registers
      5. 16.7.5 CPU3_IPC_SEND_REGS Registers
      6. 16.7.6 CPU1_IPC_RCV_REGS Registers
      7. 16.7.7 CPU2_IPC_RCV_REGS Registers
      8. 16.7.8 CPU3_IPC_RCV_REGS Registers
  19. 17Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 17.1 Introduction
    2. 17.2 Enhanced Bus Comparator Unit
      1. 17.2.1 Enhanced Bus Comparator Unit Operations
      2. 17.2.2 Stack Qualification
      3. 17.2.3 Event Masking and Exporting
    3. 17.3 System Event Counter Unit
      1. 17.3.1 System Event Counter Modes
        1. 17.3.1.1 Counting Active Levels Versus Edges
        2. 17.3.1.2 Max and Min Mode
        3. 17.3.1.3 Cumulative Mode
        4. 17.3.1.4 Input Signal Selection
      2. 17.3.2 Reset on Event
      3. 17.3.3 Operation Conditions
    4. 17.4 Program Counter Trace
      1. 17.4.1 Functional Block Diagram
      2. 17.4.2 Trace Qualification Modes
        1. 17.4.2.1 Trace Input Signal Conditioning
      3. 17.4.3 Trace Memory
      4. 17.4.4 PC Trace Software Operation
      5. 17.4.5 Trace Operation in Debug Mode
    5. 17.5 ERAD Ownership, Initialization, and Reset
      1. 17.5.1 Feature Level Ownership
      2. 17.5.2 Feature Access Security Mechanism
      3. 17.5.3 PC Trace Access Security Mechanism
    6. 17.6 ERAD Programming Sequence
      1. 17.6.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 17.6.2 Timer and Counter Programming Sequence
    7. 17.7 Software
      1. 17.7.1 ERAD Registers to Driverlib Functions
    8. 17.8 ERAD Registers
      1. 17.8.1 ERAD Base Address Table
        1. 17.8.1.1 ERAD_REGS Registers
  20. 18Data Logger and Trace (DLT)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 DLT Related Collateral
      3. 18.1.3 Interfaces
        1. 18.1.3.1 Block Diagram
    2. 18.2 Functional Overview
      1. 18.2.1 DLT Configuration
        1. 18.2.1.1 LINK Filter
        2. 18.2.1.2 TAG Filter
        3. 18.2.1.3 ERAD Event Trigger
        4. 18.2.1.4 Concurrent FILTERING modes
      2. 18.2.2 Time-stamping
      3. 18.2.3 FIFO Construction
        1. 18.2.3.1 FIFO Interrupt
    3. 18.3 Software
      1. 18.3.1 DLT Registers to Driverlib Functions
      2. 18.3.2 DLT Examples
        1. 18.3.2.1 DLT TAG filter example - SINGLE_CORE
        2. 18.3.2.2 DLT TAG filter example - SINGLE_CORE
        3. 18.3.2.3 DLT ERAD filter example - SINGLE_CORE
    4. 18.4 DLT Registers
      1. 18.4.1 DLT Base Address Table
      2. 18.4.2 DLT_CORE_REGS Registers
      3. 18.4.3 DLT_FIFO_REGS Registers
  21. 19Waveform Analyzer Diagnostic (WADI)
    1. 19.1 WADI Overview
      1. 19.1.1 Features
      2. 19.1.2 WADI Related Collateral
      3. 19.1.3 Block Diagram
      4. 19.1.4 Description
    2. 19.2 Signal and Trigger Input Configuration
      1. 19.2.1 SIG1 and SIG2 Configuration
      2. 19.2.2 Trigger 1 and Trigger 2
    3. 19.3 WADI Block
      1. 19.3.1 Overview
      2. 19.3.2 Counters
      3. 19.3.3 Pulse Width
        1. 19.3.3.1 Pulse Width Single Measurement
        2. 19.3.3.2 Pulse Width Aggregation
        3. 19.3.3.3 Pulse Width Average and Peak
      4. 19.3.4 Edge Count
        1. 19.3.4.1 Edge Count with Fixed Window
        2. 19.3.4.2 Edge Count with Moving Window
      5. 19.3.5 Signal1 to Signal2 Comparison
      6. 19.3.6 Dead Band and Phase
      7. 19.3.7 Simultaneous Measurement
    4. 19.4 Safe State Sequencer (SSS)
      1. 19.4.1 SSS Configuration
    5. 19.5 Lock and Commit Registers
    6. 19.6 Interrupt and Error Handling
    7. 19.7 RTDMA Interfaces
      1. 19.7.1 RTDMA Trigger
    8. 19.8 Software
      1. 19.8.1 WADI Registers to Driverlib Functions
      2. 19.8.2 WADI Examples
        1. 19.8.2.1 WADI Duty and Frequency check - SINGLE_CORE
    9. 19.9 WADI Registers
      1. 19.9.1 WADI Base Address Table
      2. 19.9.2 WADI_CONFIG_REGS Registers
      3. 19.9.3 WADI_OPER_SSS_REGS Registers
  22. 20Crossbar (X-BAR)
    1. 20.1 X-BAR Related Collateral
    2. 20.2 Input X-BAR, ICL XBAR, MINDB XBAR,
      1. 20.2.1 ICL and MINDB X-BAR
    3. 20.3 ePWM , CLB, and GPIO Output X-BAR
      1. 20.3.1 ePWM X-BAR
        1. 20.3.1.1 ePWM X-BAR Architecture
      2. 20.3.2 CLB X-BAR
        1. 20.3.2.1 CLB X-BAR Architecture
      3. 20.3.3 GPIO Output X-BAR
        1. 20.3.3.1 GPIO Output X-BAR Architecture
      4. 20.3.4 X-BAR Flags
    4. 20.4 Software
      1. 20.4.1 INPUT_XBAR Registers to Driverlib Functions
      2. 20.4.2 EPWM_XBAR Registers to Driverlib Functions
      3. 20.4.3 CLB_XBAR Registers to Driverlib Functions
      4. 20.4.4 OUTPUT_XBAR Registers to Driverlib Functions
      5. 20.4.5 MDL_XBAR Registers to Driverlib Functions
      6. 20.4.6 ICL_XBAR Registers to Driverlib Functions
      7. 20.4.7 XBAR Registers to Driverlib Functions
      8. 20.4.8 XBAR Examples
        1. 20.4.8.1 Input XBAR to Output XBAR Connection - SINGLE_CORE
        2. 20.4.8.2 Output XBAR Pulse Stretch - SINGLE_CORE
    5. 20.5 XBAR Registers
      1. 20.5.1 XBAR Base Address Table
      2. 20.5.2 INPUT_XBAR_REGS Registers
      3. 20.5.3 EPWM_XBAR_REGS Registers
      4. 20.5.4 CLB_XBAR_REGS Registers
      5. 20.5.5 OUTPUTXBAR_REGS Registers
      6. 20.5.6 MDL_XBAR_REGS Registers
      7. 20.5.7 ICL_XBAR_REGS Registers
      8. 20.5.8 OUTPUTXBAR_FLAG_REGS Registers
      9. 20.5.9 XBAR_REGS Registers
  23. 21Embedded Pattern Generator (EPG)
    1. 21.1 Introduction
      1. 21.1.1 Features
      2. 21.1.2 EPG Block Diagram
      3. 21.1.3 EPG Related Collateral
    2. 21.2 Clock Generator Modules
      1. 21.2.1 DCLK (50% duty cycle clock)
      2. 21.2.2 Clock Stop
    3. 21.3 Signal Generator Module
    4. 21.4 EPG Peripheral Signal Mux Selection
    5. 21.5 Application Software Notes
    6. 21.6 EPG Example Use Cases
      1. 21.6.1 EPG Example: Synchronous Clocks with Offset
        1. 21.6.1.1 Synchronous Clocks with Offset Register Configuration
      2. 21.6.2 EPG Example: Serial Data Bit Stream (LSB first)
        1. 21.6.2.1 Serial Data Bit Stream (LSB first) Register Configuration
      3. 21.6.3 EPG Example: Serial Data Bit Stream (MSB first)
        1. 21.6.3.1 Serial Data Bit Stream (MSB first) Register Configuration
      4. 21.6.4 EPG Example: Clock and Data Pair
        1. 21.6.4.1 Clock and Data Pair Register Configuration
      5. 21.6.5 EPG Example: Clock and Skewed Data Pair
        1. 21.6.5.1 Clock and Skewed Data Pair Register Configuration
      6. 21.6.6 EPG Example: Capturing Serial Data with a Known Baud Rate
        1. 21.6.6.1 Capturing Serial Data with a Known Baud Rate Register Configuration
    7. 21.7 EPG Interrupt
    8. 21.8 Software
      1. 21.8.1 EPG Registers to Driverlib Functions
      2. 21.8.2 EPG Examples
        1. 21.8.2.1 EPG Generating Synchronous Clocks - SINGLE_CORE
        2. 21.8.2.2 EPG Generating Two Offset Clocks - SINGLE_CORE
        3. 21.8.2.3 EPG Generating Two Offset Clocks With SIGGEN - SINGLE_CORE
        4. 21.8.2.4 EPG Generate Serial Data - SINGLE_CORE
        5. 21.8.2.5 EPG Generate Serial Data Shift Mode - SINGLE_CORE
    9. 21.9 EPG Registers
      1. 21.9.1 EPG Base Address Table
      2. 21.9.2 EPG_REGS Registers
      3. 21.9.3 EPG_MUX_REGS Registers
  24. 22â–º ANALOG PERIPHERALS
    1.     Technical Reference Manual Overview
  25. 23Analog Subsystem
    1. 23.1 Introduction
      1. 23.1.1 Features
      2. 23.1.2 Block Diagram
    2. 23.2 Optimizing Power-Up Time
    3. 23.3 Digital Inputs on ADC Pins (AIOs)
    4. 23.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 23.5 Analog Pins and Internal Connections
    6. 23.6 Software
      1. 23.6.1 ASYSCTL Registers to Driverlib Functions
    7. 23.7 Lock Registers
    8. 23.8 ASBSYS Registers
      1. 23.8.1 ASBSYS Base Address Table
      2. 23.8.2 ANALOG_SUBSYS_REGS Registers
  26. 24Analog-to-Digital Converter (ADC)
    1. 24.1  Introduction
      1. 24.1.1 ADC Related Collateral
      2. 24.1.2 Features
      3. 24.1.3 Block Diagram
    2. 24.2  ADC Configurability
      1. 24.2.1 Clock Configuration
      2. 24.2.2 Resolution
      3. 24.2.3 Voltage Reference
        1. 24.2.3.1 External Reference Mode
        2. 24.2.3.2 Internal Reference Mode
        3. 24.2.3.3 Ganged References
        4. 24.2.3.4 Selecting Reference Mode
      4. 24.2.4 Signal Mode
      5. 24.2.5 Expected Conversion Results
      6. 24.2.6 Interpreting Conversion Results
    3. 24.3  SOC Principle of Operation
      1. 24.3.1 SOC Configuration
      2. 24.3.2 Trigger Operation
        1. 24.3.2.1 Global Software Trigger
        2. 24.3.2.2 Trigger Repeaters
          1. 24.3.2.2.1 Oversampling Mode
          2. 24.3.2.2.2 Undersampling Mode
          3. 24.3.2.2.3 Trigger Phase Delay
          4. 24.3.2.2.4 Re-trigger Spread
          5. 24.3.2.2.5 Trigger Repeater Configuration
            1. 24.3.2.2.5.1 Register Shadow Updates
          6. 24.3.2.2.6 Re-Trigger Logic
          7. 24.3.2.2.7 Multi-Path Triggering Behavior
      3. 24.3.3 ADC Acquisition (Sample and Hold) Window
      4. 24.3.4 ADC Input Models
      5. 24.3.5 Channel Selection
        1. 24.3.5.1 External Channel Selection
          1. 24.3.5.1.1 External Channel Selection Timing
    4. 24.4  SOC Configuration Examples
      1. 24.4.1 Single Conversion from ePWM Trigger
      2. 24.4.2 Oversampled Conversion from ePWM Trigger
      3. 24.4.3 Multiple Conversions from CPU Timer Trigger
      4. 24.4.4 Software Triggering of SOCs
    5. 24.5  ADC Conversion Priority
    6. 24.6  Burst Mode
      1. 24.6.1 Burst Mode Example
      2. 24.6.2 Burst Mode Priority Example
    7. 24.7  EOC and Interrupt Operation
      1. 24.7.1 Interrupt Overflow
      2. 24.7.2 Continue to Interrupt Mode
      3. 24.7.3 Early Interrupt Configuration Mode
    8. 24.8  Post-Processing Blocks
      1. 24.8.1 PPB Offset Correction
      2. 24.8.2 PPB Error Calculation
      3. 24.8.3 PPB Result Delta Calculation
      4. 24.8.4 PPB Limit Detection and Zero-Crossing Detection
        1. 24.8.4.1 PPB Digital Trip Filter
      5. 24.8.5 PPB Sample Delay Capture
      6. 24.8.6 PPB Oversampling
        1. 24.8.6.1 Accumulation, Minimum, Maximum, and Average Functions
        2. 24.8.6.2 Outlier Rejection
    9. 24.9  Result Safety Checker
      1. 24.9.1 Result Safety Checker Operation
      2. 24.9.2 Result Safety Checker Interrupts and Events
    10. 24.10 Opens/Shorts Detection Circuit (OSDETECT)
      1. 24.10.1 Implementation
      2. 24.10.2 Detecting an Open Input Pin
      3. 24.10.3 Detecting a Shorted Input Pin
    11. 24.11 Power-Up Sequence
    12. 24.12 ADC Calibration
      1. 24.12.1 ADC Zero Offset Calibration
    13. 24.13 ADC Timings
      1. 24.13.1 ADC Timing Diagrams
      2. 24.13.2 Post-Processing Block Timings
    14. 24.14 Additional Information
      1. 24.14.1 Ensuring Synchronous Operation
        1. 24.14.1.1 Basic Synchronous Operation
        2. 24.14.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 24.14.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 24.14.1.4 Synchronous Operation with Different Resolutions
        5. 24.14.1.5 Non-overlapping Conversions
      2. 24.14.2 Choosing an Acquisition Window Duration
      3. 24.14.3 Achieving Simultaneous Sampling
      4. 24.14.4 Result Register Mapping
      5. 24.14.5 Internal Temperature Sensor
      6. 24.14.6 Designing an External Reference Circuit
      7. 24.14.7 Internal Test Mode
      8. 24.14.8 ADC Gain and Offset Calibration
    15. 24.15 Software
      1. 24.15.1 ADC Registers to Driverlib Functions
      2. 24.15.2 ADC Examples
        1. 24.15.2.1  ADC Software Triggering - SINGLE_CORE
        2. 24.15.2.2  ADC ePWM Triggering - SINGLE_CORE
        3. 24.15.2.3  ADC Temperature Sensor Conversion - SINGLE_CORE
        4. 24.15.2.4  ADC Synchronous SOC Software Force (adc_soc_software_sync) - SINGLE_CORE
        5. 24.15.2.5  ADC Continuous Triggering (adc_soc_continuous) - SINGLE_CORE
        6. 24.15.2.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma) - SINGLE_CORE
        7. 24.15.2.7  ADC PPB Offset (adc_ppb_offset) - SINGLE_CORE
        8. 24.15.2.8  ADC PPB Limits (adc_ppb_limits) - SINGLE_CORE
        9. 24.15.2.9  ADC PPB Delay Capture (adc_ppb_delay) - SINGLE_CORE
        10. 24.15.2.10 ADC ePWM Triggering Multiple SOC - SINGLE_CORE
        11. 24.15.2.11 ADC Burst Mode - SINGLE_CORE
        12. 24.15.2.12 ADC Burst Mode Oversampling - SINGLE_CORE
        13. 24.15.2.13 ADC SOC Oversampling - SINGLE_CORE
        14. 24.15.2.14 ADC PPB PWM trip (adc_ppb_pwm_trip) - SINGLE_CORE
        15. 24.15.2.15 ADC Trigger Repeater Oversampling - SINGLE_CORE
        16. 24.15.2.16 ADC Trigger Repeater Undersampling - SINGLE_CORE
        17. 24.15.2.17 ADC Safety Checker - SINGLE_CORE
    16. 24.16 ADC Registers
      1. 24.16.1 ADC Base Address Table
      2. 24.16.2 ADC_RESULT_REGS Registers
      3. 24.16.3 ADC_REGS Registers
      4. 24.16.4 ADC_SAFECHECK_REGS Registers
      5. 24.16.5 ADC_SAFECHECK_INTEVT_REGS Registers
      6. 24.16.6 ADC_GLOBAL_REGS Registers
  27. 25Buffered Digital-to-Analog Converter (DAC)
    1. 25.1 Introduction
      1. 25.1.1 DAC Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Block Diagram
    2. 25.2 Using the DAC
      1. 25.2.1 Initialization Sequence
      2. 25.2.2 DAC Offset Adjustment
      3. 25.2.3 EPWMSYNCPER Signal
    3. 25.3 Lock Registers
    4. 25.4 Software
      1. 25.4.1 DAC Registers to Driverlib Functions
      2. 25.4.2 DAC Examples
        1. 25.4.2.1 Buffered DAC Enable - SINGLE_CORE
        2. 25.4.2.2 Buffered DAC Random - SINGLE_CORE
    5. 25.5 DAC Registers
      1. 25.5.1 DAC Base Address Table
      2. 25.5.2 DAC_REGS Registers
  28. 26Comparator Subsystem (CMPSS)
    1. 26.1 Introduction
      1. 26.1.1 CMPSS Related Collateral
      2. 26.1.2 Features
      3. 26.1.3 Block Diagram
    2. 26.2 Comparator
    3. 26.3 Reference DAC
    4. 26.4 Ramp Generator
      1. 26.4.1 Ramp Generator Overview
      2. 26.4.2 Ramp Generator Behavior
      3. 26.4.3 Ramp Generator Behavior at Corner Cases
    5. 26.5 Digital Filter
      1. 26.5.1 Filter Initialization Sequence
    6. 26.6 Using the CMPSS
      1. 26.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 26.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 26.6.3 Calibrating the CMPSS
      4. 26.6.4 Enabling and Disabling the CMPSS Clock
    7. 26.7 Software
      1. 26.7.1 CMPSS Registers to Driverlib Functions
      2. 26.7.2 CMPSS Examples
        1. 26.7.2.1 CMPSS Asynchronous Trip - SINGLE_CORE
        2. 26.7.2.2 CMPSS Digital Filter Configuration - SINGLE_CORE
    8. 26.8 CMPSS Registers
      1. 26.8.1 CMPSS Base Address Table
      2. 26.8.2 CMPSS_REGS Registers
  29. 27â–º CONTROL PERIPHERALS
    1.     Technical Reference Manual Overview
  30. 28Enhanced Capture (eCAP)
    1. 28.1 Introduction
      1. 28.1.1 Features
      2. 28.1.2 ECAP Related Collateral
    2. 28.2 Description
    3. 28.3 Configuring Device Pins for the eCAP
    4. 28.4 Capture and APWM Operating Mode
    5. 28.5 Capture Mode Description
      1. 28.5.1  Event Prescaler
      2. 28.5.2  Glitch Filter
      3. 28.5.3  Edge Polarity Select and Qualifier
      4. 28.5.4  Continuous/One-Shot Control
      5. 28.5.5  32-Bit Counter and Phase Control
      6. 28.5.6  CAP1-CAP4 Registers
      7. 28.5.7  eCAP Synchronization
        1. 28.5.7.1 Example 1 - Using SWSYNC with ECAP Module
      8. 28.5.8  Interrupt Control
      9. 28.5.9  RTDMA Interrupt
      10. 28.5.10 ADC SOC Event
      11. 28.5.11 Shadow Load and Lockout Control
      12. 28.5.12 APWM Mode Operation
      13. 28.5.13 Signal Monitoring Unit
        1. 28.5.13.1 Pulse Width and Period Monitoring
        2. 28.5.13.2 Edge Monitoring
    6. 28.6 Application of the eCAP Module
      1. 28.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 28.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 28.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 28.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 28.7 Application of the APWM Mode
      1. 28.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 28.8 Software
      1. 28.8.1 ECAP Registers to Driverlib Functions
      2. 28.8.2 ECAP Examples
        1. 28.8.2.1 eCAP APWM Example - SINGLE_CORE
        2. 28.8.2.2 eCAP Capture PWM Example - SINGLE_CORE
        3. 28.8.2.3 eCAP APWM Phase-shift Example - SINGLE_CORE
    9. 28.9 ECAP Registers
      1. 28.9.1 ECAP Base Address Table
      2. 28.9.2 ECAP_REGS Registers
      3. 28.9.3 ECAP_SIGNAL_MONITORING Registers
      4. 28.9.4 HRCAP_REGS Registers
  31. 29High Resolution Capture (HRCAP)
    1. 29.1 Introduction
      1. 29.1.1 HRCAP Related Collateral
      2. 29.1.2 Features
      3. 29.1.3 Description
    2. 29.2 Operational Details
      1. 29.2.1 HRCAP Clocking
      2. 29.2.2 HRCAP Initialization Sequence
      3. 29.2.3 HRCAP Interrupts
      4. 29.2.4 HRCAP Calibration
        1. 29.2.4.1 Applying the Scale Factor
    3. 29.3 Known Exceptions
    4. 29.4 Software
      1. 29.4.1 HRCAP Examples
        1. 29.4.1.1 HRCAP Capture and Calibration Example - SINGLE_CORE
    5. 29.5 HRCAP Registers
      1. 29.5.1 HRCAP Base Address Table
      2. 29.5.2 HRCAP_REGS Registers
  32. 30Enhanced Pulse Width Modulator (ePWM)
    1. 30.1  Introduction
      1. 30.1.1 EPWM Related Collateral
      2. 30.1.2 Submodule Overview
    2. 30.2  Configuring Device Pins
    3. 30.3  ePWM Modules Overview
    4. 30.4  Time-Base (TB) Submodule
      1. 30.4.1 Purpose of the Time-Base Submodule
      2. 30.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 30.4.3 Calculating PWM Period and Frequency
        1. 30.4.3.1 Time-Base Period Shadow Register
        2. 30.4.3.2 Time-Base Clock Synchronization
        3. 30.4.3.3 Time-Base Counter Synchronization
        4. 30.4.3.4 ePWM SYNC Selection
      4. 30.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 30.4.5 Simultaneous Writes Between ePWM Register Instances
      6. 30.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 30.4.7 Global Load
        1. 30.4.7.1 Global Load Pulse Pre-Scalar
        2. 30.4.7.2 One-Shot Load Mode
        3. 30.4.7.3 One-Shot Sync Mode
    5. 30.5  Counter-Compare (CC) Submodule
      1. 30.5.1 Purpose of the Counter-Compare Submodule
      2. 30.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 30.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 30.5.4 Count Mode Timing Waveforms
    6. 30.6  Action-Qualifier (AQ) Submodule
      1. 30.6.1 Purpose of the Action-Qualifier Submodule
      2. 30.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 30.6.3 Action-Qualifier Event Priority
      4. 30.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 30.6.5 Configuration Requirements for Common Waveforms
    7. 30.7  XCMP Complex Waveform Generator Mode
      1. 30.7.1 XCMP Allocation to CMPA and CMPB
      2. 30.7.2 XCMP Shadow Buffers
      3. 30.7.3 XCMP Operation
    8. 30.8  Dead-Band Generator (DB) Submodule
      1. 30.8.1 Purpose of the Dead-Band Submodule
      2. 30.8.2 Dead-band Submodule Additional Operating Modes
      3. 30.8.3 Operational Highlights for the Dead-Band Submodule
    9. 30.9  PWM Chopper (PC) Submodule
      1. 30.9.1 Purpose of the PWM Chopper Submodule
      2. 30.9.2 Operational Highlights for the PWM Chopper Submodule
      3. 30.9.3 Waveforms
        1. 30.9.3.1 One-Shot Pulse
        2. 30.9.3.2 Duty Cycle Control
    10. 30.10 Trip-Zone (TZ) Submodule
      1. 30.10.1 Purpose of the Trip-Zone Submodule
      2. 30.10.2 Operational Highlights for the Trip-Zone Submodule
        1. 30.10.2.1 Trip-Zone Configurations
      3. 30.10.3 Generating Trip Event Interrupts
    11. 30.11 Diode Emulation (DE) Submodule
      1. 30.11.1 DEACTIVE Mode
      2. 30.11.2 Exiting DE Mode
      3. 30.11.3 Re-Entering DE Mode
      4. 30.11.4 DE Monitor
    12. 30.12 Minimum Dead-Band (MINDB) + Illegal Combination Logic (ICL) Submodules
      1. 30.12.1 Minimum Dead-Band (MINDB)
      2. 30.12.2 Illegal Combo Logic (ICL)
    13. 30.13 Event-Trigger (ET) Submodule
      1. 30.13.1 Operational Overview of the ePWM Event-Trigger Submodule
    14. 30.14 Digital Compare (DC) Submodule
      1. 30.14.1 Purpose of the Digital Compare Submodule
      2. 30.14.2 Enhanced Trip Action Using CMPSS
      3. 30.14.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 30.14.4 Operation Highlights of the Digital Compare Submodule
        1. 30.14.4.1 Digital Compare Events
        2. 30.14.4.2 Event Filtering
        3. 30.14.4.3 Valley Switching
        4. 30.14.4.4 Event Detection
          1. 30.14.4.4.1 Input Signal Detection
          2. 30.14.4.4.2 MIN and MAX Detection Circuit
    15. 30.15 ePWM Crossbar (X-BAR)
    16. 30.16 Applications to Power Topologies
      1. 30.16.1  Overview of Multiple Modules
      2. 30.16.2  Key Configuration Capabilities
      3. 30.16.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 30.16.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 30.16.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 30.16.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 30.16.7  Practical Applications Using Phase Control Between PWM Modules
      8. 30.16.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 30.16.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 30.16.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 30.16.11 Controlling H-Bridge LLC Resonant Converter
    17. 30.17 Register Lock Protection
    18. 30.18 High-Resolution Pulse Width Modulator (HRPWM)
      1. 30.18.1 Operational Description of HRPWM
        1. 30.18.1.1 Controlling the HRPWM Capabilities
        2. 30.18.1.2 HRPWM Source Clock
        3. 30.18.1.3 Configuring the HRPWM
        4. 30.18.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 30.18.1.5 Principle of Operation
          1. 30.18.1.5.1 Edge Positioning
          2. 30.18.1.5.2 Scaling Considerations
          3. 30.18.1.5.3 Duty Cycle Range Limitation
          4. 30.18.1.5.4 High-Resolution Period
            1. 30.18.1.5.4.1 High-Resolution Period Configuration
        6. 30.18.1.6 Deadband High-Resolution Operation
        7. 30.18.1.7 Scale Factor Optimizing Software (SFO)
        8. 30.18.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 30.18.1.8.1 #Defines for HRPWM Header Files
          2. 30.18.1.8.2 Implementing a Simple Buck Converter
            1. 30.18.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 30.18.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 30.18.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 30.18.1.8.3.1 PWM DAC Function Initialization Code
            2. 30.18.1.8.3.2 PWM DAC Function Run-Time Code
      2. 30.18.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 30.18.2.1 Scale Factor Optimizer Function - int SFO()
        2. 30.18.2.2 Software Usage
          1. 30.18.2.2.1 A Sample of How to Add "Include" Files
          2.        1131
          3. 30.18.2.2.2 Declaring an Element
          4.        1133
          5. 30.18.2.2.3 Initializing With a Scale Factor Value
          6.        1135
          7. 30.18.2.2.4 SFO Function Calls
    19. 30.19 Software
      1. 30.19.1 EPWM Registers to Driverlib Functions
      2. 30.19.2 HRPWMCAL Registers to Driverlib Functions
      3. 30.19.3 EPWM Examples
        1. 30.19.3.1  ePWM Trip Zone - SINGLE_CORE
        2. 30.19.3.2  ePWM Up Down Count Action Qualifier - SINGLE_CORE
        3. 30.19.3.3  ePWM Synchronization - SINGLE_CORE
        4. 30.19.3.4  ePWM Digital Compare - SINGLE_CORE
        5. 30.19.3.5  ePWM Digital Compare Event Filter Blanking Window - SINGLE_CORE
        6. 30.19.3.6  ePWM Valley Switching - SINGLE_CORE
        7. 30.19.3.7  ePWM Digital Compare Edge Filter - SINGLE_CORE
        8. 30.19.3.8  ePWM Deadband - SINGLE_CORE
        9. 30.19.3.9  ePWM DMA - SINGLE_CORE
        10. 30.19.3.10 ePWM Chopper - SINGLE_CORE
        11. 30.19.3.11 EPWM Configure Signal - SINGLE_CORE
        12. 30.19.3.12 Realization of Monoshot mode - SINGLE_CORE
        13. 30.19.3.13 EPWM Action Qualifier (epwm_up_aq) - SINGLE_CORE
        14. 30.19.3.14 ePWM XCMP Mode - SINGLE_CORE
        15. 30.19.3.15 ePWM Event Detection - SINGLE_CORE
    20. 30.20 EPWM Registers
      1. 30.20.1 EPWM Base Address Table
      2. 30.20.2 EPWM_REGS Registers
      3. 30.20.3 EPWM_XCMP_REGS Registers
      4. 30.20.4 DE_REGS Registers
      5. 30.20.5 MINDB_LUT_REGS Registers
      6. 30.20.6 HRPWMCAL_REGS Registers
  33. 31Enhanced Quadrature Encoder Pulse (eQEP)
    1. 31.1  Introduction
      1. 31.1.1 EQEP Related Collateral
    2. 31.2  Configuring Device Pins
    3. 31.3  Description
      1. 31.3.1 EQEP Inputs
      2. 31.3.2 Functional Description
      3. 31.3.3 eQEP Memory Map
    4. 31.4  Quadrature Decoder Unit (QDU)
      1. 31.4.1 Position Counter Input Modes
        1. 31.4.1.1 Quadrature Count Mode
        2. 31.4.1.2 Direction-Count Mode
        3. 31.4.1.3 Up-Count Mode
        4. 31.4.1.4 Down-Count Mode
      2. 31.4.2 eQEP Input Polarity Selection
      3. 31.4.3 Position-Compare Sync Output
    5. 31.5  Position Counter and Control Unit (PCCU)
      1. 31.5.1 Position Counter Operating Modes
        1. 31.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM] = 00)
        2. 31.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM] = 01)
        3. 31.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 31.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 31.5.2 Position Counter Latch
        1. 31.5.2.1 Index Event Latch
        2. 31.5.2.2 Strobe Event Latch
      3. 31.5.3 Position Counter Initialization
      4. 31.5.4 eQEP Position-compare Unit
    6. 31.6  eQEP Edge Capture Unit
    7. 31.7  eQEP Watchdog
    8. 31.8  eQEP Unit Timer Base
    9. 31.9  QMA Module
      1. 31.9.1 Modes of Operation
        1. 31.9.1.1 QMA Mode-1 (QMACTRL[MODE] = 1)
        2. 31.9.1.2 QMA Mode-2 (QMACTRL[MODE] = 2)
      2. 31.9.2 Interrupt and Error Generation
    10. 31.10 eQEP Interrupt Structure
    11. 31.11 Software
      1. 31.11.1 EQEP Registers to Driverlib Functions
      2. 31.11.2 EQEP Examples
        1. 31.11.2.1 Frequency Measurement Using eQEP via unit timeout interrupt - SINGLE_CORE
        2. 31.11.2.2 Motor speed and direction measurement using eQEP via unit timeout interrupt - SINGLE_CORE
    12. 31.12 EQEP Registers
      1. 31.12.1 EQEP Base Address Table
      2. 31.12.2 EQEP_REGS Registers
  34. 32Sigma Delta Filter Module (SDFM)
    1. 32.1  Introduction
      1. 32.1.1 SDFM Related Collateral
      2. 32.1.2 Features
      3. 32.1.3 Block Diagram
    2. 32.2  Configuring Device Pins
    3. 32.3  Input Qualification
    4. 32.4  Input Control Unit
    5. 32.5  SDFM Clock Control
    6. 32.6  Sinc Filter
      1. 32.6.1 Data Rate and Latency of the Sinc Filter
    7. 32.7  Data (Primary) Filter Unit
      1. 32.7.1 32-bit or 16-bit Data Filter Output Representation
      2. 32.7.2 Data FIFO
      3. 32.7.3 SDSYNC Event
    8. 32.8  Comparator (Secondary) Filter Unit
      1. 32.8.1 Higher Threshold (HLT) Comparators
      2. 32.8.2 Lower Threshold (LLT) Comparators
      3. 32.8.3 Digital Filter
    9. 32.9  Theoretical SDFM Filter Output
    10. 32.10 Interrupt Unit
      1. 32.10.1 SDFM (SDyERR) Interrupt Sources
      2. 32.10.2 Data Ready (DRINT) Interrupt Sources
    11. 32.11 Software
      1. 32.11.1 SDFM Registers to Driverlib Functions
      2. 32.11.2 SDFM Examples
    12. 32.12 SDFM Registers
      1. 32.12.1 SDFM Base Address Table
      2. 32.12.2 SDFM_REGS Registers
  35. 33â–º COMMUNICATION PERIPHERALS
    1.     Technical Reference Manual Overview
  36. 34Modular Controller Area Network (MCAN)
    1. 34.1 MCAN Introduction
      1. 34.1.1 MCAN Related Collateral
      2. 34.1.2 MCAN Features
    2. 34.2 MCAN Environment
    3. 34.3 CAN Network Basics
    4. 34.4 MCAN Integration
    5. 34.5 MCAN Functional Description
      1. 34.5.1  Module Clocking Requirements
      2. 34.5.2  Interrupt Requests
      3. 34.5.3  Operating Modes
        1. 34.5.3.1 Software Initialization
        2. 34.5.3.2 Normal Operation
        3. 34.5.3.3 CAN FD Operation
      4. 34.5.4  Transmitter Delay Compensation
        1. 34.5.4.1 Description
        2. 34.5.4.2 Transmitter Delay Compensation Measurement
      5. 34.5.5  Restricted Operation Mode
      6. 34.5.6  Bus Monitoring Mode
      7. 34.5.7  Disabled Automatic Retransmission (DAR) Mode
        1. 34.5.7.1 Frame Transmission in DAR Mode
      8. 34.5.8  Clock Stop Mode
        1. 34.5.8.1 Suspend Mode
        2. 34.5.8.2 Wakeup Request
      9. 34.5.9  Test Modes
        1. 34.5.9.1 External Loop Back Mode
        2. 34.5.9.2 Internal Loop Back Mode
      10. 34.5.10 Timestamp Generation
        1. 34.5.10.1 External Timestamp Counter
      11. 34.5.11 Timeout Counter
      12. 34.5.12 Safety
        1. 34.5.12.1 ECC Wrapper
        2. 34.5.12.2 ECC Aggregator
          1. 34.5.12.2.1 ECC Aggregator Overview
          2. 34.5.12.2.2 ECC Aggregator Registers
        3. 34.5.12.3 Reads to ECC Control and Status Registers
        4. 34.5.12.4 ECC Interrupts
      13. 34.5.13 Rx Handling
        1. 34.5.13.1 Acceptance Filtering
          1. 34.5.13.1.1 Range Filter
          2. 34.5.13.1.2 Filter for Specific IDs
          3. 34.5.13.1.3 Classic Bit Mask Filter
          4. 34.5.13.1.4 Standard Message ID Filtering
          5. 34.5.13.1.5 Extended Message ID Filtering
        2. 34.5.13.2 Rx FIFOs
          1. 34.5.13.2.1 Rx FIFO Blocking Mode
          2. 34.5.13.2.2 Rx FIFO Overwrite Mode
        3. 34.5.13.3 Dedicated Rx Buffers
          1. 34.5.13.3.1 Rx Buffer Handling
      14. 34.5.14 Tx Handling
        1. 34.5.14.1 Transmit Pause
        2. 34.5.14.2 Dedicated Tx Buffers
        3. 34.5.14.3 Tx FIFO
        4. 34.5.14.4 Tx Queue
        5. 34.5.14.5 Mixed Dedicated Tx Buffers/Tx FIFO
        6. 34.5.14.6 Mixed Dedicated Tx Buffers/Tx Queue
        7. 34.5.14.7 Transmit Cancellation
        8. 34.5.14.8 Tx Event Handling
      15. 34.5.15 FIFO Acknowledge Handling
      16. 34.5.16 Message RAM
        1. 34.5.16.1 Message RAM Configuration
        2. 34.5.16.2 Rx Buffer and FIFO Element
        3. 34.5.16.3 Tx Buffer Element
        4. 34.5.16.4 Tx Event FIFO Element
        5. 34.5.16.5 Standard Message ID Filter Element
        6. 34.5.16.6 Extended Message ID Filter Element
    6. 34.6 Software
      1. 34.6.1 MCAN Examples
        1. 34.6.1.1 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
        2. 34.6.1.2 MCAN Loopback with Polling Example Using SYSCONFIG Tool - SINGLE_CORE
        3. 34.6.1.3 MCAN Loopback with Interrupts Example Using SYSCONFIG Tool - SINGLE_CORE
    7. 34.7 MCAN Registers
      1. 34.7.1 MCAN Base Address Table
      2. 34.7.2 MCANSS_REGS Registers
      3. 34.7.3 MCAN_REGS Registers
      4. 34.7.4 MCAN_ERROR_REGS Registers
  37. 35EtherCAT® SubordinateDevice Controller (ESC)
    1. 35.1 Introduction
      1. 35.1.1  EtherCAT Related Collateral
      2. 35.1.2  ESC Features
      3. 35.1.3  ESC Subsystem Integrated Features
      4. 35.1.4  ESC versus Beckhoff ET1100
      5. 35.1.5  EtherCAT IP Block Diagram
      6. 35.1.6  ESC Functional Blocks
        1. 35.1.6.1  Interface to EtherCAT MainDevice
        2. 35.1.6.2  Process Data Interface
        3. 35.1.6.3  General-Purpose Inputs and Outputs
        4. 35.1.6.4  EtherCAT Processing Unit (EPU)
        5. 35.1.6.5  Fieldbus Memory Management Unit (FMMU)
        6. 35.1.6.6  Sync Manager
        7. 35.1.6.7  Monitoring
        8. 35.1.6.8  Reset Controller
        9. 35.1.6.9  PHY Management
        10. 35.1.6.10 Distributed Clock (DC)
        11. 35.1.6.11 EEPROM
        12. 35.1.6.12 Status / LEDs
      7. 35.1.7  EtherCAT Physical Layer
        1. 35.1.7.1 MII Interface
        2. 35.1.7.2 PHY Management Interface
          1. 35.1.7.2.1 PHY Address Configuration
          2. 35.1.7.2.2 PHY Reset Signal
          3. 35.1.7.2.3 PHY Clock
      8. 35.1.8  EtherCAT Protocol
      9. 35.1.9  EtherCAT State Machine (ESM)
      10. 35.1.10 More Information on EtherCAT
      11. 35.1.11 Beckhoff® Automation EtherCAT IP Errata
    2. 35.2 ESC and ESCSS Description
      1. 35.2.1  ESC RAM Parity and Memory Address Maps
        1. 35.2.1.1 ESC RAM Parity Logic
        2. 35.2.1.2 CPU1 ESC Memory Address Map
        3. 35.2.1.3 CPU2 ESC Memory Address Map
      2. 35.2.2  Local Host Communication
        1. 35.2.2.1 Byte Accessibility Through PDI
        2. 35.2.2.2 Software Details for Operation Across Clock Domains
      3. 35.2.3  Debug Emulation Mode Operation
      4. 35.2.4  ESC SubSystem
        1. 35.2.4.1 CPU1 Bus Interface
        2. 35.2.4.2 CPU2/CPU3 Bus Interface
      5. 35.2.5  Interrupts and Interrupt Mapping
      6. 35.2.6  Power, Clocks, and Resets
        1. 35.2.6.1 Power
        2. 35.2.6.2 Clocking
        3. 35.2.6.3 Resets
          1. 35.2.6.3.1 Chip-Level Reset
          2. 35.2.6.3.2 EtherCAT Soft Resets
          3. 35.2.6.3.3 Reset Out (RESET_OUT)
      7. 35.2.7  LED Controls
      8. 35.2.8  SubordinateDevice Node Configuration and EEPROM
      9. 35.2.9  General-Purpose Inputs and Outputs
        1. 35.2.9.1 General-Purpose Inputs
        2. 35.2.9.2 General-Purpose Output
      10. 35.2.10 Distributed Clocks – Sync and Latch
        1. 35.2.10.1 Clock Synchronization
        2. 35.2.10.2 SYNC Signals
          1. 35.2.10.2.1 Seeking Host Intervention
        3. 35.2.10.3 LATCH Signals
          1. 35.2.10.3.1 Timestamping
        4. 35.2.10.4 Device Control and Synchronization
          1. 35.2.10.4.1 Synchronization of PWM
          2. 35.2.10.4.2 ECAP SYNC Inputs
          3. 35.2.10.4.3 SYNC Signal Conditioning and Rerouting
    3. 35.3 Software Initialization Sequence and Allocating Ownership
    4. 35.4 ESC Configuration Constants
    5. 35.5 Software
      1. 35.5.1 ECAT_SS Registers to Driverlib Functions
      2. 35.5.2 ETHERNET Examples
    6. 35.6 ETHERCAT Registers
      1. 35.6.1 ETHERCAT Base Address Table
      2. 35.6.2 ESCSS_REGS Registers
      3. 35.6.3 ESCSS_CONFIG_REGS Registers
  38. 36Fast Serial Interface (FSI)
    1. 36.1 Introduction
      1. 36.1.1 FSI Related Collateral
      2. 36.1.2 FSI Features
    2. 36.2 System-level Integration
      1. 36.2.1 CPU Interface
      2. 36.2.2 Signal Description
        1. 36.2.2.1 Configuring Device Pins
      3. 36.2.3 FSI Interrupts
        1. 36.2.3.1 Transmitter Interrupts
        2. 36.2.3.2 Receiver Interrupts
        3. 36.2.3.3 Configuring Interrupts
        4. 36.2.3.4 Handling Interrupts
      4. 36.2.4 RTDMA Interface
      5. 36.2.5 External Frame Trigger Mux
    3. 36.3 FSI Functional Description
      1. 36.3.1 Introduction to Operation
      2. 36.3.2 FSI Transmitter Module
        1. 36.3.2.1 Initialization
        2. 36.3.2.2 FSI_TX Clocking
        3. 36.3.2.3 Transmitting Frames
          1. 36.3.2.3.1 Software Triggered Frames
          2. 36.3.2.3.2 Externally Triggered Frames
          3. 36.3.2.3.3 Ping Frame Generation
            1. 36.3.2.3.3.1 Automatic Ping Frames
            2. 36.3.2.3.3.2 Software Triggered Ping Frame
            3. 36.3.2.3.3.3 Externally Triggered Ping Frame
          4. 36.3.2.3.4 Transmitting Frames with RTDMA
        4. 36.3.2.4 Transmit Buffer Management
        5. 36.3.2.5 CRC Submodule
        6. 36.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 36.3.2.7 Reset
      3. 36.3.3 FSI Receiver Module
        1. 36.3.3.1  Initialization
        2. 36.3.3.2  FSI_RX Clocking
        3. 36.3.3.3  Receiving Frames
          1. 36.3.3.3.1 Receiving Frames with RTDMA
        4. 36.3.3.4  Ping Frame Watchdog
        5. 36.3.3.5  Frame Watchdog
        6. 36.3.3.6  Delay Line Control
        7. 36.3.3.7  Buffer Management
        8. 36.3.3.8  CRC Submodule
        9. 36.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 36.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 36.3.3.11 FSI_RX Reset
      4. 36.3.4 Frame Format
        1. 36.3.4.1 FSI Frame Phases
        2. 36.3.4.2 Frame Types
          1. 36.3.4.2.1 Ping Frames
          2. 36.3.4.2.2 Error Frames
          3. 36.3.4.2.3 Data Frames
        3. 36.3.4.3 Multi-Lane Transmission
      5. 36.3.5 Flush Sequence
      6. 36.3.6 Internal Loopback
      7. 36.3.7 CRC Generation
      8. 36.3.8 ECC Module
      9. 36.3.9 FSI-SPI Compatibility Mode
        1. 36.3.9.1 Available SPI Modes
          1. 36.3.9.1.1 FSITX as SPI Controller, Transmit Only
            1. 36.3.9.1.1.1 Initialization
            2. 36.3.9.1.1.2 Operation
          2. 36.3.9.1.2 FSIRX as SPI Peripheral, Receive Only
            1. 36.3.9.1.2.1 Initialization
            2. 36.3.9.1.2.2 Operation
          3. 36.3.9.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Controller
            1. 36.3.9.1.3.1 Initialization
            2. 36.3.9.1.3.2 Operation
    4. 36.4 FSI Programing Guide
      1. 36.4.1 Establishing the Communication Link
        1. 36.4.1.1 Establishing the Communication Link from the Main Device
        2. 36.4.1.2 Establishing the Communication Link from the Remote Device
      2. 36.4.2 Register Protection
      3. 36.4.3 Emulation Mode
    5. 36.5 Software
      1. 36.5.1 FSI Registers to Driverlib Functions
      2. 36.5.2 FSI Examples
        1. 36.5.2.1 FSI Loopback:CPU Control - SINGLE_CORE
        2. 36.5.2.2 FSI data transfers upon CPU Timer event - SINGLE_CORE
    6. 36.6 FSI Registers
      1. 36.6.1 FSI Base Address Table
      2. 36.6.2 FSI_TX_REGS Registers
      3. 36.6.3 FSI_RX_REGS Registers
  39. 37Inter-Integrated Circuit Module (I2C)
    1. 37.1 Introduction
      1. 37.1.1 I2C Related Collateral
      2. 37.1.2 Features
      3. 37.1.3 Features Not Supported
      4. 37.1.4 Functional Overview
      5. 37.1.5 Clock Generation
      6. 37.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 37.1.6.1 Formula for the Controller Clock Period
    2. 37.2 Configuring Device Pins
    3. 37.3 I2C Module Operational Details
      1. 37.3.1  Input and Output Voltage Levels
      2. 37.3.2  Selecting Pullup Resistors
      3. 37.3.3  Data Validity
      4. 37.3.4  Operating Modes
      5. 37.3.5  I2C Module START and STOP Conditions
      6. 37.3.6  Non-repeat Mode versus Repeat Mode
      7. 37.3.7  Serial Data Formats
        1. 37.3.7.1 7-Bit Addressing Format
        2. 37.3.7.2 10-Bit Addressing Format
        3. 37.3.7.3 Free Data Format
        4. 37.3.7.4 Using a Repeated START Condition
      8. 37.3.8  Clock Synchronization
      9. 37.3.9  Clock Stretching
      10. 37.3.10 Arbitration
      11. 37.3.11 Digital Loopback Mode
      12. 37.3.12 NACK Bit Generation
    4. 37.4 Interrupt Requests Generated by the I2C Module
      1. 37.4.1 Basic I2C Interrupt Requests
      2. 37.4.2 I2C FIFO Interrupts
    5. 37.5 Resetting or Disabling the I2C Module
    6. 37.6 Software
      1. 37.6.1 I2C Registers to Driverlib Functions
      2. 37.6.2 I2C Examples
        1. 37.6.2.1 I2C Digital Loopback with FIFO Interrupts - SINGLE_CORE
        2. 37.6.2.2 I2C EEPROM - SINGLE_CORE
        3. 37.6.2.3 I2C Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        4. 37.6.2.4 I2C Extended Clock Stretching Controller TX - SINGLE_CORE
        5. 37.6.2.5 I2C Extended Clock Stretching Target RX - SINGLE_CORE
    7. 37.7 I2C Registers
      1. 37.7.1 I2C Base Address Table
      2. 37.7.2 I2C_REGS Registers
  40. 38Power Management Bus Module (PMBus)
    1. 38.1 Introduction
      1. 38.1.1 PMBUS Related Collateral
      2. 38.1.2 Features
      3. 38.1.3 Block Diagram
    2. 38.2 Configuring Device Pins
    3. 38.3 Target Mode Operation
      1. 38.3.1 Configuration
      2. 38.3.2 Message Handling
        1. 38.3.2.1  Quick Command
        2. 38.3.2.2  Send Byte
        3. 38.3.2.3  Receive Byte
        4. 38.3.2.4  Write Byte and Write Word
        5. 38.3.2.5  Read Byte and Read Word
        6. 38.3.2.6  Process Call
        7. 38.3.2.7  Block Write
        8. 38.3.2.8  Block Read
        9. 38.3.2.9  Block Write-Block Read Process Call
        10. 38.3.2.10 Alert Response
        11. 38.3.2.11 Extended Command
        12. 38.3.2.12 Group Command
    4. 38.4 Controller Mode Operation
      1. 38.4.1 Configuration
      2. 38.4.2 Message Handling
        1. 38.4.2.1  Quick Command
        2. 38.4.2.2  Send Byte
        3. 38.4.2.3  Receive Byte
        4. 38.4.2.4  Write Byte and Write Word
        5. 38.4.2.5  Read Byte and Read Word
        6. 38.4.2.6  Process Call
        7. 38.4.2.7  Block Write
        8. 38.4.2.8  Block Read
        9. 38.4.2.9  Block Write-Block Read Process Call
        10. 38.4.2.10 Alert Response
        11. 38.4.2.11 Extended Command
        12. 38.4.2.12 Group Command
    5. 38.5 Software
      1. 38.5.1 PMBUS Registers to Driverlib Functions
    6. 38.6 PMBUS Registers
      1. 38.6.1 PMBUS Base Address Table
      2. 38.6.2 PMBUS_REGS Registers
  41. 39Universal Asynchronous Receiver/Transmitter (UART)
    1. 39.1 Introduction
      1. 39.1.1 Features
      2. 39.1.2 UART Related Collateral
      3. 39.1.3 Block Diagram
    2. 39.2 Functional Description
      1. 39.2.1 Transmit and Receive Logic
      2. 39.2.2 Baud-Rate Generation
      3. 39.2.3 Data Transmission
      4. 39.2.4 Serial IR (SIR)
      5. 39.2.5 9-Bit UART Mode
      6. 39.2.6 FIFO Operation
      7. 39.2.7 Interrupts
      8. 39.2.8 Loopback Operation
      9. 39.2.9 RTDMA Operation
        1. 39.2.9.1 Receiving Data Using UART with RTDMA
        2. 39.2.9.2 Transmitting Data Using UART with RTDMA
    3. 39.3 Initialization and Configuration
    4. 39.4 Software
      1. 39.4.1 UART Registers to Driverlib Functions
      2. 39.4.2 UART Examples
        1. 39.4.2.1 UART Loopback - SINGLE_CORE
        2. 39.4.2.2 UART Loopback with Interrupt - SINGLE_CORE
        3. 39.4.2.3 UART Loopback with DMA - SINGLE_CORE
        4. 39.4.2.4 UART Echoback - SINGLE_CORE
    5. 39.5 UART Registers
      1. 39.5.1 UART Base Address Table
      2. 39.5.2 UART_REGS Registers
      3. 39.5.3 UART_REGS_WRITE Registers
  42. 40Local Interconnect Network (LIN)
    1. 40.1 LIN Overview
      1. 40.1.1 LIN Mode Features
      2. 40.1.2 SCI Mode Features
      3. 40.1.3 Block Diagram
    2. 40.2 Serial Communications Interface Module
      1. 40.2.1 SCI Communication Formats
        1. 40.2.1.1 SCI Frame Formats
        2. 40.2.1.2 SCI Asynchronous Timing Mode
        3. 40.2.1.3 SCI Baud Rate
          1. 40.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 40.2.1.4 SCI Multiprocessor Communication Modes
          1. 40.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 40.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 40.2.1.5 SCI Multibuffered Mode
      2. 40.2.2 SCI Interrupts
        1. 40.2.2.1 Transmit Interrupt
        2. 40.2.2.2 Receive Interrupt
        3. 40.2.2.3 WakeUp Interrupt
        4. 40.2.2.4 Error Interrupts
      3. 40.2.3 SCI RTDMA Interface
        1. 40.2.3.1 Receive RTDMA Requests
        2. 40.2.3.2 Transmit RTDMA Requests
      4. 40.2.4 SCI Configurations
        1. 40.2.4.1 Receiving Data
          1. 40.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 40.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 40.2.4.2 Transmitting Data
          1. 40.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 40.2.5 SCI Low-Power Mode
        1. 40.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 40.3 Local Interconnect Network Module
      1. 40.3.1 LIN Communication Formats
        1. 40.3.1.1  LIN Standards
        2. 40.3.1.2  Message Frame
          1. 40.3.1.2.1 Message Header
          2. 40.3.1.2.2 Response
        3. 40.3.1.3  Synchronizer
        4. 40.3.1.4  Baud Rate
          1. 40.3.1.4.1 Fractional Divider
          2. 40.3.1.4.2 Superfractional Divider
            1. 40.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 40.3.1.5  Header Generation
          1. 40.3.1.5.1 Event Triggered Frame Handling
          2. 40.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 40.3.1.6  Extended Frames Handling
        7. 40.3.1.7  Timeout Control
          1. 40.3.1.7.1 No-Response Error (NRE)
          2. 40.3.1.7.2 Bus Idle Detection
          3. 40.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 40.3.1.8  TXRX Error Detector (TED)
          1. 40.3.1.8.1 Bit Errors
          2. 40.3.1.8.2 Physical Bus Errors
          3. 40.3.1.8.3 ID Parity Errors
          4. 40.3.1.8.4 Checksum Errors
        9. 40.3.1.9  Message Filtering and Validation
        10. 40.3.1.10 Receive Buffers
        11. 40.3.1.11 Transmit Buffers
      2. 40.3.2 LIN Interrupts
      3. 40.3.3 Servicing LIN Interrupts
      4. 40.3.4 LIN RTDMA Interface
        1. 40.3.4.1 LIN Receive RTDMA Requests
        2. 40.3.4.2 LIN Transmit RTDMA Requests
      5. 40.3.5 LIN Configurations
        1. 40.3.5.1 Receiving Data
          1. 40.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 40.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 40.3.5.2 Transmitting Data
          1. 40.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 40.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 40.4 Low-Power Mode
      1. 40.4.1 Entering Sleep Mode
      2. 40.4.2 Wakeup
      3. 40.4.3 Wakeup Timeouts
    5. 40.5 Emulation Mode
    6. 40.6 Software
      1. 40.6.1 LIN Registers to Driverlib Functions
      2. 40.6.2 LIN Examples
        1. 40.6.2.1 LIN Internal Loopback with Interrupts - SINGLE_CORE
        2. 40.6.2.2 LIN SCI Mode Internal Loopback with Interrupts - SINGLE_CORE
        3. 40.6.2.3 LIN SCI MODE Internal Loopback with DMA - SINGLE_CORE
        4. 40.6.2.4 LIN Internal Loopback without interrupts (polled mode) - SINGLE_CORE
        5. 40.6.2.5 LIN SCI MODE (Single Buffer) Internal Loopback with DMA - SINGLE_CORE
    7. 40.7 LIN Registers
      1. 40.7.1 LIN Base Address Table
      2. 40.7.2 LIN_REGS Registers
  43. 41Serial Peripheral Interface (SPI)
    1. 41.1 Introduction
      1. 41.1.1 Features
      2. 41.1.2 Block Diagram
    2. 41.2 System-Level Integration
      1. 41.2.1 SPI Module Signals
      2. 41.2.2 Configuring Device Pins
        1. 41.2.2.1 GPIOs Required for High-Speed Mode
      3. 41.2.3 SPI Interrupts
      4. 41.2.4 RTDMA Support
    3. 41.3 SPI Operation
      1. 41.3.1  Introduction to Operation
      2. 41.3.2  Controller Mode
      3. 41.3.3  Peripheral Mode
      4. 41.3.4  Data Format
        1. 41.3.4.1 Transmission of Bit from SPIRXBUF
      5. 41.3.5  Baud Rate Selection
        1. 41.3.5.1 Baud Rate Determination
        2. 41.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
        3. 41.3.5.3 Baud Rate Calculation
      6. 41.3.6  SPI Clocking Schemes
      7. 41.3.7  SPI FIFO Description
      8. 41.3.8  SPI RTDMA Transfers
        1. 41.3.8.1 Transmitting Data Using SPI with RTDMA
        2. 41.3.8.2 Receiving Data Using SPI with RTDMA
      9. 41.3.9  SPI High-Speed Mode
      10. 41.3.10 SPI 3-Wire Mode Description
    4. 41.4 Programming Procedure
      1. 41.4.1 Initialization Upon Reset
      2. 41.4.2 Configuring the SPI
      3. 41.4.3 Configuring the SPI for High-Speed Mode
      4. 41.4.4 Data Transfer Example
      5. 41.4.5 SPI 3-Wire Mode Code Examples
        1. 41.4.5.1 3-Wire Controller Mode Transmit
        2.       1703
          1. 41.4.5.2.1 3-Wire Controller Mode Receive
        3.       1705
          1. 41.4.5.2.1 3-Wire Peripheral Mode Transmit
        4.       1707
          1. 41.4.5.2.1 3-Wire Peripheral Mode Receive
      6. 41.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 41.5 Software
      1. 41.5.1 SPI Registers to Driverlib Functions
      2. 41.5.2 SPI Examples
        1. 41.5.2.1 SPI Digital Loopback - SINGLE_CORE
        2. 41.5.2.2 SPI Digital Loopback with FIFO Interrupts - SINGLE_CORE
        3. 41.5.2.3 SPI Digital External Loopback without FIFO Interrupts - SINGLE_CORE
        4. 41.5.2.4 SPI Digital External Loopback with FIFO Interrupts - SINGLE_CORE
        5. 41.5.2.5 SPI Digital Loopback with DMA - SINGLE_CORE
    6. 41.6 SPI Registers
      1. 41.6.1 SPI Base Address Table
      2. 41.6.2 SPI_REGS Registers
  44. 42Single Edge Nibble Transmission (SENT)
    1. 42.1 Introduction
      1. 42.1.1 Features
      2. 42.1.2 SENT Related Collateral
    2. 42.2 Advanced Topologies: MTPG
      1. 42.2.1 MTPG Features
      2. 42.2.2 MTPG Description
      3. 42.2.3 Channel Triggers
      4. 42.2.4 Timeout
    3. 42.3 Protocol Description
      1. 42.3.1 Nibble Frame Format
      2. 42.3.2 CRC
      3. 42.3.3 Short Serial Message Format
      4. 42.3.4 Enhanced Serial Message Format
      5. 42.3.5 Enhanced Serial Message Format CRC
      6. 42.3.6 Receive Modes
    4. 42.4 RTDMA Trigger
    5. 42.5 Interrupts Configuration
    6. 42.6 Glitch Filter
    7. 42.7 Software
      1. 42.7.1 SENT Registers to Driverlib Functions
      2. 42.7.2 SENT Examples
        1. 42.7.2.1 SENT Single Sensor - SINGLE_CORE
    8. 42.8 SENT Registers
      1. 42.8.1 SENT Base Address Table
      2. 42.8.2 SENT_CFG Registers
      3. 42.8.3 SENT_MEM Registers
      4. 42.8.4 SENT_MTPG Registers
  45. 43â–º SECURITY PERIPHERALS
    1.     Technical Reference Manual Overview
  46. 44Security Modules
    1. 44.1 Hardware Security Module (HSM)
      1. 44.1.1 HSM Related Collateral
    2. 44.2 Cryptographic Accelerators
  47. 45Revision History

SSU_GEN_REGS Registers

Table 10-15 lists the memory-mapped registers for the SSU_GEN_REGS registers. All register offset addresses not listed in Table 10-15 should be considered as reserved locations and the register contents should not be modified.

Table 10-15 SSU_GEN_REGS Registers
OffsetAcronymRegister NameProtection
0hREVISIONModule Revision Register
4hUPP_REVISIONUser Protection Policy Revision
8hSSUMODESafety and Security Operational Mode
ChLINK2_AP_OVERRIDELINK2 Access Protection Override Register
2ChBOOTMODE_STATUser Boot Mode Status Register
30hEMU_BOOTPIN_CONFIGUser Emulation Boot Pin Configuration
34hEMU_BOOT_DIAGUser Emulation Boot Options
38hEMU_BOOT_CLKCFGUser Emulation Boot Clock Configuration Register
3ChEMU_BOOTENUser Emulation Boot Enable
40hRAMOPEN_LOCKRAMOPEN Feature Lock Register
44hRAMOPEN_COMMITRAMOPEN Feature Commit Register
4ChCPUIDCPUID Register
50hBANKMAPValid Banks
54hBANKMAP_LOCKBank Map Lock Register
58hBANKMAP_COMMITBank Map Commit Register
5ChBANKMODEBank Mode Configuration Register
60hBANKMODE_LOCKBank Mode Lock Register
64hBANKMODE_COMMITBank Mode Commit Register
68hSECCFG_UPDATE_CFGSECCFG Flash Update Configuration Register
70hPROG_BANKMODEProgramming BANKMODE Register
74hSECVALIDValid SECCFG Sector
78hSECVALID_LOCKValid SECCFG Sector Lock Register
7ChSECVALID_COMMITValid SECCFG Sector Commit Register
80hZONE1_CFGZONE1 Configuration
84hZONE2_CFGZONE2 Configuration
88hZONE3_CFGZONE3 Configuration
90hDEBUG_CFGDebug Configuration
94hDEBUG_CFG_LOCKDebug Configuration Lock Register
98hDEBUG_CFG_COMMITDebug Configuration Commit Register
A0hDEBUG_STATDebug Status Register
A4hC29DBGENC29 Debug Enable Register
A8hZONE_DBGENZONE Debug Enable Register
200hBEPROT_BANKBank Erase Protection Bank Register
204hBEPROT_STATBank Erase Status Register
208hBEPROTABank Erase Protection Register A
20ChBEPROTBBank Erase Protection Register B
220hFLSEMSTATFlash Controller Semaphore Status Register
224hFLSEMREQFlash Controller Semaphore Request Register
228hFLSEMCLRFlash Controller Semaphore Clear Register
230hWEPROT_CODE_BANKSGlobal Code Banks Write Erase
234hWEPROT_CODE_BANKS_LOCKGlobal Code Banks Write Erase Lock
238hWEPROT_CODE_BANKS_COMMITGlobal Code Banks Write Erase Commit
240hWEPROT_DATA_BANKSGlobal Data Banks Write Erase
244hWEPROT_DATA_BANKS_LOCKGlobal Data Banks Write Erase Lock
248hWEPROT_DATA_BANKS_COMMITGlobal Data Banks Write Erase Commit
300hWEPROT_FLC1_B0_AFlash Controller 1 B0 Write Erase Protection A
304hWEPROT_FLC1_B0_BFlash Controller 1 B0 Write Erase Protection B
310hWEPROT_FLC1_B0_LOCKFlash Controller 1 B0 WEPROTA Lock
314hWEPROT_FLC1_B0_COMMITFlash Controller 1 B0 WEPROTA Commit
340hWEPROT_FLC1_B2_AFlash Controller 1 B2 Write Erase Protection A
344hWEPROT_FLC1_B2_BFlash Controller 1 B2 Write Erase Protection B
350hWEPROT_FLC1_B2_LOCKFlash Controller 1 B2 WEPROTA Lock
354hWEPROT_FLC1_B2_COMMITFlash Controller 1 B2 WEPROTA Commit
3A0hWEPROT_FLC2_B0_AFlash Controller 2 B0 Write Erase Protection A
3A4hWEPROT_FLC2_B0_BFlash Controller 2 B0 Write Erase Protection B
3B0hWEPROT_FLC2_B0_LOCKFlash Controller 2 B0 WEPROTA Lock
3B4hWEPROT_FLC2_B0_COMMITFlash Controller 2 B0 WEPROTA Commit
3E0hWEPROT_FLC2_B2_AFlash Controller 2 B2 Write Erase Protection A
3E4hWEPROT_FLC2_B2_BFlash Controller 2 B2 Write Erase Protection B
3F0hWEPROT_FLC2_B2_LOCKFlash Controller 2 B2 WEPROTA Lock
3F4hWEPROT_FLC2_B2_COMMITFlash Controller 2 B2 WEPROTA Commit

Complex bit access types are encoded to fit into small table cells. Table 10-16 shows the codes that are used for access types in this section.

Table 10-16 SSU_GEN_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1SW
1S
Write
1 to set
WOnceW
Once
Write
Write once
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

10.16.2.1 REVISION Register (Offset = 0h) [Reset = 00000000h]

REVISION is shown in Figure 10-6 and described in Table 10-17.

Return to the Summary Table.

Module Revision Register

Figure 10-6 REVISION Register
313029282726252423222120191817161514131211109876543210
RESERVEDRESERVEDMAJREVMINREV
R-0hR-0hR-0hR-0h
Table 10-17 REVISION Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR0hReserved
23-16RESERVEDR0hReserved
15-8MAJREVR0hThis hardcoded field defines the major revision of the IP.

Reset type: XRSn

7-0MINREVR0hThis hardcoded field defines the minor revision of the IP.

Reset type: XRSn

10.16.2.2 UPP_REVISION Register (Offset = 4h) [Reset = 00000000h]

UPP_REVISION is shown in Figure 10-7 and described in Table 10-18.

Return to the Summary Table.

User Protection Policy Revision

Figure 10-7 UPP_REVISION Register
313029282726252423222120191817161514131211109876543210
RESERVEDREV
R-0hR/W-0h
Table 10-18 UPP_REVISION Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-0REVR/W0hDefines the User Protection Policy revision number stored in the SECCFG sectors.

Reset type: XRSn

10.16.2.3 SSUMODE Register (Offset = 8h) [Reset = 00000003h]

SSUMODE is shown in Figure 10-8 and described in Table 10-19.

Return to the Summary Table.

Safety and Security Operational Mode

Figure 10-8 SSUMODE Register
313029282726252423222120191817161514131211109876543210
RESERVEDRESERVEDOPMODE
R-0hR-0hR/WOnce-3h
Table 10-19 SSUMODE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-6RESERVEDR0hReserved
5-0OPMODER/WOnce3hDefines the operational mode of the SSU.
0x03 : SSUMODE3 mode (recommended)
0x0C : SSUMODE2 mode
0x30 : SSUMODE1 mode
Others : Invalid and generates a fault.

Reset type: XRSn

10.16.2.4 LINK2_AP_OVERRIDE Register (Offset = Ch) [Reset = 00000000h]

LINK2_AP_OVERRIDE is shown in Figure 10-9 and described in Table 10-20.

Return to the Summary Table.

LINK2 Access Protection Override Register

Figure 10-9 LINK2_AP_OVERRIDE Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCPU3CPU2CPU1
R-0hR/W-0hR/W-0hR/W-0h
Table 10-20 LINK2_AP_OVERRIDE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-3RESERVEDR0hReserved
2CPU3R/W0hOverrides the effect of every APx_ACCESS.LINK2 bit field for CPU3, providing LINK2 R/W access to each of its enabled AP ranges. The APx_ACCESS register bit fields are not changed. Only CPU3 can modify this bit.
0 : CPU3's APx_ACCESS.LINK2 bit fields are not overridden
1 : CPU3's LINK2 has R/W permissions to all enabled AP ranges.

Reset type: XRSn

1CPU2R/W0hOverrides the effect of every APx_ACCESS.LINK2 bit field for CPU2, providing LINK2 R/W access to each of its enabled AP ranges. The APx_ACCESS register bit fields are not changed. Only CPU2 can modify this bit.
0 : CPU2's APx_ACCESS.LINK2 bit fields are not overridden
1 : CPU2's LINK2 has R/W permissions to all enabled AP ranges.

Reset type: XRSn

0CPU1R/W0hOverrides the effect of every APx_ACCESS.LINK2 bit field for CPU1, providing LINK2 R/W access to each of its enabled AP ranges. The APx_ACCESS register bit fields are not changed. Only CPU1 can modify this bit.
0 : CPU1's APx_ACCESS.LINK2 bit fields are not overridden
1 : CPU1's LINK2 has R/W permissions to all enabled AP ranges.

Reset type: XRSn

10.16.2.5 BOOTMODE_STAT Register (Offset = 2Ch) [Reset = 00000000h]

BOOTMODE_STAT is shown in Figure 10-10 and described in Table 10-21.

Return to the Summary Table.

User Boot Mode Status Register

Figure 10-10 BOOTMODE_STAT Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDPIN_STAT
R-0-0hR/WOnce-0h
Table 10-21 BOOTMODE_STAT Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2-0PIN_STATR/WOnce0hOnce written by CPU1's boot ROM code, reflects the value of the chosen boot pins.
0x0 : BOOT_DEF0 is active
0x1 : BOOT_DEF1 is active
0x2 : BOOT_DEF2 is active
0x3 : BOOT_DEF3 is active
0x4 : BOOT_DEF4 is active
0x5 : BOOT_DEF5 is active
0x6 : BOOT_DEF6 is active
0x7 : BOOT_DEF7 is active

Reset type: XRSn

10.16.2.6 EMU_BOOTPIN_CONFIG Register (Offset = 30h) [Reset = 00FFFFFFh]

EMU_BOOTPIN_CONFIG is shown in Figure 10-11 and described in Table 10-22.

Return to the Summary Table.

User Emulation Boot Pin Configuration

Figure 10-11 EMU_BOOTPIN_CONFIG Register
313029282726252423222120191817161514131211109876543210
KEYBMSP2BMSP1BMSP0
R/W-0hR/W-FFhR/W-FFhR/W-FFh
Table 10-22 EMU_BOOTPIN_CONFIG Register Field Descriptions
BitFieldTypeResetDescription
31-24KEYR/W0hDefines whether the contents in this register are valid or not.
0x5A : Valid
Others : Invalid

Reset type: XRSn

23-16BMSP2R/WFFhSet to the GPIO pin to be used during emulation boot (up to 254).
0x00 : GPIO0
0x01 : GPIO1
...
0xFE : GPIO254
0xFF : Disabled

Reset type: XRSn

15-8BMSP1R/WFFhSet to the GPIO pin to be used during emulation boot (up to 254).
0x00 : GPIO0
0x01 : GPIO1
...
0xFE : GPIO254
0xFF : Disabled

Reset type: XRSn

7-0BMSP0R/WFFhSet to the GPIO pin to be used during emulation boot (up to 254).
0x00 : GPIO0
0x01 : GPIO1
...
0xFE : GPIO254
0xFF : Disabled

Reset type: XRSn

10.16.2.7 EMU_BOOT_DIAG Register (Offset = 34h) [Reset = 00000000h]

EMU_BOOT_DIAG is shown in Figure 10-12 and described in Table 10-23.

Return to the Summary Table.

User Emulation Boot Options

Figure 10-12 EMU_BOOT_DIAG Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDMPOST_ENLPOST_COVERLPOST_EN
R-0-0hR/W-0hR/W-0hR/W-0h
Table 10-23 EMU_BOOT_DIAG Register Field Descriptions
BitFieldTypeResetDescription
31-6RESERVEDR-00hReserved
5-4MPOST_ENR/W0hMPOST Enable. Indicates whether the boot ROM should run MPOST or not during emulation boot.
00 : Run MPOST with PLL disabled (10MHz INTOSC)
01 : Run MPOST at PLLCLK
10 : Run MPOST at PLLCLK/2
11 : Do not run PBIST

Reset type: XRSn

3-2LPOST_COVERR/W0hLPOST Coverage. Indicates the emulation boot coverage option for LPOST, if enabled.
00 : Invalid configuration
01 : ≥ 60% coverage (ASIL-B configuration)
10 : ≥ 80% coverage (ASIL-C configuration)
11 : ≥ 90% coverage (ASIL-D configuration)

Reset type: XRSn

1-0LPOST_ENR/W0hLPOST Enable. Indicates whether the boot ROM should run LPOST or not during emulation boot.
00 : LPOST with PLL disabled (10MHz INTOSC)
01 : LPOST with high shift frequency
10 : LPOST with medium shift frequency
11 : Test disabled (default state)

Reset type: XRSn

10.16.2.8 EMU_BOOT_CLKCFG Register (Offset = 38h) [Reset = 00000000h]

EMU_BOOT_CLKCFG is shown in Figure 10-13 and described in Table 10-24.

Return to the Summary Table.

User Emulation Boot Clock Configuration Register

Figure 10-13 EMU_BOOT_CLKCFG Register
31302928272625242322212019181716
PLLENRESERVEDREFDIV
R/W-0hR-0hR/W-0h
1514131211109876543210
RESERVEDODIVIMULT
R-0hR/W-0hR/W-0h
Table 10-24 EMU_BOOT_CLKCFG Register Field Descriptions
BitFieldTypeResetDescription
31-28PLLENR/W0hNotifies the boot ROM to use the above PLL settings during emulation boot.
0xA : PLL settings valid (enabled)
Others : PLL settings not valid (PLL disabled)

Reset type: XRSn

27-21RESERVEDR0hReserved
20-16REFDIVR/W0hDetermines the PLL's REFDIV setting used during emulation boot if enabled.

Reset type: XRSn

15-13RESERVEDR0hReserved
12-8ODIVR/W0hDetermines the PLL's ODIV setting used during emulation boot if enabled.

Reset type: XRSn

7-0IMULTR/W0hDetermines the PLL's IMULT setting used during emulation boot if enabled.

Reset type: XRSn

10.16.2.9 EMU_BOOTEN Register (Offset = 3Ch) [Reset = 00000000h]

EMU_BOOTEN is shown in Figure 10-14 and described in Table 10-25.

Return to the Summary Table.

User Emulation Boot Enable

Figure 10-14 EMU_BOOTEN Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDENABLE
R-0hR/W-0h
Table 10-25 EMU_BOOTEN Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0hReserved
0ENABLER/W0hIf set and emulator is connected, emulation boot is enabled. Else, normal boot definition is used. This value is loaded from SECCFG during boot. If left unprogrammed in SECCFG, EMU_BOOT will be enabled (a 1 will be loaded during boot), although R/W restrictions still apply to the EMU_BOOT registers.

Reset type: XRSn

10.16.2.10 RAMOPEN_LOCK Register (Offset = 40h) [Reset = 0000005Ah]

RAMOPEN_LOCK is shown in Figure 10-15 and described in Table 10-26.

Return to the Summary Table.

RAMOPEN Feature Lock Register

Figure 10-15 RAMOPEN_LOCK Register
313029282726252423222120191817161514131211109876543210
RESERVEDRESERVEDLOCK
R-0-0hR-0-0hR/W-5Ah
Table 10-26 RAMOPEN_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15-8RESERVEDR-00hReserved
7-0LOCKR/W5AhDetermines whether RAMOPENFRC can be written from non-LINK0 code.
0xA5 : RAMOPENFRC can be written by LINK0, LINK1, and debugger.
0x5A : RAMOPENFRC can only be written by TI secure LINK0 code.
0ther : RAMOPENFRC can only be written by TI secure LINK0 code. 'Other' values should not be programmed into the SECCFG sector in flash. A value of 0xA5 or 0x5A should always be used.

RAMOPEN is always initiated by LINK0 to create space for itself and the standard boot ROM stack (LINK1). After initiating RAMOPEN the secure boot ROM code will set this bit field according to the User Protection Policy programmed into the SECCFG sector of flash.

This bit can only be modified if RAMOPEN_COMMIT.COMMIT is zero.

Reset type: XRSn

10.16.2.11 RAMOPEN_COMMIT Register (Offset = 44h) [Reset = 00000000h]

RAMOPEN_COMMIT is shown in Figure 10-16 and described in Table 10-27.

Return to the Summary Table.

RAMOPEN Feature Commit Register

Figure 10-16 RAMOPEN_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-27 RAMOPEN_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the RAMOPEN_LOCK register. This bit cannot be cleared, except by reset.
0 : RAMOPEN_LOCK is modifiable
1 : RAMOPEN_LOCK is committed permanently

Reset type: XRSn

10.16.2.12 CPUID Register (Offset = 4Ch) [Reset = 00000000h]

CPUID is shown in Figure 10-17 and described in Table 10-28.

Return to the Summary Table.

CPUID Register

Figure 10-17 CPUID Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDDBGREADRESERVEDCPUID
R-0hR-0hR-0hR-0h
Table 10-28 CPUID Register Field Descriptions
BitFieldTypeResetDescription
31-5RESERVEDR0hReserved
4DBGREADR0hThis field reflects whether the read of the register is from the debug port or not. Note, this field does not affect the CPUID field.
0 : Not a debug read
1 : Debug read

Reset type: XRSn

3RESERVEDR0hReserved
2-0CPUIDR0hThis field reflects the identification value of the CPU performing the read. Along with the DBGREAD field, this provides an easy way for generic SW to determine which CPU it is running from.
0x0 : Invalid
0x1 : CPU1
0x2 : CPU2 (if available)
0x3 : CPU3 (if available)
0x4 : CPU4 (if available)
0x5 : CPU5 (if available)
0x6 : CPU6 (if available)
0x7 : Invalid

Reset type: XRSn

10.16.2.13 BANKMAP Register (Offset = 50h) [Reset = 0000C9C9h]

BANKMAP is shown in Figure 10-18 and described in Table 10-29.

Return to the Summary Table.

Valid Banks

Figure 10-18 BANKMAP Register
313029282726252423222120191817161514131211109876543210
RESERVEDCPU3SWAPCPU1SWAP
R-0hR/W-C9hR/W-C9h
Table 10-29 BANKMAP Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-8CPU3SWAPR/WC9hDefines which banks mapped in CPU3's code space are mapped as primary (active). The SECCFG sectors are analyzed at boot and the answer written into this register. This bit field is only valid in BANKMODE.MODE = 3.
0xC9 : Default mapping CPU3's banks
0x36 : Alternate mapping of CPU3's banks
Others : Invalid and generates a fault.

Reset type: XRSn

7-0CPU1SWAPR/WC9hDefines which banks mapped in CPU1's code space are mapped as primary (active). The SECCFG sectors are analyzed at boot and the answer written into this register. This bit field is only valid in BANKMODE.MODE = 1 or 3.
0xC9 : Default mapping CPU1's banks
0x36 : Alternate mapping of CPU1's banks
Others : Invalid and generates a fault if an access to flash occurs while in this state.

Reset type: XRSn

10.16.2.14 BANKMAP_LOCK Register (Offset = 54h) [Reset = 00000000h]

BANKMAP_LOCK is shown in Figure 10-19 and described in Table 10-30.

Return to the Summary Table.

Bank Map Lock Register

Figure 10-19 BANKMAP_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK2LOCK1
R-0hR/W-0hR/W-0h
Table 10-30 BANKMAP_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-2RESERVEDR0hReserved
1LOCK2R/W0hWhen set, locks the bits in the BANKMAP.CPU3SWAP bit field (writes will have no effect on them). This bit can only be modified if BANKMAP_COMMIT.COMMIT2 is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

0LOCK1R/W0hWhen set, locks the bits in the BANKMAP.CPU1SWAP bit field (writes will have no effect on them). This bit can only be modified if BANKMAP_COMMIT.COMMIT1 is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.15 BANKMAP_COMMIT Register (Offset = 58h) [Reset = 00000000h]

BANKMAP_COMMIT is shown in Figure 10-20 and described in Table 10-31.

Return to the Summary Table.

Bank Map Commit Register

Figure 10-20 BANKMAP_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT2COMMIT1
R-0hR/W1S-0hR/W1S-0h
Table 10-31 BANKMAP_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-2RESERVEDR0hReserved
1COMMIT2R/W1S0hWhen set, locks the bits in the BANKMAP_LOCK.LOCK2 bit field (writes will have no effect on them). This bit cannot be cleared, except by reset.
0 : BANKMAP_LOCK.LOCK2 is modifiable
1 : BANKMAP_LOCK.LOCK2 is committed permanently

Reset type: XRSn

0COMMIT1R/W1S0hWhen set, locks the bits in the BANKMAP_LOCK.LOCK1 bit field (writes will have no effect on them). This bit cannot be cleared, except by reset.
0 : BANKMAP_LOCK.LOCK1 is modifiable
1 : BANKMAP_LOCK.LOCK1 is committed permanently

Reset type: XRSn

10.16.2.16 BANKMODE Register (Offset = 5Ch) [Reset = 00000003h]

BANKMODE is shown in Figure 10-21 and described in Table 10-32.

Return to the Summary Table.

Bank Mode Configuration Register

Figure 10-21 BANKMODE Register
313029282726252423222120191817161514131211109876543210
RESERVEDRESERVEDMODE
R-0hR-0hR/W-3h
Table 10-32 BANKMODE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-4RESERVEDR0hReserved
3-0MODER/W3hDefines the configuration of executable flash between CPUs.
0x3 : MODE0. All CPU1, no FOTA. All banks are linearly mapped to CPU1's code space and cannot be remapped/swapped. CPU3 can only run from RAM.
0x6 : MODE1. All CPU1, FOTA enabled. All banks mapped as primary banks are mapped to CPU1's code space. FOTA bank swapping is controlled by BANKMAP.CPU1SWAP. Execution cannot occur from banks that are mapped as alternate banks. CPU3 can only run from RAM.
0x9 : MODE2. CPU1/CPU3 split, no FOTA. A portion of the banks are linearly mapped to CPU1's code space and another portion are linearly mapped to CPU3's code space. Banks cannot be remapped/swapped.
0xC: MODE3. CPU1/CPU3 split, FOTA enabled. A portion of the banks mapped as primary banks are mapped to CPU1's code space and another portion to CPU3's. FOTA bank swapping of CPU1's banks is controlled by BANKMAP.CPU1SWAP, while swapping of CPU3's banks is controlled by BANKMAP.CPU3SWAP. Execution cannot occur from banks that are mapped as alternate banks.
Others: Invalid and generates a fault.

Reset type: XRSn

10.16.2.17 BANKMODE_LOCK Register (Offset = 60h) [Reset = 00000000h]

BANKMODE_LOCK is shown in Figure 10-22 and described in Table 10-33.

Return to the Summary Table.

Bank Mode Lock Register

Figure 10-22 BANKMODE_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-33 BANKMODE_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the BANKMODE register (writes will have no effect on it). This bit can only be modified if BANKMODE_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.18 BANKMODE_COMMIT Register (Offset = 64h) [Reset = 00000000h]

BANKMODE_COMMIT is shown in Figure 10-23 and described in Table 10-34.

Return to the Summary Table.

Bank Mode Commit Register

Figure 10-23 BANKMODE_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-34 BANKMODE_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the BANKMODE_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : BANKMAP_LOCK is modifiable
1 : BANKMAP_LOCK is committed permanently

Reset type: XRSn

10.16.2.19 SECCFG_UPDATE_CFG Register (Offset = 68h) [Reset = 00003002h]

SECCFG_UPDATE_CFG is shown in Figure 10-24 and described in Table 10-35.

Return to the Summary Table.

SECCFG Flash Update Configuration Register

Figure 10-24 SECCFG_UPDATE_CFG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
UPDATE_ENRESERVEDCPU_OWNER
R/W-3hR-0hR/W-0h
76543210
RESERVEDLINK_OWNER
R-0hR/W-2h
Table 10-35 SECCFG_UPDATE_CFG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-12UPDATE_ENR/W3hEnables SECCFG flash updates.
0x3 : SECCFG is not enabled for flash updates (recommended)
0xC : SECCFG is enabled for flash udpates
Others : SECCFG is not enabled for flash updates (not recommended)
Note that this field has no effect in SSUMODE1 or SSUMODE2 mode. This field has no effect on the ability to update the BANKMGMT sectors.

Reset type: XRSn

11RESERVEDR0hReserved
10-8CPU_OWNERR/W0hAlong with the LINK field, defines the code designated as the device's SECCFG and BANKMGMT sectors updater.
0x0 : CPU-HSM (if available)
0x1 : CPU1
0x2 : CPU2 (if available)
...
0x7 : CPU7 (if available)

Reset type: XRSn

7-4RESERVEDR0hReserved

10.16.2.20 PROG_BANKMODE Register (Offset = 70h) [Reset = 00000000h]

PROG_BANKMODE is shown in Figure 10-25 and described in Table 10-36.

Return to the Summary Table.

Programming BANKMODE Register

Figure 10-25 PROG_BANKMODE Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDMODE
R-0hR/W-0h
Table 10-36 PROG_BANKMODE Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-2RESERVEDR0hReserved
1-0MODER/W0hDefines the expected configuration of flash between CPUs during programming. This value is written during programming while in SSUMODE1 and SSUMODE2 to override the active BANKMODE for the purposes of the programming logic. It does not override the actual active BANKMODE mode, but enables programming code that is intended to be run in a different SSUMODE than the programming is performed in. This register is ignored during SSUMODE3.
0x0 : All CPU1, no FOTA. All banks are linearly mapped to CPU1's code space and cannot be remapped/swapped. CPU3 can only run from RAM.
0x1 : All CPU1, FOTA enabled. All banks mapped as primary banks are mapped to CPU1's code space. FOTA bank swapping is controlled by BANKMAP.CPU1SWAP. Execution cannot occur from banks that are mapped as alternate banks. CPU3 can only run from RAM.
0x2 : CPU1/CPU3 split, no FOTA. A portion of the banks are linearly mapped to CPU1's code space and another portion are linearly mapped to CPU3's code space. Banks cannot be remapped/swapped.
0x3: CPU1/CPU3 split, FOTA enabled. A portion of the banks mapped as primary banks are mapped to CPU1's code space and another portion to CPU3's. FOTA bank swapping of CPU1's banks is controlled by BANKMAP.CPU1SWAP, while swapping of CPU3's banks is controlled by BANKMAP.CPU3SWAP. Execution cannot occur from banks that are mapped as alternate banks.

Reset type: XRSn

10.16.2.21 SECVALID Register (Offset = 74h) [Reset = 00C900C9h]

SECVALID is shown in Figure 10-26 and described in Table 10-37.

Return to the Summary Table.

Valid SECCFG Sector

Figure 10-26 SECVALID Register
313029282726252423222120191817161514131211109876543210
RESERVEDCPU3RESERVEDCPU1
R-0hR/W-C9hR-0hR/W-C9h
Table 10-37 SECVALID Register Field Descriptions
BitFieldTypeResetDescription
31-24RESERVEDR0hReserved
23-16CPU3R/WC9hDefines which SECCFG sector is the valid sector for CPU3. The SECCFG sectors are analyzed at boot and the answer written into this register.
0xC9 : BASE addresses are valid
0x36 : ALT addresses are valid
Others : Invalid and generates a fault.

Reset type: XRSn

15-8RESERVEDR0hReserved
7-0CPU1R/WC9hDefines which SECCFG sector is the valid sector for CPU1 and CPU2. The SECCFG sectors are analyzed at boot and the answer written into this register.
0xC9 : BASE addresses are valid
0x36 : ALT addresses are valid
Others : Invalid and generates a fault.

Reset type: XRSn

10.16.2.22 SECVALID_LOCK Register (Offset = 78h) [Reset = 00000000h]

SECVALID_LOCK is shown in Figure 10-27 and described in Table 10-38.

Return to the Summary Table.

Valid SECCFG Sector Lock Register

Figure 10-27 SECVALID_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-38 SECVALID_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the SECVALID register (writes will have no effect on it). This bit can only be modified if SEC_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.23 SECVALID_COMMIT Register (Offset = 7Ch) [Reset = 00000000h]

SECVALID_COMMIT is shown in Figure 10-28 and described in Table 10-39.

Return to the Summary Table.

Valid SECCFG Sector Commit Register

Figure 10-28 SECVALID_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-39 SECVALID_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the SEC_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : SEC_LOCK is modifiable
1 : SEC_LOCK is committed permanently

Reset type: XRSn

10.16.2.24 ZONE1_CFG Register (Offset = 80h) [Reset = 00003002h]

ZONE1_CFG is shown in Figure 10-29 and described in Table 10-40.

Return to the Summary Table.

ZONE1 Configuration

Figure 10-29 ZONE1_CFG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
UPDATE_ENRESERVEDFWU_CPU
R/W-3hR-0hR/W-0h
76543210
RESERVEDFWU_LINK
R-0hR/W-2h
Table 10-40 ZONE1_CFG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-12UPDATE_ENR/W3hEnables ZONE1 flash updates.
0x3 : ZONE1 is not enabled for flash updates (recommended)
0xC : ZONE1 is enabled for flash udpates
Others : ZONE1 is not enabled for flash updates (not recommended)
Note that this field has no effect in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

11RESERVEDR0hReserved
10-8FWU_CPUR/W0hAlong with the LINK field, defines the CPU allowed to update ZONE1's code.
0x0 : CPU-HSM (if available)
0x1 : CPU1
0x2 : CPU2 (if available)
...
0x7 : CPU7 (if available)
Note that CPU1.LINK1 is enabled additionally when the SSU is in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

7-4RESERVEDR0hReserved

10.16.2.25 ZONE2_CFG Register (Offset = 84h) [Reset = 00003002h]

ZONE2_CFG is shown in Figure 10-30 and described in Table 10-41.

Return to the Summary Table.

ZONE2 Configuration

Figure 10-30 ZONE2_CFG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
UPDATE_ENRESERVEDFWU_CPU
R/W-3hR-0hR/W-0h
76543210
RESERVEDFWU_LINK
R-0hR/W-2h
Table 10-41 ZONE2_CFG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-12UPDATE_ENR/W3hEnables ZONE2 flash updates.
0x3 : ZONE2 is not enabled for flash updates (recommended)
0xC : ZONE2 is enabled for flash udpates
Others : ZONE2 is not enabled for flash updates (not recommended)
Note that this field has no effect in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

11RESERVEDR0hReserved
10-8FWU_CPUR/W0hAlong with the LINK field, defines the CPU allowed to update ZONE2's code.
0x0 : CPU-HSM (if available)
0x1 : CPU1
0x2 : CPU2 (if available)
...
0x7 : CPU7 (if available)
Note that CPU1.LINK1 is enabled additionally when the SSU is in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

7-4RESERVEDR0hReserved

10.16.2.26 ZONE3_CFG Register (Offset = 88h) [Reset = 00003002h]

ZONE3_CFG is shown in Figure 10-31 and described in Table 10-42.

Return to the Summary Table.

ZONE3 Configuration

Figure 10-31 ZONE3_CFG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
UPDATE_ENRESERVEDFWU_CPU
R/W-3hR-0hR/W-0h
76543210
RESERVEDFWU_LINK
R-0hR/W-2h
Table 10-42 ZONE3_CFG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-12UPDATE_ENR/W3hEnables ZONE3 flash updates.
0x3 : ZONE3 is not enabled for flash updates (recommended)
0xC : ZONE3 is enabled for flash udpates
Others : ZONE3 is not enabled for flash updates (not recommended)
Note that this field has no effect in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

11RESERVEDR0hReserved
10-8FWU_CPUR/W0hAlong with the LINK field, defines the CPU allowed to update ZONE3's code.
0x0 : CPU-HSM (if available)
0x1 : CPU1
0x2 : CPU2 (if available)
...
0x7 : CPU7 (if available)
Note that CPU1.LINK1 is enabled additionally when the SSU is in SSUMODE1 or SSUMODE2 mode.

Reset type: XRSn

7-4RESERVEDR0hReserved

10.16.2.27 DEBUG_CFG Register (Offset = 90h) [Reset = 00004444h]

DEBUG_CFG is shown in Figure 10-32 and described in Table 10-43.

Return to the Summary Table.

Debug Configuration

Figure 10-32 DEBUG_CFG Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDZONE3RESERVEDZONE2
R-0hR/W-4hR-0hR/W-4h
76543210
RESERVEDZONE1RESERVEDC29DBGEN_CFG
R-0hR/W-4hR-0hR/W-4h
Table 10-43 DEBUG_CFG Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15RESERVEDR0hReserved
14-12ZONE3R/W4hDetermines whether a password based method or CPU/Debugger communication based method is allowed to unlock C29 debug.
0x0 : Reserved (C29 debug is disabled)
0x1 : CPU based ZONE_DBGEN.ZONE3 is valid)
0x2 : Password based
0x3 : Reserved (C29 debug is disabled)
0x4 : C29 debug is disabled
0x5 : Reserved (C29 debug is disabled)
0x6 : Reserved (C29 debug is disabled)
0x7 : Reserved (C29 debug is disabled)
The corresponding field in SECCFG should not be left unprogrammed (0x7) when programming in SSUMODE3. If the intent is to disable debug, the value 0x4 should be used.

Reset type: PORESETn

11RESERVEDR0hReserved
10-8ZONE2R/W4hDetermines whether a password based method or CPU/Debugger communication based method is allowed to unlock C29 debug.
0x0 : Reserved (C29 debug is disabled)
0x1 : CPU based (ZONE_DBGEN.ZONE2 is valid)
0x2 : Password based
0x3 : Reserved (C29 debug is disabled)
0x4 : C29 debug is disabled
0x5 : Reserved (C29 debug is disabled)
0x6 : Reserved (C29 debug is disabled)
0x7 : Reserved (C29 debug is disabled)
The corresponding field in SECCFG should not be left unprogrammed (0x7) when programming in SSUMODE3. If the intent is to disable debug, the value 0x4 should be used.

Reset type: PORESETn

7RESERVEDR0hReserved
6-4ZONE1R/W4hDetermines whether a password based method or CPU/Debugger communication based method is allowed to unlock C29 debug.
0x0 : Reserved (C29 debug is disabled)
0x1 : CPU based (ZONE_DBGEN.ZONE1 is valid)
0x2 : Password based
0x3 : Reserved (C29 debug is disabled)
0x4 : C29 debug is disabled
0x5 : Reserved (C29 debug is disabled)
0x6 : Reserved (C29 debug is disabled)
0x7 : Reserved (C29 debug is disabled)
The corresponding field in SECCFG should not be left unprogrammed (0x7) when programming in SSUMODE3. If the intent is to disable debug, the value 0x4 should be used.

Reset type: PORESETn

3RESERVEDR0hReserved
2-0C29DBGEN_CFGR/W4hDetermines whether a password based method or CPU/Debugger communication based method is allowed to unlock C29 debug.
0x0 : Reserved (C29 debug is disabled)
0x1 : CPU based (C29DBGEN.ENA is valid)
0x2 : Password based
0x3 : Reserved (C29 debug is disabled)
0x4 : C29 debug is disabled
0x5 : Reserved (C29 debug is disabled)
0x6 : Reserved (C29 debug is disabled)
0x7 : Reserved (C29 debug is disabled)
The corresponding field in SECCFG should not be left unprogrammed (0x7) when programming in SSUMODE3. If the intent is to disable debug, the value 0x4 should be used.

Reset type: PORESETn

10.16.2.28 DEBUG_CFG_LOCK Register (Offset = 94h) [Reset = 00000000h]

DEBUG_CFG_LOCK is shown in Figure 10-33 and described in Table 10-44.

Return to the Summary Table.

Debug Configuration Lock Register

Figure 10-33 DEBUG_CFG_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-44 DEBUG_CFG_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks this the DEBUG_CFG register (writes will have no effect on them). This bit can only be modified if DEBUG_CFG_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: PORESETn

10.16.2.29 DEBUG_CFG_COMMIT Register (Offset = 98h) [Reset = 00000000h]

DEBUG_CFG_COMMIT is shown in Figure 10-34 and described in Table 10-45.

Return to the Summary Table.

Debug Configuration Commit Register

Figure 10-34 DEBUG_CFG_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-45 DEBUG_CFG_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the DEBUG_CFG_LOCK register. This bit cannot be cleared, except by reset.
0 : DEBUG_CFG_LOCK is modifiable
1 : DEBUG_CFG_LOCK is committed permanently

Reset type: PORESETn

10.16.2.30 DEBUG_STAT Register (Offset = A0h) [Reset = 00000000h]

DEBUG_STAT is shown in Figure 10-35 and described in Table 10-46.

Return to the Summary Table.

Debug Status Register

Figure 10-35 DEBUG_STAT Register
3130292827262524
C29DBGSRESERVEDRESERVEDRESERVED
R-0hR-0hR-0hR-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
ZONE3ZONE2ZONE1RESERVED
R-0hR-0hR-0hR-0h
Table 10-46 DEBUG_STAT Register Field Descriptions
BitFieldTypeResetDescription
31C29DBGSR0hReflects the debug state of the C29 CPUs.
0 : Not enabled for debug
1 : Enabled for debug

Reset type: XRSn

30RESERVEDR0hReserved
29RESERVEDR0hReserved
28-16RESERVEDR0hReserved
15-8RESERVEDR0hReserved
7-6ZONE3R0hReflects the state of ZONE3 debug.
00 : Not enabled for debug
01 : Enabled for partial debug
1x : Enabled for full debug

Reset type: XRSn

5-4ZONE2R0hReflects the state of ZONE2 debug.
00 : Not enabled for debug
01 : Enabled for partial debug
1x : Enabled for full debug

Reset type: XRSn

3-2ZONE1R0hReflects the state of ZONE1 debug.
00 : Not enabled for debug
01 : Enabled for partial debug
1x : Enabled for full debug

Reset type: XRSn

1-0RESERVEDR0hReserved

10.16.2.31 C29DBGEN Register (Offset = A4h) [Reset = 00000005h]

C29DBGEN is shown in Figure 10-36 and described in Table 10-47.

Return to the Summary Table.

C29 Debug Enable Register

Figure 10-36 C29DBGEN Register
313029282726252423222120191817161514131211109876543210
RESERVEDENA
R-0hR/W-5h
Table 10-47 C29DBGEN Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR0hReserved
3-0ENAR/W5hEnables debug connections to the C29 CPUs.
0xA : CPU taps are enabled (or governed by the HSM, if present)
Others : CPU taps are disabled

This register is only valid if DEBUG_CFG.C29DBGEN_CFG is set to CPU based.

Reset type: PORESETn

10.16.2.32 ZONE_DBGEN Register (Offset = A8h) [Reset = 00030303h]

ZONE_DBGEN is shown in Figure 10-37 and described in Table 10-48.

Return to the Summary Table.

ZONE Debug Enable Register

Figure 10-37 ZONE_DBGEN Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVEDZONE3
R-0hR/W-3h
15141312111098
RESERVEDZONE2
R-0hR/W-3h
76543210
RESERVEDZONE1
R-0hR/W-3h
Table 10-48 ZONE_DBGEN Register Field Descriptions
BitFieldTypeResetDescription
31-22RESERVEDR0hReserved
21-16ZONE3R/W3hEnables ZONE3 for full or partial debug
0x03 : ZONE3 is not enabled for debug (recommended)
0x0C : ZONE3 is enabled for partial debug
0x30 : ZONE3 is enabled for full debug
Others : ZONE3 is not enabled for debug (not recommended)

Reset type: PORESETn

15-14RESERVEDR0hReserved
13-8ZONE2R/W3hEnables ZONE2 for full or partial debug
0x03 : ZONE2 is not enabled for debug (recommended)
0x0C : ZONE2 is enabled for partial debug
0x30 : ZONE2 is enabled for full debug
Others : ZONE2 is not enabled for debug (not recommended)

Reset type: PORESETn

7-6RESERVEDR0hReserved
5-0ZONE1R/W3hEnables ZONE1 for full or partial debug
0x03 : ZONE1 is not enabled for debug (recommended)
0x0C : ZONE1 is enabled for partial debug
0x30 : ZONE1 is enabled for full debug
Others : ZONE1 is not enabled for debug (not recommended)

Reset type: PORESETn

10.16.2.33 BEPROT_BANK Register (Offset = 200h) [Reset = 00000007h]

BEPROT_BANK is shown in Figure 10-38 and described in Table 10-49.

Return to the Summary Table.

Bank Erase Protection Bank Register

Figure 10-38 BEPROT_BANK Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDFLCIDBANKID
R-0hR/W-0hR/W-7h
Table 10-49 BEPROT_BANK Register Field Descriptions
BitFieldTypeResetDescription
31-5RESERVEDR0hReserved
4-3FLCIDR/W0hWhen in SSUMODE2 or SSUMODE3, only the FLSEM owner can write to this register. The value written defines which Flash Controller the local BANKID value references. When written, it initiates the Bank Erase State Machine.

Reset type: XRSn

2-0BANKIDR/W7hWhen in SSUMODE2 or SSUMODE3, only the FLSEM owner can write to this register to declare the intent of the bank it intends to bank erase. The value written should be the bank ID local to the Flash Controller it exists in. When written, it initiates the Bank Erase State Machine.

Reset type: XRSn

10.16.2.34 BEPROT_STAT Register (Offset = 204h) [Reset = 00000000h]

BEPROT_STAT is shown in Figure 10-39 and described in Table 10-50.

Return to the Summary Table.

Bank Erase Status Register

Figure 10-39 BEPROT_STAT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDACTIVEREADY
R-0hR-0hR-0h
Table 10-50 BEPROT_STAT Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1ACTIVER0hSet/Cleared by the Bank Erase State Machine. Set when BEPROT_BANK is written. Cleared when READY is set.

Reset type: XRSn

0READYR0hSet by the Bank Erase State Machine. Cleared when BEPROT_BANK is written.

Reset type: XRSn

10.16.2.35 BEPROTA Register (Offset = 208h) [Reset = FFFFFFFFh]

BEPROTA is shown in Figure 10-40 and described in Table 10-51.

Return to the Summary Table.

Bank Erase Protection Register A

Figure 10-40 BEPROTA Register
3130292827262524
SECT31SECT30SECT29SECT28SECT27SECT26SECT25SECT24
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
2322212019181716
SECT23SECT22SECT21SECT20SECT19SECT18SECT17SECT16
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
15141312111098
SECT15SECT14SECT13SECT12SECT11SECT10SECT9SECT8
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
76543210
SECT7SECT6SECT5SECT4SECT3SECT2SECT1SECT0
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
Table 10-51 BEPROTA Register Field Descriptions
BitFieldTypeResetDescription
31SECT31R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

30SECT30R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

29SECT29R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

28SECT28R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

27SECT27R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

26SECT26R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

25SECT25R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

24SECT24R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

23SECT23R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

22SECT22R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

21SECT21R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

20SECT20R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

19SECT19R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

18SECT18R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

17SECT17R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

16SECT16R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

15SECT15R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

14SECT14R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

13SECT13R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

12SECT12R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

11SECT11R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

10SECT10R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

9SECT9R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

8SECT8R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

7SECT7R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

6SECT6R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

5SECT5R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

4SECT4R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

3SECT3R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

2SECT2R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

1SECT1R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

0SECT0R1hSector Bank Erase Protection
0 : Bank erase allowed on sector
1 : Bank erase not allowed on sector

Reset type: XRSn

10.16.2.36 BEPROTB Register (Offset = 20Ch) [Reset = FFFFFFFFh]

BEPROTB is shown in Figure 10-41 and described in Table 10-52.

Return to the Summary Table.

Bank Erase Protection Register B

Figure 10-41 BEPROTB Register
3130292827262524
SECT255_248SECT247_240SECT239_232SECT231_224SECT223_216SECT215_208SECT207_200SECT199_192
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
2322212019181716
SECT191_184SECT183_176SECT175_168SECT167_160SECT159_152SECT151_144SECT143_136SECT135_128
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
15141312111098
SECT127_120SECT119_112SECT111_104SECT103_96SECT95_88SECT87_80SECT79_72SECT71_64
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
76543210
SECT63_56SECT55_48SECT47_40SECT39_22RESERVEDRESERVEDRESERVEDRESERVED
R-1hR-1hR-1hR-1hR-1hR-1hR-1hR-1h
Table 10-52 BEPROTB Register Field Descriptions
BitFieldTypeResetDescription
31SECT255_248R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

30SECT247_240R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

29SECT239_232R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

28SECT231_224R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

27SECT223_216R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

26SECT215_208R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

25SECT207_200R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

24SECT199_192R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

23SECT191_184R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

22SECT183_176R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

21SECT175_168R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

20SECT167_160R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

19SECT159_152R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

18SECT151_144R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

17SECT143_136R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

16SECT135_128R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

15SECT127_120R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

14SECT119_112R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

13SECT111_104R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

12SECT103_96R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

11SECT95_88R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

10SECT87_80R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

9SECT79_72R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

8SECT71_64R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

7SECT63_56R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

6SECT55_48R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

5SECT47_40R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

4SECT39_22R1hSector Bank Erase Protection
0 : Bank erase allowed on sectors
1 : Bank erase not allowed on sectors

Reset type: XRSn

3RESERVEDR1hReserved
2RESERVEDR1hReserved
1RESERVEDR1hReserved
0RESERVEDR1hReserved

10.16.2.37 FLSEMSTAT Register (Offset = 220h) [Reset = 00000000h]

FLSEMSTAT is shown in Figure 10-42 and described in Table 10-53.

Return to the Summary Table.

Flash Controller Semaphore Status Register

Figure 10-42 FLSEMSTAT Register
3130292827262524
ASSIGNEDMATCHRESERVED
R-0hR-0hR-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVEDCPURESERVEDZONE
R-0hR-0hR-0hR-0h
76543210
RESERVEDLINK
R-0hR-0h
Table 10-53 FLSEMSTAT Register Field Descriptions
BitFieldTypeResetDescription
31ASSIGNEDR0hCPU and LINK fields are valid when this bit is set.
0 : CPU and LINK are unassigned and flash controller is not accessible
1 : CPU and LINK values are valid and the flash controller is currently assigned to them

Reset type: XRSn

30MATCHR0hOn a read, this bit will reflect whether the reader's CPUID and LINKID matches the ownership of the flash controller (LINKID matches LINK, CPUID matches CPU, and ASSIGNED equals '1').
0 : Code performing read does not own the flash controller semaphore
1 : Code performing read owns the flash controller semphore.
This avoids code from being required to know which CPU and LINK it belongs to when reading the status of the semaphore.

Reset type: XRSn

29-16RESERVEDR0hReserved
15RESERVEDR0hReserved
14-12CPUR0hDefines the current CPU owner of the flash controller.
0x0 : CPU-HSM (if available)
0x1 : CPU1
0x2 : CPU2 (if available)
...
0x7 : CPU7 (if available)

Reset type: XRSn

11-10RESERVEDR0hReserved
9-8ZONER0hDefines the current ZONE owner of the flash controller.
0x0 : ZONE0
0x1 : ZONE1
0x2 : ZONE2
0x3 : ZONE3

Reset type: XRSn

7-4RESERVEDR0hReserved

10.16.2.38 FLSEMREQ Register (Offset = 224h) [Reset = 00000000h]

FLSEMREQ is shown in Figure 10-43 and described in Table 10-54.

Return to the Summary Table.

Flash Controller Semaphore Request Register

Figure 10-43 FLSEMREQ Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDREQ
R-0hR-0/W1S-0h
Table 10-54 FLSEMREQ Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0REQR-0/W1S0hIf the FLSEMSTAT.ASSIGNED bit is cleared, writing a '1' to this bit causes the SSU logic to:
1) Load the LINKID of the code performing the write into the FLSEMSTAT.LINK bit field, and
2) Load the ZONEID of the code performing the write into the FLSEMSTAT.ZONE bit field, and
3) Load the CPUID of the code performing the write into the FLSEMSTAT.CPU bit field, and
4) Set the FLSEMSTAT.ASSIGNED bit.
If the FLSEMSTAT.ASSIGNED is already set when a write to this bit occurs, the write will be ignored. Code should check the contents of FLSEMSTAT.MATCH after writing to this bit to determine if it was successfully granted ownership.

If the above conditions are not met during the write, the write will be ignored with no error indicator. It is advised that the writing code perform a read of the FLSEMSTAT register to ensure it was set after writing to this bit.

Note that if the HSM (if present) performs the write, the CPUID, LINKID, and ZONEID values that are captured are all zeros.

Reset type: XRSn

10.16.2.39 FLSEMCLR Register (Offset = 228h) [Reset = 00000000h]

FLSEMCLR is shown in Figure 10-44 and described in Table 10-55.

Return to the Summary Table.

Flash Controller Semaphore Clear Register

Figure 10-44 FLSEMCLR Register
31302928272625242322212019181716
RESERVED
R-0h
1514131211109876543210
RESERVEDCLR
R-0hR-0/W1S-0h
Table 10-55 FLSEMCLR Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0CLRR-0/W1S0hIf the following conditions are met, a write of '1' to this bit causes the SSU logic to load the FLSEMSTAT register to its reset state:
1) The CPUID.LINKID of the code performing the write is CPU1.LINK2 and FLSEMSTAT.CPU and FLSEMSTAT.LINK do not match the HSM's designed CPUID/LINKID (both zero), or
2) The CPUID and LINKID of the code performing the write is the HSM (both zero), or
3) FLSEMSTAT.ASSIGNED bit is set, and
a) FLSEMSTAT.LINK equals the LINKID of the code performing the write, and
b) FLSEMSTAT.CPU equals the CPUID of the code performing the write.

If the above conditions are not met during the write, the write will be ignored with no error indicator. It is advised that the writing code perform a read of the FLSEMSTAT register to ensure it was cleared after writing to this bit.

Reset type: XRSn

10.16.2.40 WEPROT_CODE_BANKS Register (Offset = 230h) [Reset = 00000000h]

WEPROT_CODE_BANKS is shown in Figure 10-45 and described in Table 10-56.

Return to the Summary Table.

Global Code Banks Write Erase

Figure 10-45 WEPROT_CODE_BANKS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDPROT
R-0hR/W-0h
Table 10-56 WEPROT_CODE_BANKS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0PROTR/W0hWhen set, protects all code banks outside of the HSM from being programmed or erased.

Reset type: XRSn

10.16.2.41 WEPROT_CODE_BANKS_LOCK Register (Offset = 234h) [Reset = 00000000h]

WEPROT_CODE_BANKS_LOCK is shown in Figure 10-46 and described in Table 10-57.

Return to the Summary Table.

Global Code Banks Write Erase Lock

Figure 10-46 WEPROT_CODE_BANKS_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-57 WEPROT_CODE_BANKS_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_CODE_BANKS register (writes will have no effect on it). This bit can only be modified if WEPROT_CODE_BANKS_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.42 WEPROT_CODE_BANKS_COMMIT Register (Offset = 238h) [Reset = 00000000h]

WEPROT_CODE_BANKS_COMMIT is shown in Figure 10-47 and described in Table 10-58.

Return to the Summary Table.

Global Code Banks Write Erase Commit

Figure 10-47 WEPROT_CODE_BANKS_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-58 WEPROT_CODE_BANKS_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_CODE_BANKS_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_CODE_BANKS_LOCK is modifiable
1 : WEPROT_CODE_BANKS_LOCK is committed permanently

Reset type: XRSn

10.16.2.43 WEPROT_DATA_BANKS Register (Offset = 240h) [Reset = 00000000h]

WEPROT_DATA_BANKS is shown in Figure 10-48 and described in Table 10-59.

Return to the Summary Table.

Global Data Banks Write Erase

Figure 10-48 WEPROT_DATA_BANKS Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDPROT
R-0hR/W-0h
Table 10-59 WEPROT_DATA_BANKS Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0PROTR/W0hWhen set, protects all data banks from being programmed or erased.

Reset type: XRSn

10.16.2.44 WEPROT_DATA_BANKS_LOCK Register (Offset = 244h) [Reset = 00000000h]

WEPROT_DATA_BANKS_LOCK is shown in Figure 10-49 and described in Table 10-60.

Return to the Summary Table.

Global Data Banks Write Erase Lock

Figure 10-49 WEPROT_DATA_BANKS_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-60 WEPROT_DATA_BANKS_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_DATA_BANKS register (writes will have no effect on it). This bit can only be modified if WEPROT_DATA_BANKS_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.45 WEPROT_DATA_BANKS_COMMIT Register (Offset = 248h) [Reset = 00000000h]

WEPROT_DATA_BANKS_COMMIT is shown in Figure 10-50 and described in Table 10-61.

Return to the Summary Table.

Global Data Banks Write Erase Commit

Figure 10-50 WEPROT_DATA_BANKS_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-61 WEPROT_DATA_BANKS_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_DATA_BANKS_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_DATA_BANKS_LOCK is modifiable
1 : WEPROT_DATA_BANKS_LOCK is committed permanently

Reset type: XRSn

10.16.2.46 WEPROT_FLC1_B0_A Register (Offset = 300h) [Reset = FFFFFFFFh]

WEPROT_FLC1_B0_A is shown in Figure 10-51 and described in Table 10-62.

Return to the Summary Table.

Flash Controller 1 B0 Write Erase Protection A

Figure 10-51 WEPROT_FLC1_B0_A Register
3130292827262524
SECT31SECT30SECT29SECT28SECT27SECT26SECT25SECT24
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT23SECT22SECT21SECT20SECT19SECT18SECT17SECT16
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT15SECT14SECT13SECT12SECT11SECT10SECT9SECT8
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT7SECT6SECT5SECT4SECT3SECT2SECT1SECT0
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
Table 10-62 WEPROT_FLC1_B0_A Register Field Descriptions
BitFieldTypeResetDescription
31SECT31R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

30SECT30R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

29SECT29R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

28SECT28R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

27SECT27R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

26SECT26R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

25SECT25R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

24SECT24R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

23SECT23R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

22SECT22R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

21SECT21R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

20SECT20R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

19SECT19R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

18SECT18R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

17SECT17R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

16SECT16R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

15SECT15R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

14SECT14R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

13SECT13R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

12SECT12R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

11SECT11R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10SECT10R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

9SECT9R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

8SECT8R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

7SECT7R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

6SECT6R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

5SECT5R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

4SECT4R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

3SECT3R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

2SECT2R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

1SECT1R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

0SECT0R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10.16.2.47 WEPROT_FLC1_B0_B Register (Offset = 304h) [Reset = FFFFFFFFh]

WEPROT_FLC1_B0_B is shown in Figure 10-52 and described in Table 10-63.

Return to the Summary Table.

Flash Controller 1 B0 Write Erase Protection B

Figure 10-52 WEPROT_FLC1_B0_B Register
3130292827262524
SECT255_248SECT247_240SECT239_232SECT231_224SECT223_216SECT215_208SECT207_200SECT199_192
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT191_184SECT183_176SECT175_168SECT167_160SECT159_152SECT151_144SECT143_136SECT135_128
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT127_120SECT119_112SECT111_104SECT103_96SECT95_88SECT87_80SECT79_72SECT71_64
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT63_56SECT55_48SECT47_40SECT39_22RESERVEDRESERVEDRESERVEDRESERVED
R/W-1hR/W-1hR/W-1hR/W-1hR-1hR-1hR-1hR-1h
Table 10-63 WEPROT_FLC1_B0_B Register Field Descriptions
BitFieldTypeResetDescription
31SECT255_248R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

30SECT247_240R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

29SECT239_232R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

28SECT231_224R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

27SECT223_216R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

26SECT215_208R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

25SECT207_200R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

24SECT199_192R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

23SECT191_184R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

22SECT183_176R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

21SECT175_168R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

20SECT167_160R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

19SECT159_152R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

18SECT151_144R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

17SECT143_136R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

16SECT135_128R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

15SECT127_120R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

14SECT119_112R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

13SECT111_104R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

12SECT103_96R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

11SECT95_88R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

10SECT87_80R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

9SECT79_72R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

8SECT71_64R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

7SECT63_56R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

6SECT55_48R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

5SECT47_40R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

4SECT39_22R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

3RESERVEDR1hReserved
2RESERVEDR1hReserved
1RESERVEDR1hReserved
0RESERVEDR1hReserved

10.16.2.48 WEPROT_FLC1_B0_LOCK Register (Offset = 310h) [Reset = 00000000h]

WEPROT_FLC1_B0_LOCK is shown in Figure 10-53 and described in Table 10-64.

Return to the Summary Table.

Flash Controller 1 B0 WEPROTA Lock

Figure 10-53 WEPROT_FLC1_B0_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-64 WEPROT_FLC1_B0_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_FLC1_B0* registers (writes will have no effect on them). This bit can only be modified if WEPROT_FLC1_B0_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.49 WEPROT_FLC1_B0_COMMIT Register (Offset = 314h) [Reset = 00000000h]

WEPROT_FLC1_B0_COMMIT is shown in Figure 10-54 and described in Table 10-65.

Return to the Summary Table.

Flash Controller 1 B0 WEPROTA Commit

Figure 10-54 WEPROT_FLC1_B0_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-65 WEPROT_FLC1_B0_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_FLC1_B0_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_FLC1_B0_LOCK is modifiable
1 : WEPROT_FLC1_B0_LOCK is committed permanently

Reset type: XRSn

10.16.2.50 WEPROT_FLC1_B2_A Register (Offset = 340h) [Reset = FFFFFFFFh]

WEPROT_FLC1_B2_A is shown in Figure 10-55 and described in Table 10-66.

Return to the Summary Table.

Flash Controller 1 B2 Write Erase Protection A

Figure 10-55 WEPROT_FLC1_B2_A Register
3130292827262524
SECT31SECT30SECT29SECT28SECT27SECT26SECT25SECT24
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT23SECT22SECT21SECT20SECT19SECT18SECT17SECT16
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT15SECT14SECT13SECT12SECT11SECT10SECT9SECT8
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT7SECT6SECT5SECT4SECT3SECT2SECT1SECT0
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
Table 10-66 WEPROT_FLC1_B2_A Register Field Descriptions
BitFieldTypeResetDescription
31SECT31R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

30SECT30R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

29SECT29R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

28SECT28R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

27SECT27R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

26SECT26R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

25SECT25R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

24SECT24R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

23SECT23R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

22SECT22R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

21SECT21R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

20SECT20R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

19SECT19R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

18SECT18R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

17SECT17R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

16SECT16R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

15SECT15R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

14SECT14R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

13SECT13R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

12SECT12R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

11SECT11R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10SECT10R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

9SECT9R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

8SECT8R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

7SECT7R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

6SECT6R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

5SECT5R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

4SECT4R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

3SECT3R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

2SECT2R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

1SECT1R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

0SECT0R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10.16.2.51 WEPROT_FLC1_B2_B Register (Offset = 344h) [Reset = FFFFFFFFh]

WEPROT_FLC1_B2_B is shown in Figure 10-56 and described in Table 10-67.

Return to the Summary Table.

Flash Controller 1 B2 Write Erase Protection B

Figure 10-56 WEPROT_FLC1_B2_B Register
3130292827262524
SECT255_248SECT247_240SECT239_232SECT231_224SECT223_216SECT215_208SECT207_200SECT199_192
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT191_184SECT183_176SECT175_168SECT167_160SECT159_152SECT151_144SECT143_136SECT135_128
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT127_120SECT119_112SECT111_104SECT103_96SECT95_88SECT87_80SECT79_72SECT71_64
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT63_56SECT55_48SECT47_40SECT39_22RESERVEDRESERVEDRESERVEDRESERVED
R/W-1hR/W-1hR/W-1hR/W-1hR-1hR-1hR-1hR-1h
Table 10-67 WEPROT_FLC1_B2_B Register Field Descriptions
BitFieldTypeResetDescription
31SECT255_248R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

30SECT247_240R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

29SECT239_232R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

28SECT231_224R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

27SECT223_216R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

26SECT215_208R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

25SECT207_200R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

24SECT199_192R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

23SECT191_184R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

22SECT183_176R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

21SECT175_168R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

20SECT167_160R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

19SECT159_152R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

18SECT151_144R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

17SECT143_136R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

16SECT135_128R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

15SECT127_120R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

14SECT119_112R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

13SECT111_104R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

12SECT103_96R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

11SECT95_88R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

10SECT87_80R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

9SECT79_72R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

8SECT71_64R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

7SECT63_56R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

6SECT55_48R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

5SECT47_40R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

4SECT39_22R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

3RESERVEDR1hReserved
2RESERVEDR1hReserved
1RESERVEDR1hReserved
0RESERVEDR1hReserved

10.16.2.52 WEPROT_FLC1_B2_LOCK Register (Offset = 350h) [Reset = 00000000h]

WEPROT_FLC1_B2_LOCK is shown in Figure 10-57 and described in Table 10-68.

Return to the Summary Table.

Flash Controller 1 B2 WEPROTA Lock

Figure 10-57 WEPROT_FLC1_B2_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-68 WEPROT_FLC1_B2_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_FLC1_B2* registers (writes will have no effect on them). This bit can only be modified if WEPROT_FLC1_B2_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.53 WEPROT_FLC1_B2_COMMIT Register (Offset = 354h) [Reset = 00000000h]

WEPROT_FLC1_B2_COMMIT is shown in Figure 10-58 and described in Table 10-69.

Return to the Summary Table.

Flash Controller 1 B2 WEPROTA Commit

Figure 10-58 WEPROT_FLC1_B2_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-69 WEPROT_FLC1_B2_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_FLC1_B2_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_FLC1_B2_LOCK is modifiable
1 : WEPROT_FLC1_B2_LOCK is committed permanently

Reset type: XRSn

10.16.2.54 WEPROT_FLC2_B0_A Register (Offset = 3A0h) [Reset = FFFFFFFFh]

WEPROT_FLC2_B0_A is shown in Figure 10-59 and described in Table 10-70.

Return to the Summary Table.

Flash Controller 2 B0 Write Erase Protection A

Figure 10-59 WEPROT_FLC2_B0_A Register
3130292827262524
SECT31SECT30SECT29SECT28SECT27SECT26SECT25SECT24
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT23SECT22SECT21SECT20SECT19SECT18SECT17SECT16
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT15SECT14SECT13SECT12SECT11SECT10SECT9SECT8
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT7SECT6SECT5SECT4SECT3SECT2SECT1SECT0
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
Table 10-70 WEPROT_FLC2_B0_A Register Field Descriptions
BitFieldTypeResetDescription
31SECT31R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

30SECT30R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

29SECT29R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

28SECT28R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

27SECT27R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

26SECT26R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

25SECT25R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

24SECT24R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

23SECT23R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

22SECT22R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

21SECT21R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

20SECT20R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

19SECT19R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

18SECT18R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

17SECT17R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

16SECT16R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

15SECT15R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

14SECT14R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

13SECT13R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

12SECT12R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

11SECT11R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10SECT10R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

9SECT9R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

8SECT8R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

7SECT7R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

6SECT6R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

5SECT5R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

4SECT4R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

3SECT3R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

2SECT2R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

1SECT1R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

0SECT0R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10.16.2.55 WEPROT_FLC2_B0_B Register (Offset = 3A4h) [Reset = FFFFFFFFh]

WEPROT_FLC2_B0_B is shown in Figure 10-60 and described in Table 10-71.

Return to the Summary Table.

Flash Controller 2 B0 Write Erase Protection B

Figure 10-60 WEPROT_FLC2_B0_B Register
3130292827262524
SECT255_248SECT247_240SECT239_232SECT231_224SECT223_216SECT215_208SECT207_200SECT199_192
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT191_184SECT183_176SECT175_168SECT167_160SECT159_152SECT151_144SECT143_136SECT135_128
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT127_120SECT119_112SECT111_104SECT103_96SECT95_88SECT87_80SECT79_72SECT71_64
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT63_56SECT55_48SECT47_40SECT39_22RESERVEDRESERVEDRESERVEDRESERVED
R/W-1hR/W-1hR/W-1hR/W-1hR-1hR-1hR-1hR-1h
Table 10-71 WEPROT_FLC2_B0_B Register Field Descriptions
BitFieldTypeResetDescription
31SECT255_248R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

30SECT247_240R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

29SECT239_232R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

28SECT231_224R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

27SECT223_216R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

26SECT215_208R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

25SECT207_200R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

24SECT199_192R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

23SECT191_184R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

22SECT183_176R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

21SECT175_168R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

20SECT167_160R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

19SECT159_152R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

18SECT151_144R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

17SECT143_136R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

16SECT135_128R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

15SECT127_120R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

14SECT119_112R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

13SECT111_104R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

12SECT103_96R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

11SECT95_88R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

10SECT87_80R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

9SECT79_72R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

8SECT71_64R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

7SECT63_56R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

6SECT55_48R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

5SECT47_40R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

4SECT39_22R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

3RESERVEDR1hReserved
2RESERVEDR1hReserved
1RESERVEDR1hReserved
0RESERVEDR1hReserved

10.16.2.56 WEPROT_FLC2_B0_LOCK Register (Offset = 3B0h) [Reset = 00000000h]

WEPROT_FLC2_B0_LOCK is shown in Figure 10-61 and described in Table 10-72.

Return to the Summary Table.

Flash Controller 2 B0 WEPROTA Lock

Figure 10-61 WEPROT_FLC2_B0_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-72 WEPROT_FLC2_B0_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_FLC2_B0* registers (writes will have no effect on them). This bit can only be modified if WEPROT_FLC2_B0_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.57 WEPROT_FLC2_B0_COMMIT Register (Offset = 3B4h) [Reset = 00000000h]

WEPROT_FLC2_B0_COMMIT is shown in Figure 10-62 and described in Table 10-73.

Return to the Summary Table.

Flash Controller 2 B0 WEPROTA Commit

Figure 10-62 WEPROT_FLC2_B0_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-73 WEPROT_FLC2_B0_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_FLC2_B0_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_FLC2_B0_LOCK is modifiable
1 : WEPROT_FLC2_B0_LOCK is committed permanently

Reset type: XRSn

10.16.2.58 WEPROT_FLC2_B2_A Register (Offset = 3E0h) [Reset = FFFFFFFFh]

WEPROT_FLC2_B2_A is shown in Figure 10-63 and described in Table 10-74.

Return to the Summary Table.

Flash Controller 2 B2 Write Erase Protection A

Figure 10-63 WEPROT_FLC2_B2_A Register
3130292827262524
SECT31SECT30SECT29SECT28SECT27SECT26SECT25SECT24
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT23SECT22SECT21SECT20SECT19SECT18SECT17SECT16
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT15SECT14SECT13SECT12SECT11SECT10SECT9SECT8
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT7SECT6SECT5SECT4SECT3SECT2SECT1SECT0
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
Table 10-74 WEPROT_FLC2_B2_A Register Field Descriptions
BitFieldTypeResetDescription
31SECT31R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

30SECT30R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

29SECT29R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

28SECT28R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

27SECT27R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

26SECT26R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

25SECT25R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

24SECT24R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

23SECT23R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

22SECT22R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

21SECT21R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

20SECT20R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

19SECT19R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

18SECT18R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

17SECT17R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

16SECT16R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

15SECT15R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

14SECT14R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

13SECT13R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

12SECT12R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

11SECT11R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10SECT10R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

9SECT9R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

8SECT8R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

7SECT7R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

6SECT6R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

5SECT5R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

4SECT4R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

3SECT3R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

2SECT2R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

1SECT1R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

0SECT0R/W1hSector Write Erase Protection
0 : Write erase allowed on sector
1 : Write erase not allowed on sector

Reset type: XRSn

10.16.2.59 WEPROT_FLC2_B2_B Register (Offset = 3E4h) [Reset = FFFFFFFFh]

WEPROT_FLC2_B2_B is shown in Figure 10-64 and described in Table 10-75.

Return to the Summary Table.

Flash Controller 2 B2 Write Erase Protection B

Figure 10-64 WEPROT_FLC2_B2_B Register
3130292827262524
SECT255_248SECT247_240SECT239_232SECT231_224SECT223_216SECT215_208SECT207_200SECT199_192
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
2322212019181716
SECT191_184SECT183_176SECT175_168SECT167_160SECT159_152SECT151_144SECT143_136SECT135_128
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
15141312111098
SECT127_120SECT119_112SECT111_104SECT103_96SECT95_88SECT87_80SECT79_72SECT71_64
R/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1hR/W-1h
76543210
SECT63_56SECT55_48SECT47_40SECT39_22RESERVEDRESERVEDRESERVEDRESERVED
R/W-1hR/W-1hR/W-1hR/W-1hR-1hR-1hR-1hR-1h
Table 10-75 WEPROT_FLC2_B2_B Register Field Descriptions
BitFieldTypeResetDescription
31SECT255_248R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

30SECT247_240R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

29SECT239_232R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

28SECT231_224R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

27SECT223_216R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

26SECT215_208R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

25SECT207_200R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

24SECT199_192R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

23SECT191_184R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

22SECT183_176R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

21SECT175_168R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

20SECT167_160R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

19SECT159_152R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

18SECT151_144R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

17SECT143_136R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

16SECT135_128R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

15SECT127_120R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

14SECT119_112R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

13SECT111_104R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

12SECT103_96R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

11SECT95_88R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

10SECT87_80R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

9SECT79_72R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

8SECT71_64R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

7SECT63_56R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

6SECT55_48R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

5SECT47_40R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

4SECT39_22R/W1hSector Write Erase Protection
0 : Write erase allowed on sectors
1 : Write erase not allowed on sectors

Reset type: XRSn

3RESERVEDR1hReserved
2RESERVEDR1hReserved
1RESERVEDR1hReserved
0RESERVEDR1hReserved

10.16.2.60 WEPROT_FLC2_B2_LOCK Register (Offset = 3F0h) [Reset = 00000000h]

WEPROT_FLC2_B2_LOCK is shown in Figure 10-65 and described in Table 10-76.

Return to the Summary Table.

Flash Controller 2 B2 WEPROTA Lock

Figure 10-65 WEPROT_FLC2_B2_LOCK Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDLOCK
R-0hR/W-0h
Table 10-76 WEPROT_FLC2_B2_LOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0LOCKR/W0hWhen set, locks the bits in the WEPROT_FLC2_B2* registers (writes will have no effect on them). This bit can only be modified if WEPROT_FLC2_B2_COMMIT.COMMIT is cleared.
0 : Unlocked
1 : Locked

Reset type: XRSn

10.16.2.61 WEPROT_FLC2_B2_COMMIT Register (Offset = 3F4h) [Reset = 00000000h]

WEPROT_FLC2_B2_COMMIT is shown in Figure 10-66 and described in Table 10-77.

Return to the Summary Table.

Flash Controller 2 B2 WEPROTA Commit

Figure 10-66 WEPROT_FLC2_B2_COMMIT Register
3130292827262524
RESERVED
R-0h
2322212019181716
RESERVED
R-0h
15141312111098
RESERVED
R-0h
76543210
RESERVEDCOMMIT
R-0hR/W1S-0h
Table 10-77 WEPROT_FLC2_B2_COMMIT Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR0hReserved
15-1RESERVEDR0hReserved
0COMMITR/W1S0hWhen set, locks the bits in the WEPROT_FLC2_B2_LOCK register (writes will have no effect on it). This bit cannot be cleared, except by reset.
0 : WEPROT_FLC2_B2_LOCK is modifiable
1 : WEPROT_FLC2_B2_LOCK is committed permanently

Reset type: XRSn