ZHCY211 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   引言
  3.   隔离式信号链简介
    1.     比较隔离式放大器和隔离式调制器
      1.      摘要
      2.      隔离式放大器简介
      3.      隔离式调制器简介
      4.      隔离式放大器和隔离式调制器的性能比较
      5.      牵引逆变器中的隔离式调制器
      6.      隔离式放大器和调制器建议
      7.      结语
    2.     TI 具有超宽爬电距离和间隙的先进隔离式放大器
      1.      应用简报
  4.   选择树
  5.   电流检测
    1.     隔离式数据转换器的分流电阻选型
      1.      17
    2.     隔离式电流检测的设计注意事项
      1.      19
      2.      结语
      3.      参考资料
      4.      相关网站
    3.     具有 ±50mV 输入和单端输出的隔离式电流检测电路
      1.      24
    4.     具有 ±50mV 输入和差分输出的隔离式电流检测电路
      1.      26
    5.     具有 ±250mV 输入范围和单端输出电压的隔离式电流检测电路
      1.      设计目标
      2.      设计说明
      3.      设计说明
      4.      设计步骤
      5.      设计仿真
      6.      直流仿真结果
      7.      闭环交流仿真结果
      8.      瞬态仿真结果
      9.      设计参考资料
      10.      设计采用的隔离式放大器
      11.      设计备选隔离式放大器
    6.     具有 ±250mV 输入和差分输出的隔离式电流测量电路
      1.      设计目标
      2.      设计说明
      3.      设计注意事项
      4.      设计步骤
      5.      设计仿真
      6.      直流仿真结果
      7.      闭环交流仿真结果
      8.      瞬态仿真结果
      9.      设计参考资料
      10.      设计采用的运算放大器
      11.      设计备选运算放大器
    7.     隔离式过流保护电路
      1.      52
    8.     将差分输出(隔离式)放大器连接到单端输入 ADC
      1.      54
    9.     利用 AMC3311 为 AMC23C11 供电以实现隔离式检测和故障检测
      1.      应用简报
    10.     具有前端增益级的隔离式电流检测电路
      1.      58
    11.     隔离式分流器和闭环电流检测的精度比较
      1.      60
  6.   电压感测
    1.     利用隔离式电压检测充分提高功率转换和电机控制效率
      1.      63
      2.      高压检测解决方案
      3.      集成电阻器件
      4.      单端输出器件
      5.      集成隔离式电压检测用例
      6.      结语
      7.      其他资源
    2.     借助集成高压电阻隔离式放大器和调制器提高精度和性能
      1.      摘要
      2.      简介
      3.      高电压电阻隔离式放大器和调制器的优势
        1.       节省空间
        2.       集成高压电阻的温度漂移和使用寿命漂移更低
        3.       精度结果
        4.       完全集成电阻与附加外部电阻示例
        5.       器件选择树和交流/直流常见用例
      4.      总结
      5.      参考资料
    3.     适用于电压检测应用且具有差分输出、单端固定增益输出和单端比例式输出的隔离式放大器
      1.      摘要
      2.      引言
      3.      差分输出、单端固定增益输出和单端比例式输出概述
        1.       具有差分输出的隔离式放大器
        2.       具有单端固定增益输出的隔离式放大器
        3.       具有单端比例式输出的隔离式放大器
      4.      应用示例
        1.       产品选择树
      5.      总结
      6.      参考资料
    4.     具有 ±250mV 输入和差分输出的隔离式电压测量电路
      1.      93
    5.     使用 AMC3330 进行线间隔离式电压测量的分接抽头连接
      1.      95
    6.     具有隔离放大器和伪差分输入 SAR ADC 的 ±12V 电压检测电路
      1.      97
    7.     具有隔离式放大器和差分输入 SAR ADC 的 ±12V 电压检测电路
      1.      99
    8.     隔离式欠压和过压检测电路
      1.      101
    9.     隔离式过零检测电路
      1.      103
    10.     具有差分输出的 ±480V 隔离式电压检测电路
      1.      105
  7.   EMI 性能
    1.     借助隔离式放大器实现出色的辐射发射 EMI 性能
      1.      借助隔离式放大器实现出色的辐射发射 EMI 性能
      2.      引言
      3.      当前一代德州仪器 (TI) 隔离式放大器的辐射发射性能
      4.      前几代德州仪器 (TI) 隔离式放大器的辐射发射性能
      5.      结论
      6.      参考文献
    2.     衰减 AMC3301 系列辐射发射 EMI 的最佳实践
      1.      摘要
      2.      引言
      3.      输入连接对 AMC3301 系列辐射发射的影响
      4.      衰减 AMC3301 系列的辐射发射
        1.       铁氧体磁珠和共模扼流圈
        2.       AMC3301 系列的 PCB 原理图和布局最佳实践
      5.      使用多个 AMC3301 器件
        1.       器件布置方式
        2.       多个 AMC3301 的 PCB 布局最佳实践
      6.      结论
      7.      AMC3301 系列表
  8.   终端设备
    1.     比较 HEV/EV 中基于采样电阻和基于霍尔传感器的隔离式电流检测解决方案
      1.      128
    2.     直流电动汽车充电应用中电流检测的设计注意事项
      1.      摘要
      2.      引言
        1.       电动汽车直流充电站
        2.       电流检测技术选择和等效模型
          1.        使用基于分流器的解决方案检测电流
          2.        检测技术的等效模型
      3.      交流/直流转换器中的电流检测
        1.       交流/直流级的基本硬件和控制说明
          1.        交流电流控制环路
          2.        直流电压控制环路
        2.       A 点和 B 点 – 交流/直流级交流相电流检测
          1.        带宽的影响
            1.         稳态分析:基波电流和过零电流
            2.         瞬态分析:阶跃功率和电压骤降响应
          2.        延迟的影响
            1.         故障分析:电网短路
          3.        增益误差的影响
            1.         增益误差导致的交流/直流级功率扰动
            2.         交流/直流级对增益误差引起的功率扰动的响应
          4.        偏移的影响
        3.       C 点和 D 点 – 交流/直流级直流链路电流检测
          1.        带宽对前馈性能的影响
          2.        延迟对电源开关保护的影响
          3.        增益误差对功率测量的影响
            1.         瞬态分析:D 点的前馈
          4.        偏移的影响
        4.       A 点、B 点、C1/2 点和 D1/2 点的优缺点汇总以及产品建议
      4.      直流/直流转换器中的电流检测
        1.       具有相移控制功能的隔离式直流/直流转换器的基本工作原理
        2.       E、F 点 - 直流/直流级电流检测
          1.        带宽的影响
          2.        增益误差的影响
          3.        偏移误差的影响
        3.       G 点 - 直流/直流级谐振回路电流检测
        4.       检测点 E、F 和 G 汇总以及产品建议
      5.      结语
      6.      参考资料
    3.     在电机驱动器中使用隔离比较器进行故障检测
      1.      引言
      2.      电机驱动器简介
      3.      了解电机驱动器中的故障事件
      4.      在电机驱动器中实现可靠的检测和保护
      5.      用例 1:双向同相过流检测
      6.      用例 2:DC+ 过流检测
      7.      用例 3:DC– 过流和短路检测
      8.      用例 4:直流链路(DC+ 到 DC–)过压和欠压检测
      9.      用例 5:IGBT 模块过热检测
    4.     在电机驱动器的 UCC23513 光兼容隔离式栅极驱动器中实现分立式 DESAT
      1.      摘要
      2.      引言
      3.      具有集成 DESAT 的隔离式栅极驱动器的系统挑战
      4.      使用 UCC23513 和 AMC23C11 的系统方法
        1.       系统概述和主要规格
        2.       原理图设计
          1.        电路原理图
          2.        配置 VCE(DESAT) 阈值和 DESAT 偏置电流
          3.        DESAT 消隐时间
          4.        DESAT 抗尖峰脉冲滤波器
        3.       参考 PCB 布局
      5.      仿真和测试结果
        1.       仿真电路和结果
          1.        仿真电路
          2.        仿真结果
        2.       三相 IGBT 逆变器的测试结果
          1.        制动 IGBT 测试
          2.        具有相间短路保护功能的三相逆变器的测试结果
      6.      总结
      7.      参考资料
    5.     交流电机驱动器中的隔离式电压检测
      1.      引言
      2.      结论
      3.      参考文献
    6.     在服务器 PSU 中实现高性能隔离式电流和电压检测
      1.      应用简报
  9.   其他参考设计/电路
    1.     为隔离式放大器设计自举电荷泵电源
      1.      摘要
      2.      引言
      3.      自举电源设计
        1.       选择电荷泵电容器
        2.       在 TINA-TI 中仿真
        3.       使用 AMC1311-Q1 进行硬件测试
      4.      总结
      5.      参考资料
    2.     隔离式调制器与 MCU 之间的数字接口的时钟边沿延迟补偿
      1.      摘要
      2.      引言
      3.      数字接口时序规格的设计挑战
      4.      具有时钟边沿延迟补偿的设计方法
        1.       具有软件可配置相位延迟的时钟信号补偿
        2.       具有硬件可配置相位延迟的时钟信号补偿
        3.       通过时钟返回进行时钟信号补偿
        4.       通过 MCU 的时钟反相来实现时钟信号补偿
      5.      测试和验证
        1.       测试设备和软件
        2.       具有软件可配置相位延迟的时钟信号补偿测试
          1.        测试设置
          2.        测试测量结果
        3.       通过 MCU 上的时钟反相进行时钟信号补偿的测试
          1.        测试设置
          2.        测试测量结果
            1.         测试结果 – GPIO123 时钟输入无时钟反相
            2.         测试结果 – GPIO123 时钟输入的时钟反相
        4.       通过计算工具进行数字接口时序验证
          1.        不使用补偿方法的数字接口
          2.        常用方法 - 降低时钟频率
          3.        具有软件可配置相位延迟的时钟边沿补偿
      6.      结语
      7.      参考资料
    3.     利用 AMC3311 为 AMC23C11 供电以实现隔离式检测和故障检测
      1.      应用简报

引言

车载充电器光伏逆变器直流充电(桩)站电源转换系统电机驱动等多种工业和汽车应用都需要进行隔离,以保护数字电路免受执行测量的高压电路的影响。为这些应用实现隔离式电流检测的两种方法是基于分流器的隔离式检测和基于磁(霍尔或磁通门)的检测。本文档比较了德州仪器 (TI) 的 AMC3302 单电源隔离式放大器与常用的闭环电流传感器 (CLCS)。

技术概述

 基于分流器的隔离式电流检测 图 24 基于分流器的隔离式电流检测. 基于分流器的隔离式电流检测的原理是测量精密直列式电阻(称为分流电阻)两端的电压。

分流电阻必须非常精确,以便生成所提供电流的预期电压,因为预期电阻的任何变化都将直接导致增益误差。基于分流器的电流检测功能的优势在于,它可实现出色的精度、抗磁干扰能力、可扩展性和小尺寸。

 基于霍尔效应的闭环传感器 图 25 基于霍尔效应的闭环传感器. CLCS 使用磁芯来感应流经初级导体的电流产生的磁场。CLCS 中包含的磁场感应元件用于提供施加到磁芯的补偿电流。该补偿电流产生的磁通大小相等,但与初级导体产生的磁通相反,从而产生零磁通测量。磁性电流检测易受电磁干扰的影响,这种干扰会影响器件的偏移和线性性能。

有关如何比较这两种技术的更多信息,请访问此处

测试设置

 AMC3302 电路和 CLCS
                    测试设置方框图 图 26 AMC3302 电路和 CLCS 测试设置方框图. 为了直接比较这两种技术的性能,我们创建了一个测试设置。这里使用了直流电流源、电子负载和数字万用表来捕获 +/-85A 初级电流扫描在 -40°C、25°C 和 85°C 三个不同温度下的数据。所有测量均根据 IEEE488 自动进行。

请注意,用于 AMC3302 电路测量的 500µΩ 分流器 1 和用于控制测量的 500µΩ 分流器 2 不受环境温度变化的影响,因此本分析中不包括分流器温度漂移误差。两款分流器的额定容差均为 ±0.25%,温度系数为 ±15ppm/°C,功率耗散为 20W。

 AMC3302 电路图图 27 AMC3302 电路图.

下面的电路图展示了用于精度比较的 AMC3302TLV6002 电路。TLV6002 的通道 1 用于缓冲通过电阻分压器生成的基准电压,而 AMC3302 的差分输出通过通道 2 从差分转换为单端。因此,AMC3302 电路具有与 CLCS 相同的接口:VDD、GND、VREF 和 VOUT。

 AMC3302 电路板印刷电路板图 28 AMC3302 电路板印刷电路板.

下面是 AMC3302 印刷电路板 (PCB)。PCB 的设计方式使 AMC3302 电路适合与 CLCS 相同的 x、y 封装,即 13.4mm x 21.9mm。AMC3302 PCB 的高度要小得多;仅为 2.6mm,与 CLCS 的 16mm 相比,高度减少了 84%。

精度比较

图 6 展示了不同温度下 +/-85A 初级电流扫描的精度结果,此结果是以在 25°C 偏移校准后指定为满标度输出百分比的误差形式表示。AMC3302 电路结果以红色阴影显示,而 CLCS 以蓝色显示。AMC3302 电路在整个电流和温度范围内都非常精确,无需增益校准,误差小于 0.1%。与 AMC3302 电路相比,CLCS 的增益误差漂移和线性性能较差,导致总误差大于 0.5%。与 CLCS 相比,AMC3302 电路在整个电流和温度范围内的精度提高了 5 倍以上。

 偏移校准后 AMC3302
                    电路和闭环电流传感器的精度比较 图 29 偏移校准后 AMC3302 电路和闭环电流传感器的精度比较.

下面显示了绝对最大误差的精度比较表。

温度

-40C

25C

85C

AMC3302 电路

-0.077%

-0.029%

0.035%

CLCS

-0.356%

-0.492%

-0.573%

结语

下表总结了 AMC3302 电路和 CLCS 的比较。对于要求出色精度的系统,AMC3302 电路比 CLCS 具有明显的优势。进行此比较时使用的 AMC3302 电路在 x 和 y 维度的尺寸相等,但在高度 z 方面具有明显的优势。AMC3302 电路还具有抗磁干扰能力和可扩展性。

AMC3302 电路

CLCS

精度

++

+

尺寸

+

-

抗磁干扰

++

--

可扩展性

++

-

简化设计

+

++