ZHCY211 December   2024 AMC0106M05 , AMC0106M25 , AMC0136 , AMC0311D , AMC0311S , AMC0386 , AMC0386-Q1 , AMC1100 , AMC1106M05 , AMC1200 , AMC1200-Q1 , AMC1202 , AMC1203 , AMC1204 , AMC1211-Q1 , AMC1300 , AMC1300B-Q1 , AMC1301 , AMC1301-Q1 , AMC1302-Q1 , AMC1303M2510 , AMC1304L25 , AMC1304M25 , AMC1305M25 , AMC1305M25-Q1 , AMC1306M05 , AMC1306M25 , AMC1311 , AMC1311-Q1 , AMC131M03 , AMC1336 , AMC1336-Q1 , AMC1350 , AMC1350-Q1 , AMC23C12 , AMC3301 , AMC3330 , AMC3330-Q1

 

  1.   1
  2.   引言
  3.   隔离式信号链简介
    1.     比较隔离式放大器和隔离式调制器
      1.      摘要
      2.      隔离式放大器简介
      3.      隔离式调制器简介
      4.      隔离式放大器和隔离式调制器的性能比较
      5.      牵引逆变器中的隔离式调制器
      6.      隔离式放大器和调制器建议
      7.      结语
    2.     TI 具有超宽爬电距离和间隙的先进隔离式放大器
      1.      应用简报
  4.   选择树
  5.   电流检测
    1.     隔离式数据转换器的分流电阻选型
      1.      17
    2.     隔离式电流检测的设计注意事项
      1.      19
      2.      结语
      3.      参考资料
      4.      相关网站
    3.     具有 ±50mV 输入和单端输出的隔离式电流检测电路
      1.      24
    4.     具有 ±50mV 输入和差分输出的隔离式电流检测电路
      1.      26
    5.     具有 ±250mV 输入范围和单端输出电压的隔离式电流检测电路
      1.      设计目标
      2.      设计说明
      3.      设计说明
      4.      设计步骤
      5.      设计仿真
      6.      直流仿真结果
      7.      闭环交流仿真结果
      8.      瞬态仿真结果
      9.      设计参考资料
      10.      设计采用的隔离式放大器
      11.      设计备选隔离式放大器
    6.     具有 ±250mV 输入和差分输出的隔离式电流测量电路
      1.      设计目标
      2.      设计说明
      3.      设计注意事项
      4.      设计步骤
      5.      设计仿真
      6.      直流仿真结果
      7.      闭环交流仿真结果
      8.      瞬态仿真结果
      9.      设计参考资料
      10.      设计采用的运算放大器
      11.      设计备选运算放大器
    7.     隔离式过流保护电路
      1.      52
    8.     将差分输出(隔离式)放大器连接到单端输入 ADC
      1.      54
    9.     利用 AMC3311 为 AMC23C11 供电以实现隔离式检测和故障检测
      1.      应用简报
    10.     具有前端增益级的隔离式电流检测电路
      1.      58
    11.     隔离式分流器和闭环电流检测的精度比较
      1.      60
  6.   电压感测
    1.     利用隔离式电压检测充分提高功率转换和电机控制效率
      1.      63
      2.      高压检测解决方案
      3.      集成电阻器件
      4.      单端输出器件
      5.      集成隔离式电压检测用例
      6.      结语
      7.      其他资源
    2.     借助集成高压电阻隔离式放大器和调制器提高精度和性能
      1.      摘要
      2.      简介
      3.      高电压电阻隔离式放大器和调制器的优势
        1.       节省空间
        2.       集成高压电阻的温度漂移和使用寿命漂移更低
        3.       精度结果
        4.       完全集成电阻与附加外部电阻示例
        5.       器件选择树和交流/直流常见用例
      4.      总结
      5.      参考资料
    3.     适用于电压检测应用且具有差分输出、单端固定增益输出和单端比例式输出的隔离式放大器
      1.      摘要
      2.      引言
      3.      差分输出、单端固定增益输出和单端比例式输出概述
        1.       具有差分输出的隔离式放大器
        2.       具有单端固定增益输出的隔离式放大器
        3.       具有单端比例式输出的隔离式放大器
      4.      应用示例
        1.       产品选择树
      5.      总结
      6.      参考资料
    4.     具有 ±250mV 输入和差分输出的隔离式电压测量电路
      1.      93
    5.     使用 AMC3330 进行线间隔离式电压测量的分接抽头连接
      1.      95
    6.     具有隔离放大器和伪差分输入 SAR ADC 的 ±12V 电压检测电路
      1.      97
    7.     具有隔离式放大器和差分输入 SAR ADC 的 ±12V 电压检测电路
      1.      99
    8.     隔离式欠压和过压检测电路
      1.      101
    9.     隔离式过零检测电路
      1.      103
    10.     具有差分输出的 ±480V 隔离式电压检测电路
      1.      105
  7.   EMI 性能
    1.     借助隔离式放大器实现出色的辐射发射 EMI 性能
      1.      借助隔离式放大器实现出色的辐射发射 EMI 性能
      2.      引言
      3.      当前一代德州仪器 (TI) 隔离式放大器的辐射发射性能
      4.      前几代德州仪器 (TI) 隔离式放大器的辐射发射性能
      5.      结论
      6.      参考文献
    2.     衰减 AMC3301 系列辐射发射 EMI 的最佳实践
      1.      摘要
      2.      引言
      3.      输入连接对 AMC3301 系列辐射发射的影响
      4.      衰减 AMC3301 系列的辐射发射
        1.       铁氧体磁珠和共模扼流圈
        2.       AMC3301 系列的 PCB 原理图和布局最佳实践
      5.      使用多个 AMC3301 器件
        1.       器件布置方式
        2.       多个 AMC3301 的 PCB 布局最佳实践
      6.      结论
      7.      AMC3301 系列表
  8.   终端设备
    1.     比较 HEV/EV 中基于采样电阻和基于霍尔传感器的隔离式电流检测解决方案
      1.      128
    2.     直流电动汽车充电应用中电流检测的设计注意事项
      1.      摘要
      2.      引言
        1.       电动汽车直流充电站
        2.       电流检测技术选择和等效模型
          1.        使用基于分流器的解决方案检测电流
          2.        检测技术的等效模型
      3.      交流/直流转换器中的电流检测
        1.       交流/直流级的基本硬件和控制说明
          1.        交流电流控制环路
          2.        直流电压控制环路
        2.       A 点和 B 点 – 交流/直流级交流相电流检测
          1.        带宽的影响
            1.         稳态分析:基波电流和过零电流
            2.         瞬态分析:阶跃功率和电压骤降响应
          2.        延迟的影响
            1.         故障分析:电网短路
          3.        增益误差的影响
            1.         增益误差导致的交流/直流级功率扰动
            2.         交流/直流级对增益误差引起的功率扰动的响应
          4.        偏移的影响
        3.       C 点和 D 点 – 交流/直流级直流链路电流检测
          1.        带宽对前馈性能的影响
          2.        延迟对电源开关保护的影响
          3.        增益误差对功率测量的影响
            1.         瞬态分析:D 点的前馈
          4.        偏移的影响
        4.       A 点、B 点、C1/2 点和 D1/2 点的优缺点汇总以及产品建议
      4.      直流/直流转换器中的电流检测
        1.       具有相移控制功能的隔离式直流/直流转换器的基本工作原理
        2.       E、F 点 - 直流/直流级电流检测
          1.        带宽的影响
          2.        增益误差的影响
          3.        偏移误差的影响
        3.       G 点 - 直流/直流级谐振回路电流检测
        4.       检测点 E、F 和 G 汇总以及产品建议
      5.      结语
      6.      参考资料
    3.     在电机驱动器中使用隔离比较器进行故障检测
      1.      引言
      2.      电机驱动器简介
      3.      了解电机驱动器中的故障事件
      4.      在电机驱动器中实现可靠的检测和保护
      5.      用例 1:双向同相过流检测
      6.      用例 2:DC+ 过流检测
      7.      用例 3:DC– 过流和短路检测
      8.      用例 4:直流链路(DC+ 到 DC–)过压和欠压检测
      9.      用例 5:IGBT 模块过热检测
    4.     在电机驱动器的 UCC23513 光兼容隔离式栅极驱动器中实现分立式 DESAT
      1.      摘要
      2.      引言
      3.      具有集成 DESAT 的隔离式栅极驱动器的系统挑战
      4.      使用 UCC23513 和 AMC23C11 的系统方法
        1.       系统概述和主要规格
        2.       原理图设计
          1.        电路原理图
          2.        配置 VCE(DESAT) 阈值和 DESAT 偏置电流
          3.        DESAT 消隐时间
          4.        DESAT 抗尖峰脉冲滤波器
        3.       参考 PCB 布局
      5.      仿真和测试结果
        1.       仿真电路和结果
          1.        仿真电路
          2.        仿真结果
        2.       三相 IGBT 逆变器的测试结果
          1.        制动 IGBT 测试
          2.        具有相间短路保护功能的三相逆变器的测试结果
      6.      总结
      7.      参考资料
    5.     交流电机驱动器中的隔离式电压检测
      1.      引言
      2.      结论
      3.      参考文献
    6.     在服务器 PSU 中实现高性能隔离式电流和电压检测
      1.      应用简报
  9.   其他参考设计/电路
    1.     为隔离式放大器设计自举电荷泵电源
      1.      摘要
      2.      引言
      3.      自举电源设计
        1.       选择电荷泵电容器
        2.       在 TINA-TI 中仿真
        3.       使用 AMC1311-Q1 进行硬件测试
      4.      总结
      5.      参考资料
    2.     隔离式调制器与 MCU 之间的数字接口的时钟边沿延迟补偿
      1.      摘要
      2.      引言
      3.      数字接口时序规格的设计挑战
      4.      具有时钟边沿延迟补偿的设计方法
        1.       具有软件可配置相位延迟的时钟信号补偿
        2.       具有硬件可配置相位延迟的时钟信号补偿
        3.       通过时钟返回进行时钟信号补偿
        4.       通过 MCU 的时钟反相来实现时钟信号补偿
      5.      测试和验证
        1.       测试设备和软件
        2.       具有软件可配置相位延迟的时钟信号补偿测试
          1.        测试设置
          2.        测试测量结果
        3.       通过 MCU 上的时钟反相进行时钟信号补偿的测试
          1.        测试设置
          2.        测试测量结果
            1.         测试结果 – GPIO123 时钟输入无时钟反相
            2.         测试结果 – GPIO123 时钟输入的时钟反相
        4.       通过计算工具进行数字接口时序验证
          1.        不使用补偿方法的数字接口
          2.        常用方法 - 降低时钟频率
          3.        具有软件可配置相位延迟的时钟边沿补偿
      6.      结语
      7.      参考资料
    3.     利用 AMC3311 为 AMC23C11 供电以实现隔离式检测和故障检测
      1.      应用简报
偏移的影响

图 75 展示了具有偏移的实际电流传感器的等效模型。在该研究中,电流传感器偏移被建模为标准化为测量满量程的固定值,具体详见方程式 47

方程式 47. IO=IMAX δO

其中

  • I0 是传感器存在的绝对偏移值
  • IMAX 是测量范围的最大值
  • 0 是测量中引入的偏移误差的标么值

交流/直流级电流控制环路的目标是在不需要确定系统中实际电流的情况下,使 MCU 检测到的电流保持受控状态。如果由于偏移误差导致测量值与实际电流不匹配,则电流会在系统中引起不良的功率扰动,如方程式 48 所示。

方程式 48. ΔPO=V[IO1sin(ωt)+IO2sin(ωt-23π)+IO3sin(ωt+23π)]

其中

  • ΔPO 是由偏移误差所引起、随时间变化的功率扰动
  • IO1、IO2 和 IO3 是每个电流传感器的偏移误差
  • V 是相对中性点 RMS 电压
  • ω 是由电网频率衍生而来的电脉动

与增益误差情况不同,功率扰动与交流和直流级之间的功率转换无关;因此,该问题在任何工作条件下都存在。这导致直流链路中始终存在电压纹波。偏移会在系统中引入功率扰动,其频率等于电网的线路频率。如增益误差一章中所述,直流总线电压环路无法完全抑制来自检测点的电源纹波。因此,必须对控制环路与电流检测性能之间的关系进行仿真。我们针对以下用例和假设运行了仿真:

  • 将直流总线电压设置为最小额定电压,从而达到最大纹波电压 (650V)
  • 交流侧和直流侧之间进行最大功率交换。这对结果没有影响。在空载条件下,结果是相同的。
  • 偏移误差是相对于单位完整测量范围定义的。当采用基于分流器的设计与 ±50mV 隔离式器件时,最大量程为 ±32A。
  • 应用于三个相位以达到最坏情况的偏移如下:IO1 = –IO2 = –IO3
  • 电流控制环路带宽在所有仿真中保持恒定 (3kHz)
  • 交流滤波器的设计目标是在使用理想检测技术时,将标称功率条件下电网的 THD 保持在 3%
  • 电力线频率为 50Hz

图 91 显示了交流/直流转换器在不同电流检测技术和不同偏移误差条件下的仿真结果。

 在直流链路带宽和偏移误差参数下随时间变化的直流链路电压纹波图 91 在直流链路带宽和偏移误差参数下随时间变化的直流链路电压纹波

可以观察到,直流链路上存在 50Hz 纹波电压,该电压由具有偏移的电流检测级注入的电源纹波引起。此外,由于 PI 控制器的积分部分,当达到稳定状态时,所有情况下电压的平均值仍然相同。

直流链路电压纹波和电压控制带宽之间具有明显的相关性。如果电压控制环路的带宽足够高,该控制环路会尝试通过快速控制电流环路来消除纹波电压,但会以牺牲电网的 THD 为代价。实际上,当控制带宽等于 400Hz 时,1.4% 的偏移误差会导致 THD 增加 10%(从 3% 增加到 3.3%)。相反,当电压环路的带宽不高时,直流链路中的波动会非常大,这是因为电压环路不会尝试抑制这种变化,但这次不会再向电网中注入任何谐波。但请记住,直流链路中存在电压纹波会导致电池出现电源纹波,而这是不能容忍的。此外,如果电压带宽大幅降低,阶跃负载响应的性能会变得相当差。

总之,当开关节点处的电流传感器具有 1.4% 的偏移误差时,可能导致电网电流的 THD 增加超过 10%。