SPRUIN7C March   2020  – March 2024 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000™ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studio™ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit
    5. 2.5 Trigonometric Math Unit (TMU)
    6. 2.6 VCRC Unit
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Simulate External Reset
      4. 3.4.4  Power-On Reset (POR)
      5. 3.4.5  Brown-Out-Reset (BOR)
      6. 3.4.6  Debugger Reset (SYSRS)
      7. 3.4.7  Simulate CPU Reset
      8. 3.4.8  Watchdog Reset (WDRS)
      9. 3.4.9  Hardware BIST Reset (HWBISTRS)
      10. 3.4.10 NMI Watchdog Reset (NMIWDRS)
      11. 3.4.11 DCSM Safe Code Copy Reset (SCCRESET)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
        1. 3.5.5.1 PIE Interrupt Priority
          1. 3.5.5.1.1 Channel Priority
          2. 3.5.5.1.2 Group Priority
      6. 3.5.6 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection
        2. 3.6.3.2 RAM Uncorrectable ECC Error
        3. 3.6.3.3 Flash Uncorrectable ECC Error
        4. 3.6.3.4 CPU HWBIST Error
        5. 3.6.3.5 Software-Forced Error
      4. 3.6.4 CRC Fail
      5. 3.6.5 ERAD NMI
      6. 3.6.6 Illegal Instruction Trap (ITRAP)
      7. 3.6.7 Error Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CAN Bit Clock
        6. 3.7.3.6 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
        1. 3.7.7.1 X1/X2 Precondition Circuit
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low-Power Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
      5. 3.10.5 Flash Power-down Considerations
    11. 3.11 Memory Controller Module
      1. 3.11.1 Functional Description
        1. 3.11.1.1 Dedicated RAM (Mx RAM)
        2. 3.11.1.2 Local Shared RAM (LSx RAM)
        3. 3.11.1.3 Global Shared RAM (GSx RAM)
        4. 3.11.1.4 Access Arbitration
        5. 3.11.1.5 Access Protection
          1. 3.11.1.5.1 CPU Fetch Protection
          2. 3.11.1.5.2 CPU Write Protection
          3. 3.11.1.5.3 CPU Read Protection
          4. 3.11.1.5.4 HIC Write Protection
          5. 3.11.1.5.5 DMA Write Protection
        6. 3.11.1.6 Memory Error Detection, Correction and Error Handling
          1. 3.11.1.6.1 Error Detection and Correction
          2. 3.11.1.6.2 Error Handling
        7. 3.11.1.7 Application Test Hooks for Error Detection and Correction
        8. 3.11.1.8 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 Dual Code Security Module (DCSM)
      1. 3.13.1 Functional Description
        1. 3.13.1.1 CSM Passwords
        2. 3.13.1.2 Emulation Code Security Logic (ECSL)
        3. 3.13.1.3 CPU Secure Logic
        4. 3.13.1.4 Execute-Only Protection
        5. 3.13.1.5 Password Lock
        6. 3.13.1.6 JTAG Lock
        7. 3.13.1.7 Link Pointer and Zone Select
      2. 3.13.2 C Code Example to Get Zone Select Block Addr for Zone1 in BANK0
      3. 3.13.3 Flash and OTP Erase/Program
      4. 3.13.4 Safe Copy Code
      5. 3.13.5 SafeCRC
      6. 3.13.6 CSM Impact on Other On-Chip Resources
      7. 3.13.7 Incorporating Code Security in User Applications
        1. 3.13.7.1 Environments That Require Security Unlocking
        2. 3.13.7.2 CSM Password Match Flow
        3. 3.13.7.3 C Code Example to Unsecure C28x Zone1
        4.       150
        5. 3.13.7.4 C Code Example to Resecure C28x Zone1
        6.       152
        7. 3.13.7.5 Environments That Require ECSL Unlocking
        8. 3.13.7.6 ECSL Password Match Flow
        9. 3.13.7.7 ECSL Disable Considerations for Any Zone
          1. 3.13.7.7.1 C Code Example to Disable ECSL for C28x-Zone1
        10.       157
        11. 3.13.7.8 Device Unique ID
    14. 3.14 System Control Register Configuration Restrictions
    15. 3.15 Software
      1. 3.15.1 SYSCTL Examples
        1. 3.15.1.1 Missing clock detection (MCD)
        2. 3.15.1.2 XCLKOUT (External Clock Output) Configuration
      2. 3.15.2 DCSM Examples
        1. 3.15.2.1 Empty DCSM Tool Example
      3. 3.15.3 MEMCFG Examples
        1. 3.15.3.1 Correctable & Uncorrectable Memory Error Handling
      4. 3.15.4 NMI Examples
      5. 3.15.5 TIMER Examples
        1. 3.15.5.1 CPU Timers
        2. 3.15.5.2 CPU Timers
      6. 3.15.6 WATCHDOG Examples
        1. 3.15.6.1 Watchdog
    16. 3.16 System Control Registers
      1. 3.16.1  SYSCTRL Base Address Table
      2. 3.16.2  CPUTIMER_REGS Registers
      3. 3.16.3  PIE_CTRL_REGS Registers
      4. 3.16.4  WD_REGS Registers
      5. 3.16.5  NMI_INTRUPT_REGS Registers
      6. 3.16.6  XINT_REGS Registers
      7. 3.16.7  SYNC_SOC_REGS Registers
      8. 3.16.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.16.9  DEV_CFG_REGS Registers
      10. 3.16.10 CLK_CFG_REGS Registers
      11. 3.16.11 CPU_SYS_REGS Registers
      12. 3.16.12 PERIPH_AC_REGS Registers
      13. 3.16.13 DCSM_BANK0_Z1_REGS Registers
      14. 3.16.14 DCSM_BANK0_Z2_REGS Registers
      15. 3.16.15 DCSM_COMMON_REGS Registers
      16. 3.16.16 MEM_CFG_REGS Registers
      17. 3.16.17 ACCESS_PROTECTION_REGS Registers
      18. 3.16.18 MEMORY_ERROR_REGS Registers
      19. 3.16.19 TEST_ERROR_REGS Registers
      20. 3.16.20 UID_REGS Registers
      21. 3.16.21 DCSM_BANK0_Z1_OTP Registers
      22. 3.16.22 DCSM_BANK0_Z2_OTP Registers
      23. 3.16.23 Register to Driverlib Function Mapping
        1. 3.16.23.1 ASYSCTL Registers to Driverlib Functions
        2. 3.16.23.2 CPUTIMER Registers to Driverlib Functions
        3. 3.16.23.3 DCSM Registers to Driverlib Functions
        4. 3.16.23.4 MEMCFG Registers to Driverlib Functions
        5. 3.16.23.5 NMI Registers to Driverlib Functions
        6. 3.16.23.6 PIE Registers to Driverlib Functions
        7. 3.16.23.7 SYSCTL Registers to Driverlib Functions
        8. 3.16.23.8 XINT Registers to Driverlib Functions
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and MPOST Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Memory Maps
        1. 4.7.4.1 Boot ROM Memory Maps
        2. 4.7.4.2 Reserved RAM Memory Maps
      5. 4.7.5  ROM Tables
      6. 4.7.6  Boot Modes and Loaders
        1. 4.7.6.1 Boot Modes
          1. 4.7.6.1.1 Wait Boot
          2. 4.7.6.1.2 Flash Boot
          3. 4.7.6.1.3 RAM Boot
        2. 4.7.6.2 Bootloaders
          1. 4.7.6.2.1 SCI Boot Mode
          2. 4.7.6.2.2 SPI Boot Mode
          3. 4.7.6.2.3 I2C Boot Mode
          4. 4.7.6.2.4 Parallel Boot Mode
          5. 4.7.6.2.5 CAN Boot Mode
      7. 4.7.7  GPIO Assignments
      8. 4.7.8  Secure ROM Function APIs
      9. 4.7.9  Clock Initializations
      10. 4.7.10 Boot Status Information
        1. 4.7.10.1 Booting Status
        2. 4.7.10.2 Boot Mode and MPOST (Memory Power On Self-Test) Status
      11. 4.7.11 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Boot Data Stream Structure
        1. 4.8.1.1 Bootloader Data Stream Structure
          1. 4.8.1.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Flash Module
    1. 5.1  Introduction to Flash and OTP Memory
      1. 5.1.1 FLASH Related Collateral
      2. 5.1.2 Features
      3. 5.1.3 Flash Tools
      4. 5.1.4 Default Flash Configuration
    2. 5.2  Flash Bank, OTP, and Pump
    3. 5.3  Flash Module Controller (FMC)
    4. 5.4  Flash and OTP Memory Power-Down Modes and Wakeup
    5. 5.5  Active Grace Period
    6. 5.6  Flash and OTP Memory Performance
    7. 5.7  Flash Read Interface
      1. 5.7.1 C28x-FMC Flash Read Interface
        1. 5.7.1.1 Standard Read Mode
        2. 5.7.1.2 Prefetch Mode
          1. 5.7.1.2.1 Data Cache
    8. 5.8  Flash Erase and Program
      1. 5.8.1 Erase
      2. 5.8.2 Program
      3. 5.8.3 Verify
    9. 5.9  Error Correction Code (ECC) Protection
      1. 5.9.1 Single-Bit Data Error
      2. 5.9.2 Uncorrectable Error
      3. 5.9.3 SECDED Logic Correctness Check
    10. 5.10 Reserved Locations Within Flash and OTP Memory
    11. 5.11 Migrating an Application from RAM to Flash
    12. 5.12 Procedure to Change the Flash Control Registers
    13. 5.13 Software
      1. 5.13.1 FLASH Examples
        1. 5.13.1.1 Live Firmware Update Example
        2. 5.13.1.2 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        3. 5.13.1.3 Flash ECC Test Mode
        4. 5.13.1.4 Boot Source Code
        5. 5.13.1.5 Erase Source Code
        6. 5.13.1.6 Live DFU Command Functionality
        7. 5.13.1.7 Verify Source Code
        8. 5.13.1.8 SCI Boot Mode Routines
        9. 5.13.1.9 Flash Programming Solution using SCI
    14. 5.14 Flash Registers
      1. 5.14.1 FLASH Base Address Table
      2. 5.14.2 FLASH_CTRL_REGS Registers
      3. 5.14.3 FLASH_ECC_REGS Registers
      4. 5.14.4 FLASH Registers to Driverlib Functions
  8. Dual-Clock Comparator (DCC)
    1. 6.1 Introduction
      1. 6.1.1 Features
      2. 6.1.2 Block Diagram
    2. 6.2 Module Operation
      1. 6.2.1 Configuring DCC Counters
      2. 6.2.2 Single-Shot Measurement Mode
      3. 6.2.3 Continuous Monitoring Mode
      4. 6.2.4 Error Conditions
    3. 6.3 Interrupts
    4. 6.4 Software
      1. 6.4.1 DCC Examples
        1. 6.4.1.1 DCC Single shot Clock verification
        2. 6.4.1.2 DCC Single shot Clock measurement
        3. 6.4.1.3 DCC Continuous clock monitoring
        4. 6.4.1.4 DCC Continuous clock monitoring
        5. 6.4.1.5 DCC Detection of clock failure
    5. 6.5 DCC Registers
      1. 6.5.1 DCC Base Address Table
      2. 6.5.2 DCC_REGS Registers
      3. 6.5.3 DCC Registers to Driverlib Functions
  9. Background CRC-32 (BGCRC)
    1. 7.1 Introduction
      1. 7.1.1 BGCRC Related Collateral
      2. 7.1.2 Features
      3. 7.1.3 Block Diagram
      4. 7.1.4 Memory Wait States and Memory Map
    2. 7.2 Functional Description
      1. 7.2.1 Data Read Unit
      2. 7.2.2 CRC-32 Compute Unit
      3. 7.2.3 CRC Notification Unit
        1. 7.2.3.1 CPU Interrupt and NMI
      4. 7.2.4 Operating Modes
        1. 7.2.4.1 CRC Mode
        2. 7.2.4.2 Scrub Mode
      5. 7.2.5 BGCRC Watchdog
      6. 7.2.6 Hardware and Software Faults Protection
    3. 7.3 Application of the BGCRC
      1. 7.3.1 Software Configuration
      2. 7.3.2 Decision on Error Response Severity
      3. 7.3.3 Execution of Time Critical Code from Wait-Stated Memories
      4. 7.3.4 BGCRC Execution
      5. 7.3.5 Debug/Error Response for BGCRC Errors
      6. 7.3.6 BGCRC Golden CRC-32 Value Computation
    4. 7.4 Software
      1. 7.4.1 BGCRC Examples
        1. 7.4.1.1 BGCRC CPU Interrupt Example
        2. 7.4.1.2 BGCRC Example with Watchdog and Lock
    5. 7.5 BGCRC Registers
      1. 7.5.1 BGCRC Base Address Table
      2. 7.5.2 BGCRC_REGS Registers
      3. 7.5.3 BGCRC Registers to Driverlib Functions
  10. General-Purpose Input/Output (GPIO)
    1. 8.1 Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2 Configuration Overview
    3. 8.3 Digital Inputs on ADC Pins (AIOs)
    4. 8.4 Digital General-Purpose I/O Control
    5. 8.5 Input Qualification
      1. 8.5.1 No Synchronization (Asynchronous Input)
      2. 8.5.2 Synchronization to SYSCLKOUT Only
      3. 8.5.3 Qualification Using a Sampling Window
    6. 8.6 GPIO and Peripheral Muxing
      1. 8.6.1 GPIO Muxing
      2. 8.6.2 Peripheral Muxing
    7. 8.7 Internal Pullup Configuration Requirements
    8. 8.8 Software
      1. 8.8.1 GPIO Examples
        1. 8.8.1.1 Device GPIO Setup
        2. 8.8.1.2 Device GPIO Toggle
        3. 8.8.1.3 Device GPIO Interrupt
        4. 8.8.1.4 External Interrupt (XINT)
      2. 8.8.2 LED Examples
        1. 8.8.2.1 LED Blinky Example with DCSM
    9. 8.9 GPIO Registers
      1. 8.9.1 GPIO Base Address Table
      2. 8.9.2 GPIO_CTRL_REGS Registers
      3. 8.9.3 GPIO_DATA_REGS Registers
      4. 8.9.4 GPIO_DATA_READ_REGS Registers
      5. 8.9.5 GPIO Registers to Driverlib Functions
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR and CLB Input X-BAR
      1. 9.1.1 CLB Input X-BAR
    2. 9.2 ePWM, CLB, and GPIO Output X-BAR
      1. 9.2.1 ePWM X-BAR
        1. 9.2.1.1 ePWM X-BAR Architecture
      2. 9.2.2 CLB X-BAR
        1. 9.2.2.1 CLB X-BAR Architecture
      3. 9.2.3 GPIO Output X-BAR
        1. 9.2.3.1 GPIO Output X-BAR Architecture
      4. 9.2.4 CLB Output X-BAR
        1. 9.2.4.1 CLB Output X-BAR Architecture
      5. 9.2.5 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 EPWM_XBAR_REGS Registers
      5. 9.3.5 CLB_XBAR_REGS Registers
      6. 9.3.6 OUTPUT_XBAR_REGS Registers
      7. 9.3.7 Register to Driverlib Function Mapping
        1. 9.3.7.1 INPUTXBAR Registers to Driverlib Functions
        2. 9.3.7.2 XBAR Registers to Driverlib Functions
        3. 9.3.7.3 EPWMXBAR Registers to Driverlib Functions
        4. 9.3.7.4 CLBXBAR Registers to Driverlib Functions
        5. 9.3.7.5 OUTPUTXBAR Registers to Driverlib Functions
        6. 9.3.7.6 TRIGXBAR Registers to Driverlib Functions
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
      4. 10.8.4 DMA Registers to Driverlib Functions
  13. 11Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 11.1 Introduction
      1. 11.1.1 ERAD Related Collateral
    2. 11.2 Enhanced Bus Comparator Unit
      1. 11.2.1 Enhanced Bus Comparator Unit Operations
      2. 11.2.2 Event Masking and Exporting
    3. 11.3 System Event Counter Unit
      1. 11.3.1 System Event Counter Modes
        1. 11.3.1.1 Counting Active Levels Versus Edges
        2. 11.3.1.2 Max Mode
        3. 11.3.1.3 Cumulative Mode
        4. 11.3.1.4 Input Signal Selection
      2. 11.3.2 Reset on Event
      3. 11.3.3 Operation Conditions
    4. 11.4 ERAD Ownership, Initialization and Reset
    5. 11.5 ERAD Programming Sequence
      1. 11.5.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 11.5.2 Timer and Counter Programming Sequence
    6. 11.6 Cyclic Redundancy Check Unit
      1. 11.6.1 CRC Unit Qualifier
      2. 11.6.2 CRC Unit Programming Sequence
    7. 11.7 Software
      1. 11.7.1 ERAD Examples
        1. 11.7.1.1  ERAD Profiling Interrupts
        2. 11.7.1.2  ERAD Profile Function
        3. 11.7.1.3  ERAD Profile Function
        4. 11.7.1.4  ERAD HWBP Monitor Program Counter
        5. 11.7.1.5  ERAD HWBP Monitor Program Counter
        6. 11.7.1.6  ERAD Profile Function
        7. 11.7.1.7  ERAD HWBP Stack Overflow Detection
        8. 11.7.1.8  ERAD HWBP Stack Overflow Detection
        9. 11.7.1.9  ERAD Stack Overflow
        10. 11.7.1.10 ERAD Profiling Interrupts
        11. 11.7.1.11 ERAD Profiling Interrupts
        12. 11.7.1.12 ERAD MEMORY ACCESS RESTRICT
        13. 11.7.1.13 ERAD INTERRUPT ORDER
        14. 11.7.1.14 ERAD AND CLB
        15. 11.7.1.15 ERAD PWM PROTECTION
    8. 11.8 ERAD Registers
      1. 11.8.1 ERAD Base Address Table
      2. 11.8.2 ERAD_GLOBAL_REGS Registers
      3. 11.8.3 ERAD_HWBP_REGS Registers
      4. 11.8.4 ERAD_COUNTER_REGS Registers
      5. 11.8.5 ERAD_CRC_GLOBAL_REGS Registers
      6. 11.8.6 ERAD_CRC_REGS Registers
      7. 11.8.7 ERAD Registers to Driverlib Functions
  14. 12Configurable Logic Block (CLB)
    1. 12.1 Introduction
      1. 12.1.1 CLB Related Collateral
    2. 12.2 Description
      1. 12.2.1 CLB Clock
    3. 12.3 CLB Input/Output Connection
      1. 12.3.1 Overview
      2. 12.3.2 CLB Input Selection
      3. 12.3.3 CLB Output Selection
      4. 12.3.4 CLB Output Signal Multiplexer
    4. 12.4 CLB Tile
      1. 12.4.1 Static Switch Block
      2. 12.4.2 Counter Block
        1. 12.4.2.1 Counter Description
        2. 12.4.2.2 Counter Operation
        3. 12.4.2.3 Serializer Mode
        4. 12.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 12.4.3 FSM Block
      4. 12.4.4 LUT4 Block
      5. 12.4.5 Output LUT Block
      6. 12.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 12.4.7 High Level Controller (HLC)
        1. 12.4.7.1 High Level Controller Events
        2. 12.4.7.2 High Level Controller Instructions
        3. 12.4.7.3 <Src> and <Dest>
        4. 12.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 12.5 CPU Interface
      1. 12.5.1 Register Description
      2. 12.5.2 Non-Memory Mapped Registers
    6. 12.6 DMA Access
    7. 12.7 CLB Data Export Through SPI RX Buffer
    8. 12.8 Software
      1. 12.8.1 CLB Examples
        1. 12.8.1.1  CLB Empty Project
        2. 12.8.1.2  CLB Combinational Logic
        3. 12.8.1.3  CLB GPIO Input Filter
        4. 12.8.1.4  CLB Auxilary PWM
        5. 12.8.1.5  CLB PWM Protection
        6. 12.8.1.6  CLB Signal Generator
        7. 12.8.1.7  CLB State Machine
        8. 12.8.1.8  CLB External Signal AND Gate
        9. 12.8.1.9  CLB Timer
        10. 12.8.1.10 CLB Timer Two States
        11. 12.8.1.11 CLB Interrupt Tag
        12. 12.8.1.12 CLB Output Intersect
        13. 12.8.1.13 CLB PUSH PULL
        14. 12.8.1.14 CLB Multi Tile
        15. 12.8.1.15 CLB Glue Logic
        16. 12.8.1.16 CLB AOC Control
        17. 12.8.1.17 CLB AOC Release Control
        18. 12.8.1.18 CLB XBARs
        19. 12.8.1.19 CLB AOC Control
        20. 12.8.1.20 CLB Serializer
        21. 12.8.1.21 CLB LFSR
        22. 12.8.1.22 CLB Lock Output Mask
        23. 12.8.1.23 CLB INPUT Pipeline Mode
        24. 12.8.1.24 CLB Clocking and PIPELINE Mode
        25. 12.8.1.25 CLB SPI Data Export
        26. 12.8.1.26 CLB SPI Data Export DMA
        27. 12.8.1.27 CLB Trip Zone Timestamp
        28. 12.8.1.28 CLB CRC
        29. 12.8.1.29 CLB TDM Serial Port
        30. 12.8.1.30 CLB LED Driver
    9. 12.9 CLB Registers
      1. 12.9.1 CLB Base Address Table
      2. 12.9.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 12.9.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 12.9.4 CLB_DATA_EXCHANGE_REGS Registers
      5. 12.9.5 CLB Registers to Driverlib Functions
  15. 13Host Interface Controller (HIC)
    1. 13.1 Introduction
      1. 13.1.1 HIC Related Collateral
      2. 13.1.2 Features
      3. 13.1.3 Block Diagram
    2. 13.2 Functional Description
      1. 13.2.1 Memory Map
      2. 13.2.2 Connections
        1. 13.2.2.1 Functions of the Connections
      3. 13.2.3 Interrupts and Triggers
    3. 13.3 Operation
      1. 13.3.1 Mailbox Access Mode Overview
        1. 13.3.1.1 Mailbox Access Mode Operation
        2. 13.3.1.2 Configuring HIC Registers With External Host
        3. 13.3.1.3 Mailbox Access Mode Read/Write
      2. 13.3.2 Direct Access Mode Overview
        1. 13.3.2.1 Direct Access Mode Operation
        2. 13.3.2.2 Direct Access Mode Read/Write
      3. 13.3.3 Controlling Reads and Writes
        1. 13.3.3.1 Single-Pin Read/Write Mode (nOE/RnW Pin)
        2. 13.3.3.2 Dual-Pin Read/Write Mode (nOE and nWE Pins)
      4. 13.3.4 Data Lines, Data Width, Data Packing and Unpacking
      5. 13.3.5 Address Translation
      6. 13.3.6 Access Errors
      7. 13.3.7 Security
      8. 13.3.8 HIC Usage
    4. 13.4 Usage Scenarious for Reduced Number of Pins
    5. 13.5 Software
      1. 13.5.1 HIC Examples
        1. 13.5.1.1 HIC 16-bit Memory Access Example
        2. 13.5.1.2 HIC 8-bit Memory Access Example
        3. 13.5.1.3 HIC 16-bit Memory Access FSI Example
    6. 13.6 HIC Registers
      1. 13.6.1 HIC Base Address Table
      2. 13.6.2 HIC_CFG_REGS Registers
      3. 13.6.3 HIC Registers to Driverlib Functions
  16. 14Analog Subsystem
    1. 14.1 Introduction
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2 Optimizing Power-Up Time
    3. 14.3 Digital Inputs on ADC Pins (AIOs)
    4. 14.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 14.5 Analog Pins and Internal Connections
    6. 14.6 Analog Subsystem Registers
      1. 14.6.1 ASBSYS Base Address Table
      2. 14.6.2 ANALOG_SUBSYS_REGS Registers
  17. 15Analog-to-Digital Converter (ADC)
    1. 15.1  Introduction
      1. 15.1.1 ADC Related Collateral
      2. 15.1.2 Features
      3. 15.1.3 Block Diagram
    2. 15.2  ADC Configurability
      1. 15.2.1 Clock Configuration
      2. 15.2.2 Resolution
      3. 15.2.3 Voltage Reference
        1. 15.2.3.1 External Reference Mode
        2. 15.2.3.2 Internal Reference Mode
        3. 15.2.3.3 Selecting Reference Mode
      4. 15.2.4 Signal Mode
      5. 15.2.5 Expected Conversion Results
      6. 15.2.6 Interpreting Conversion Results
    3. 15.3  SOC Principle of Operation
      1. 15.3.1 SOC Configuration
      2. 15.3.2 Trigger Operation
      3. 15.3.3 ADC Acquisition (Sample and Hold) Window
      4. 15.3.4 ADC Input Models
      5. 15.3.5 Channel Selection
    4. 15.4  SOC Configuration Examples
      1. 15.4.1 Single Conversion from ePWM Trigger
      2. 15.4.2 Oversampled Conversion from ePWM Trigger
      3. 15.4.3 Multiple Conversions from CPU Timer Trigger
      4. 15.4.4 Software Triggering of SOCs
    5. 15.5  ADC Conversion Priority
    6. 15.6  Burst Mode
      1. 15.6.1 Burst Mode Example
      2. 15.6.2 Burst Mode Priority Example
    7. 15.7  EOC and Interrupt Operation
      1. 15.7.1 Interrupt Overflow
      2. 15.7.2 Continue to Interrupt Mode
      3. 15.7.3 Early Interrupt Configuration Mode
    8. 15.8  Post-Processing Blocks
      1. 15.8.1 PPB Offset Correction
      2. 15.8.2 PPB Error Calculation
      3. 15.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 15.8.4 PPB Sample Delay Capture
    9. 15.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 15.9.1 Implementation
      2. 15.9.2 Detecting an Open Input Pin
      3. 15.9.3 Detecting a Shorted Input Pin
    10. 15.10 Power-Up Sequence
    11. 15.11 ADC Calibration
      1. 15.11.1 ADC Zero Offset Calibration
    12. 15.12 ADC Timings
      1. 15.12.1 ADC Timing Diagrams
    13. 15.13 Additional Information
      1. 15.13.1 Ensuring Synchronous Operation
        1. 15.13.1.1 Basic Synchronous Operation
        2. 15.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 15.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 15.13.1.4 Non-overlapping Conversions
      2. 15.13.2 Choosing an Acquisition Window Duration
      3. 15.13.3 Achieving Simultaneous Sampling
      4. 15.13.4 Result Register Mapping
      5. 15.13.5 Internal Temperature Sensor
      6. 15.13.6 Designing an External Reference Circuit
      7. 15.13.7 ADC-DAC Loopback Testing
      8. 15.13.8 Internal Test Mode
      9. 15.13.9 ADC Gain and Offset Calibration
    14. 15.14 Software
      1. 15.14.1 ADC Examples
        1. 15.14.1.1  ADC Software Triggering
        2. 15.14.1.2  ADC ePWM Triggering
        3. 15.14.1.3  ADC Temperature Sensor Conversion
        4. 15.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 15.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 15.14.1.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        7. 15.14.1.7  ADC PPB Offset (adc_ppb_offset)
        8. 15.14.1.8  ADC PPB Limits (adc_ppb_limits)
        9. 15.14.1.9  ADC PPB Delay Capture (adc_ppb_delay)
        10. 15.14.1.10 ADC ePWM Triggering Multiple SOC
        11. 15.14.1.11 ADC Burst Mode
        12. 15.14.1.12 ADC Burst Mode Oversampling
        13. 15.14.1.13 ADC SOC Oversampling
        14. 15.14.1.14 ADC PPB PWM trip (adc_ppb_pwm_trip)
        15. 15.14.1.15 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 15.15 ADC Registers
      1. 15.15.1 ADC Base Address Table
      2. 15.15.2 ADC_RESULT_REGS Registers
      3. 15.15.3 ADC_REGS Registers
      4. 15.15.4 ADC Registers to Driverlib Functions
  18. 16Comparator Subsystem (CMPSS)
    1. 16.1 Introduction
      1. 16.1.1 CMPSS Related Collateral
      2. 16.1.2 Features
      3. 16.1.3 Block Diagram
    2. 16.2 Comparator
    3. 16.3 Reference DAC
    4. 16.4 Ramp Generator
      1. 16.4.1 Ramp Generator Overview
      2. 16.4.2 Ramp Generator Behavior
      3. 16.4.3 Ramp Generator Behavior at Corner Cases
    5. 16.5 Digital Filter
      1. 16.5.1 Filter Initialization Sequence
    6. 16.6 Using the CMPSS
      1. 16.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 16.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 16.6.3 Calibrating the CMPSS
      4. 16.6.4 Enabling and Disabling the CMPSS Clock
    7. 16.7 Software
      1. 16.7.1 CMPSS Examples
        1. 16.7.1.1 CMPSS Asynchronous Trip
        2. 16.7.1.2 CMPSS Digital Filter Configuration
    8. 16.8 CMPSS Registers
      1. 16.8.1 CMPSS Base Address Table
      2. 16.8.2 CMPSS_REGS Registers
      3. 16.8.3 CMPSS Registers to Driverlib Functions
  19. 17Enhanced Pulse Width Modulator (ePWM)
    1. 17.1  Introduction
      1. 17.1.1 EPWM Related Collateral
      2. 17.1.2 Submodule Overview
    2. 17.2  Configuring Device Pins
    3. 17.3  ePWM Modules Overview
    4. 17.4  Time-Base (TB) Submodule
      1. 17.4.1 Purpose of the Time-Base Submodule
      2. 17.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 17.4.3 Calculating PWM Period and Frequency
        1. 17.4.3.1 Time-Base Period Shadow Register
        2. 17.4.3.2 Time-Base Clock Synchronization
        3. 17.4.3.3 Time-Base Counter Synchronization
        4. 17.4.3.4 ePWM SYNC Selection
      4. 17.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 17.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 17.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 17.4.7 Global Load
        1. 17.4.7.1 Global Load Pulse Pre-Scalar
        2. 17.4.7.2 One-Shot Load Mode
        3. 17.4.7.3 One-Shot Sync Mode
    5. 17.5  Counter-Compare (CC) Submodule
      1. 17.5.1 Purpose of the Counter-Compare Submodule
      2. 17.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 17.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 17.5.4 Count Mode Timing Waveforms
    6. 17.6  Action-Qualifier (AQ) Submodule
      1. 17.6.1 Purpose of the Action-Qualifier Submodule
      2. 17.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 17.6.3 Action-Qualifier Event Priority
      4. 17.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 17.6.5 Configuration Requirements for Common Waveforms
    7. 17.7  Dead-Band Generator (DB) Submodule
      1. 17.7.1 Purpose of the Dead-Band Submodule
      2. 17.7.2 Dead-band Submodule Additional Operating Modes
      3. 17.7.3 Operational Highlights for the Dead-Band Submodule
    8. 17.8  PWM Chopper (PC) Submodule
      1. 17.8.1 Purpose of the PWM Chopper Submodule
      2. 17.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 17.8.3 Waveforms
        1. 17.8.3.1 One-Shot Pulse
        2. 17.8.3.2 Duty Cycle Control
    9. 17.9  Trip-Zone (TZ) Submodule
      1. 17.9.1 Purpose of the Trip-Zone Submodule
      2. 17.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 17.9.2.1 Trip-Zone Configurations
      3. 17.9.3 Generating Trip Event Interrupts
    10. 17.10 Event-Trigger (ET) Submodule
      1. 17.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 17.11 Digital Compare (DC) Submodule
      1. 17.11.1 Purpose of the Digital Compare Submodule
      2. 17.11.2 Enhanced Trip Action Using CMPSS
      3. 17.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 17.11.4 Operation Highlights of the Digital Compare Submodule
        1. 17.11.4.1 Digital Compare Events
        2. 17.11.4.2 Event Filtering
        3. 17.11.4.3 Valley Switching
    12. 17.12 ePWM Crossbar (X-BAR)
    13. 17.13 Applications to Power Topologies
      1. 17.13.1  Overview of Multiple Modules
      2. 17.13.2  Key Configuration Capabilities
      3. 17.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 17.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 17.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 17.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 17.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 17.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 17.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 17.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 17.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 17.14 Register Lock Protection
    15. 17.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 17.15.1 Operational Description of HRPWM
        1. 17.15.1.1 Controlling the HRPWM Capabilities
        2. 17.15.1.2 HRPWM Source Clock
        3. 17.15.1.3 Configuring the HRPWM
        4. 17.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 17.15.1.5 Principle of Operation
          1. 17.15.1.5.1 Edge Positioning
          2. 17.15.1.5.2 Scaling Considerations
          3. 17.15.1.5.3 Duty Cycle Range Limitation
          4. 17.15.1.5.4 High-Resolution Period
            1. 17.15.1.5.4.1 High-Resolution Period Configuration
        6. 17.15.1.6 Deadband High-Resolution Operation
        7. 17.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 17.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 17.15.1.8.1 #Defines for HRPWM Header Files
          2. 17.15.1.8.2 Implementing a Simple Buck Converter
            1. 17.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 17.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 17.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 17.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 17.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 17.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 17.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 17.15.2.2 Software Usage
          1. 17.15.2.2.1 A Sample of How to Add "Include" Files
          2.        799
          3. 17.15.2.2.2 Declaring an Element
          4.        801
          5. 17.15.2.2.3 Initializing With a Scale Factor Value
          6.        803
          7. 17.15.2.2.4 SFO Function Calls
    16. 17.16 Software
      1. 17.16.1 EPWM Examples
        1. 17.16.1.1  ePWM Trip Zone
        2. 17.16.1.2  ePWM Up Down Count Action Qualifier
        3. 17.16.1.3  ePWM Synchronization
        4. 17.16.1.4  ePWM Digital Compare
        5. 17.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 17.16.1.6  ePWM Valley Switching
        7. 17.16.1.7  ePWM Digital Compare Edge Filter
        8. 17.16.1.8  ePWM Deadband
        9. 17.16.1.9  ePWM DMA
        10. 17.16.1.10 ePWM Chopper
        11. 17.16.1.11 EPWM Configure Signal
        12. 17.16.1.12 Realization of Monoshot mode
        13. 17.16.1.13 EPWM Action Qualifier (epwm_up_aq)
      2. 17.16.2 HRPWM Examples
        1. 17.16.2.1 HRPWM Duty Control with SFO
        2. 17.16.2.2 HRPWM Slider
        3. 17.16.2.3 HRPWM Period Control
        4. 17.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 17.16.2.5 HRPWM Slider Test
        6. 17.16.2.6 HRPWM Duty Up Count
        7. 17.16.2.7 HRPWM Period Up-Down Count
    17. 17.17 ePWM Registers
      1. 17.17.1 EPWM Base Address Table
      2. 17.17.2 EPWM_REGS Registers
      3. 17.17.3 Register to Driverlib Function Mapping
        1. 17.17.3.1 EPWM Registers to Driverlib Functions
        2. 17.17.3.2 HRPWM Registers to Driverlib Functions
  20. 18Enhanced Capture (eCAP)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 ECAP Related Collateral
    2. 18.2 Description
    3. 18.3 Configuring Device Pins for the eCAP
    4. 18.4 Capture and APWM Operating Mode
    5. 18.5 Capture Mode Description
      1. 18.5.1  Event Prescaler
      2. 18.5.2  Edge Polarity Select and Qualifier
      3. 18.5.3  Continuous/One-Shot Control
      4. 18.5.4  32-Bit Counter and Phase Control
      5. 18.5.5  CAP1-CAP4 Registers
      6. 18.5.6  eCAP Synchronization
        1. 18.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 18.5.7  Interrupt Control
      8. 18.5.8  DMA Interrupt
      9. 18.5.9  Shadow Load and Lockout Control
      10. 18.5.10 APWM Mode Operation
    6. 18.6 Application of the eCAP Module
      1. 18.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 18.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 18.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 18.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 18.7 Application of the APWM Mode
      1. 18.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 18.8 Software
      1. 18.8.1 ECAP Examples
        1. 18.8.1.1 eCAP APWM Example
        2. 18.8.1.2 eCAP Capture PWM Example
        3. 18.8.1.3 eCAP APWM Phase-shift Example
        4. 18.8.1.4 eCAP Software Sync Example
    9. 18.9 eCAP Registers
      1. 18.9.1 ECAP Base Address Table
      2. 18.9.2 ECAP_REGS Registers
      3. 18.9.3 ECAP Registers to Driverlib Functions
  21. 19High Resolution Capture (HRCAP)
    1. 19.1 Introduction
      1. 19.1.1 HRCAP Related Collateral
      2. 19.1.2 Features
      3. 19.1.3 Description
    2. 19.2 Operational Details
      1. 19.2.1 HRCAP Clocking
      2. 19.2.2 HRCAP Initialization Sequence
      3. 19.2.3 HRCAP Interrupts
      4. 19.2.4 HRCAP Calibration
        1. 19.2.4.1 Applying the Scale Factor
    3. 19.3 Known Exceptions
    4. 19.4 Software
      1. 19.4.1 HRCAP Examples
        1. 19.4.1.1 HRCAP Capture and Calibration Example
    5. 19.5 HRCAP Registers
      1. 19.5.1 HRCAP Base Address Table
      2. 19.5.2 HRCAP_REGS Registers
      3. 19.5.3 HRCAP Registers to Driverlib Functions
  22. 20Enhanced Quadrature Encoder Pulse (eQEP)
    1. 20.1  Introduction
      1. 20.1.1 EQEP Related Collateral
    2. 20.2  Configuring Device Pins
    3. 20.3  Description
      1. 20.3.1 EQEP Inputs
      2. 20.3.2 Functional Description
      3. 20.3.3 eQEP Memory Map
    4. 20.4  Quadrature Decoder Unit (QDU)
      1. 20.4.1 Position Counter Input Modes
        1. 20.4.1.1 Quadrature Count Mode
        2. 20.4.1.2 Direction-Count Mode
        3. 20.4.1.3 Up-Count Mode
        4. 20.4.1.4 Down-Count Mode
      2. 20.4.2 eQEP Input Polarity Selection
      3. 20.4.3 Position-Compare Sync Output
    5. 20.5  Position Counter and Control Unit (PCCU)
      1. 20.5.1 Position Counter Operating Modes
        1. 20.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 20.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 20.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 20.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 20.5.2 Position Counter Latch
        1. 20.5.2.1 Index Event Latch
        2. 20.5.2.2 Strobe Event Latch
      3. 20.5.3 Position Counter Initialization
      4. 20.5.4 eQEP Position-compare Unit
    6. 20.6  eQEP Edge Capture Unit
    7. 20.7  eQEP Watchdog
    8. 20.8  eQEP Unit Timer Base
    9. 20.9  QMA Module
      1. 20.9.1 Modes of Operation
        1. 20.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 20.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 20.9.2 Interrupt and Error Generation
    10. 20.10 eQEP Interrupt Structure
    11. 20.11 Software
      1. 20.11.1 EQEP Examples
        1. 20.11.1.1 Frequency Measurement Using eQEP
        2. 20.11.1.2 Position and Speed Measurement Using eQEP
        3. 20.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 20.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 20.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 20.12 eQEP Registers
      1. 20.12.1 EQEP Base Address Table
      2. 20.12.2 EQEP_REGS Registers
      3. 20.12.3 EQEP Registers to Driverlib Functions
  23. 21Controller Area Network (CAN)
    1. 21.1  Introduction
      1. 21.1.1 DCAN Related Collateral
      2. 21.1.2 Features
      3. 21.1.3 Block Diagram
        1. 21.1.3.1 CAN Core
        2. 21.1.3.2 Message Handler
        3. 21.1.3.3 Message RAM
        4. 21.1.3.4 Registers and Message Object Access (IFx)
    2. 21.2  Functional Description
      1. 21.2.1 Configuring Device Pins
      2. 21.2.2 Address/Data Bus Bridge
    3. 21.3  Operating Modes
      1. 21.3.1 Initialization
      2. 21.3.2 CAN Message Transfer (Normal Operation)
        1. 21.3.2.1 Disabled Automatic Retransmission
        2. 21.3.2.2 Auto-Bus-On
      3. 21.3.3 Test Modes
        1. 21.3.3.1 Silent Mode
        2. 21.3.3.2 Loopback Mode
        3. 21.3.3.3 External Loopback Mode
        4. 21.3.3.4 Loopback Combined with Silent Mode
    4. 21.4  Multiple Clock Source
    5. 21.5  Interrupt Functionality
      1. 21.5.1 Message Object Interrupts
      2. 21.5.2 Status Change Interrupts
      3. 21.5.3 Error Interrupts
      4. 21.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 21.5.5 Interrupt Topologies
    6. 21.6  DMA Functionality
    7. 21.7  Parity Check Mechanism
      1. 21.7.1 Behavior on Parity Error
    8. 21.8  Debug Mode
    9. 21.9  Module Initialization
    10. 21.10 Configuration of Message Objects
      1. 21.10.1 Configuration of a Transmit Object for Data Frames
      2. 21.10.2 Configuration of a Transmit Object for Remote Frames
      3. 21.10.3 Configuration of a Single Receive Object for Data Frames
      4. 21.10.4 Configuration of a Single Receive Object for Remote Frames
      5. 21.10.5 Configuration of a FIFO Buffer
    11. 21.11 Message Handling
      1. 21.11.1  Message Handler Overview
      2. 21.11.2  Receive/Transmit Priority
      3. 21.11.3  Transmission of Messages in Event Driven CAN Communication
      4. 21.11.4  Updating a Transmit Object
      5. 21.11.5  Changing a Transmit Object
      6. 21.11.6  Acceptance Filtering of Received Messages
      7. 21.11.7  Reception of Data Frames
      8. 21.11.8  Reception of Remote Frames
      9. 21.11.9  Reading Received Messages
      10. 21.11.10 Requesting New Data for a Receive Object
      11. 21.11.11 Storing Received Messages in FIFO Buffers
      12. 21.11.12 Reading from a FIFO Buffer
    12. 21.12 CAN Bit Timing
      1. 21.12.1 Bit Time and Bit Rate
        1. 21.12.1.1 Synchronization Segment
        2. 21.12.1.2 Propagation Time Segment
        3. 21.12.1.3 Phase Buffer Segments and Synchronization
        4. 21.12.1.4 Oscillator Tolerance Range
      2. 21.12.2 Configuration of the CAN Bit Timing
        1. 21.12.2.1 Calculation of the Bit Timing Parameters
        2. 21.12.2.2 Example for Bit Timing at High Baudrate
        3. 21.12.2.3 Example for Bit Timing at Low Baudrate
    13. 21.13 Message Interface Register Sets
      1. 21.13.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 21.13.2 Message Interface Register Set 3 (IF3)
    14. 21.14 Message RAM
      1. 21.14.1 Structure of Message Objects
      2. 21.14.2 Addressing Message Objects in RAM
      3. 21.14.3 Message RAM Representation in Debug Mode
    15. 21.15 Software
      1. 21.15.1 CAN Examples
        1. 21.15.1.1 CAN External Loopback
        2. 21.15.1.2 CAN External Loopback with Interrupts
        3. 21.15.1.3 CAN External Loopback with DMA
        4. 21.15.1.4 CAN Transmit and Receive Configurations
        5. 21.15.1.5 CAN Error Generation Example
        6. 21.15.1.6 CAN Remote Request Loopback
        7. 21.15.1.7 CAN example that illustrates the usage of Mask registers
    16. 21.16 CAN Registers
      1. 21.16.1 CAN Base Address Table
      2. 21.16.2 CAN_REGS Registers
      3. 21.16.3 CAN Registers to Driverlib Functions
  24. 22Fast Serial Interface (FSI)
    1. 22.1 Introduction
      1. 22.1.1 FSI Related Collateral
      2. 22.1.2 FSI Features
    2. 22.2 System-level Integration
      1. 22.2.1 CPU Interface
      2. 22.2.2 Signal Description
        1. 22.2.2.1 Configuring Device Pins
      3. 22.2.3 FSI Interrupts
        1. 22.2.3.1 Transmitter Interrupts
        2. 22.2.3.2 Receiver Interrupts
        3. 22.2.3.3 Configuring Interrupts
        4. 22.2.3.4 Handling Interrupts
      4. 22.2.4 DMA Interface
      5. 22.2.5 External Frame Trigger Mux
    3. 22.3 FSI Functional Description
      1. 22.3.1  Introduction to Operation
      2. 22.3.2  FSI Transmitter Module
        1. 22.3.2.1 Initialization
        2. 22.3.2.2 FSI_TX Clocking
        3. 22.3.2.3 Transmitting Frames
          1. 22.3.2.3.1 Software Triggered Frames
          2. 22.3.2.3.2 Externally Triggered Frames
          3. 22.3.2.3.3 Ping Frame Generation
            1. 22.3.2.3.3.1 Automatic Ping Frames
            2. 22.3.2.3.3.2 Software Triggered Ping Frame
            3. 22.3.2.3.3.3 Externally Triggered Ping Frame
          4. 22.3.2.3.4 Transmitting Frames with DMA
        4. 22.3.2.4 Transmit Buffer Management
        5. 22.3.2.5 CRC Submodule
        6. 22.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 22.3.2.7 Reset
      3. 22.3.3  FSI Receiver Module
        1. 22.3.3.1  Initialization
        2. 22.3.3.2  FSI_RX Clocking
        3. 22.3.3.3  Receiving Frames
          1. 22.3.3.3.1 Receiving Frames with DMA
        4. 22.3.3.4  Ping Frame Watchdog
        5. 22.3.3.5  Frame Watchdog
        6. 22.3.3.6  Delay Line Control
        7. 22.3.3.7  Buffer Management
        8. 22.3.3.8  CRC Submodule
        9. 22.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 22.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 22.3.3.11 FSI_RX Reset
      4. 22.3.4  Frame Format
        1. 22.3.4.1 FSI Frame Phases
        2. 22.3.4.2 Frame Types
          1. 22.3.4.2.1 Ping Frames
          2. 22.3.4.2.2 Error Frames
          3. 22.3.4.2.3 Data Frames
        3. 22.3.4.3 Multi-Lane Transmission
      5. 22.3.5  Flush Sequence
      6. 22.3.6  Internal Loopback
      7. 22.3.7  CRC Generation
      8. 22.3.8  ECC Module
      9. 22.3.9  Tag Matching
      10. 22.3.10 TDM Configurations
      11. 22.3.11 FSI Trigger Generation
      12. 22.3.12 FSI-SPI Compatibility Mode
        1. 22.3.12.1 Available SPI Modes
          1. 22.3.12.1.1 FSITX as SPI Master, Transmit Only
            1. 22.3.12.1.1.1 Initialization
            2. 22.3.12.1.1.2 Operation
          2. 22.3.12.1.2 FSIRX as SPI Slave, Receive Only
            1. 22.3.12.1.2.1 Initialization
            2. 22.3.12.1.2.2 Operation
          3. 22.3.12.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Master
            1. 22.3.12.1.3.1 Initialization
            2. 22.3.12.1.3.2 Operation
    4. 22.4 FSI Programing Guide
      1. 22.4.1 Establishing the Communication Link
        1. 22.4.1.1 Establishing the Communication Link from the Master Device
        2. 22.4.1.2 Establishing the Communication Link from the Slave Device
      2. 22.4.2 Register Protection
      3. 22.4.3 Emulation Mode
    5. 22.5 Software
      1. 22.5.1 FSI Examples
        1. 22.5.1.1  FSI Loopback:CPU Control
        2. 22.5.1.2  FSI DMA frame transfers:DMA Control
        3. 22.5.1.3  FSI data transfer by external trigger
        4. 22.5.1.4  FSI data transfers upon CPU Timer event
        5. 22.5.1.5  FSI and SPI communication(fsi_ex6_spi_main_tx)
        6. 22.5.1.6  FSI and SPI communication(fsi_ex7_spi_remote_rx)
        7. 22.5.1.7  FSI P2Point Connection:Rx Side
        8. 22.5.1.8  FSI P2Point Connection:Tx Side
        9. 22.5.1.9  FSI daisy chain topology, lead device example
        10. 22.5.1.10 FSI daisy chain topology, node device example
    6. 22.6 FSI Registers
      1. 22.6.1 FSI Base Address Table
      2. 22.6.2 FSI_TX_REGS Registers
      3. 22.6.3 FSI_RX_REGS Registers
      4. 22.6.4 FSI Registers to Driverlib Functions
  25. 23Inter-Integrated Circuit Module (I2C)
    1. 23.1 Introduction
      1. 23.1.1 I2C Related Collateral
      2. 23.1.2 Features
      3. 23.1.3 Features Not Supported
      4. 23.1.4 Functional Overview
      5. 23.1.5 Clock Generation
      6. 23.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 23.1.6.1 Formula for the Master Clock Period
    2. 23.2 Configuring Device Pins
    3. 23.3 I2C Module Operational Details
      1. 23.3.1  Input and Output Voltage Levels
      2. 23.3.2  Selecting Pullup Resistors
      3. 23.3.3  Data Validity
      4. 23.3.4  Operating Modes
      5. 23.3.5  I2C Module START and STOP Conditions
      6. 23.3.6  Non-repeat Mode versus Repeat Mode
      7. 23.3.7  Serial Data Formats
        1. 23.3.7.1 7-Bit Addressing Format
        2. 23.3.7.2 10-Bit Addressing Format
        3. 23.3.7.3 Free Data Format
        4. 23.3.7.4 Using a Repeated START Condition
      8. 23.3.8  Clock Synchronization
      9. 23.3.9  Arbitration
      10. 23.3.10 Digital Loopback Mode
      11. 23.3.11 NACK Bit Generation
    4. 23.4 Interrupt Requests Generated by the I2C Module
      1. 23.4.1 Basic I2C Interrupt Requests
      2. 23.4.2 I2C FIFO Interrupts
    5. 23.5 Resetting or Disabling the I2C Module
    6. 23.6 Software
      1. 23.6.1 I2C Examples
        1. 23.6.1.1 C28x-I2C Library source file for FIFO interrupts
        2. 23.6.1.2 C28x-I2C Library source file for FIFO using polling
        3. 23.6.1.3 C28x-I2C Library source file for FIFO interrupts
        4. 23.6.1.4 I2C Digital Loopback with FIFO Interrupts
        5. 23.6.1.5 I2C EEPROM
        6. 23.6.1.6 I2C Digital External Loopback with FIFO Interrupts
        7. 23.6.1.7 I2C EEPROM
        8. 23.6.1.8 I2C controller target communication using FIFO interrupts
        9. 23.6.1.9 I2C EEPROM
    7. 23.7 I2C Registers
      1. 23.7.1 I2C Base Address Table
      2. 23.7.2 I2C_REGS Registers
      3. 23.7.3 I2C Registers to Driverlib Functions
  26. 24Local Interconnect Network (LIN)
    1. 24.1 Introduction
      1. 24.1.1 SCI Features
      2. 24.1.2 LIN Features
      3. 24.1.3 LIN Related Collateral
      4. 24.1.4 Block Diagram
    2. 24.2 Serial Communications Interface Module
      1. 24.2.1 SCI Communication Formats
        1. 24.2.1.1 SCI Frame Formats
        2. 24.2.1.2 SCI Asynchronous Timing Mode
        3. 24.2.1.3 SCI Baud Rate
          1. 24.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 24.2.1.4 SCI Multiprocessor Communication Modes
          1. 24.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 24.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 24.2.1.5 SCI Multibuffered Mode
      2. 24.2.2 SCI Interrupts
        1. 24.2.2.1 Transmit Interrupt
        2. 24.2.2.2 Receive Interrupt
        3. 24.2.2.3 WakeUp Interrupt
        4. 24.2.2.4 Error Interrupts
      3. 24.2.3 SCI DMA Interface
        1. 24.2.3.1 Receive DMA Requests
        2. 24.2.3.2 Transmit DMA Requests
      4. 24.2.4 SCI Configurations
        1. 24.2.4.1 Receiving Data
          1. 24.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 24.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 24.2.4.2 Transmitting Data
          1. 24.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 24.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 24.2.5 SCI Low-Power Mode
        1. 24.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 24.3 Local Interconnect Network Module
      1. 24.3.1 LIN Communication Formats
        1. 24.3.1.1  LIN Standards
        2. 24.3.1.2  Message Frame
          1. 24.3.1.2.1 Message Header
          2. 24.3.1.2.2 Response
        3. 24.3.1.3  Synchronizer
        4. 24.3.1.4  Baud Rate
          1. 24.3.1.4.1 Fractional Divider
          2. 24.3.1.4.2 Superfractional Divider
            1. 24.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 24.3.1.5  Header Generation
          1. 24.3.1.5.1 Event Triggered Frame Handling
          2. 24.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 24.3.1.6  Extended Frames Handling
        7. 24.3.1.7  Timeout Control
          1. 24.3.1.7.1 No-Response Error (NRE)
          2. 24.3.1.7.2 Bus Idle Detection
          3. 24.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 24.3.1.8  TXRX Error Detector (TED)
          1. 24.3.1.8.1 Bit Errors
          2. 24.3.1.8.2 Physical Bus Errors
          3. 24.3.1.8.3 ID Parity Errors
          4. 24.3.1.8.4 Checksum Errors
        9. 24.3.1.9  Message Filtering and Validation
        10. 24.3.1.10 Receive Buffers
        11. 24.3.1.11 Transmit Buffers
      2. 24.3.2 LIN Interrupts
      3. 24.3.3 Servicing LIN Interrupts
      4. 24.3.4 LIN DMA Interface
        1. 24.3.4.1 LIN Receive DMA Requests
        2. 24.3.4.2 LIN Transmit DMA Requests
      5. 24.3.5 LIN Configurations
        1. 24.3.5.1 Receiving Data
          1. 24.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 24.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 24.3.5.2 Transmitting Data
          1. 24.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 24.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 24.4 Low-Power Mode
      1. 24.4.1 Entering Sleep Mode
      2. 24.4.2 Wakeup
      3. 24.4.3 Wakeup Timeouts
    5. 24.5 Emulation Mode
    6. 24.6 Software
      1. 24.6.1 LIN Examples
        1. 24.6.1.1 LIN Internal Loopback with Interrupts
        2. 24.6.1.2 LIN SCI Mode Internal Loopback with Interrupts
        3. 24.6.1.3 LIN SCI MODE Internal Loopback with DMA
        4. 24.6.1.4 LIN Internal Loopback without interrupts(polled mode)
        5. 24.6.1.5 LIN Internal Loopback with Interrupts using Sysconfig
        6. 24.6.1.6 LIN Incomplete Header Detection
        7. 24.6.1.7 LIN SCI MODE (Single Buffer) Internal Loopback with DMA
        8. 24.6.1.8 LIN External Loopback without interrupts(polled mode)
    7. 24.7 SCI/LIN Registers
      1. 24.7.1 LIN Base Address Table
      2. 24.7.2 LIN_REGS Registers
      3. 24.7.3 LIN Registers to Driverlib Functions
  27. 25Power Management Bus Module (PMBus)
    1. 25.1 Introduction
      1. 25.1.1 PMBUS Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Block Diagram
    2. 25.2 Configuring Device Pins
    3. 25.3 Slave Mode Operation
      1. 25.3.1 Configuration
      2. 25.3.2 Message Handling
        1. 25.3.2.1  Quick Command
        2. 25.3.2.2  Send Byte
        3. 25.3.2.3  Receive Byte
        4. 25.3.2.4  Write Byte and Write Word
        5. 25.3.2.5  Read Byte and Read Word
        6. 25.3.2.6  Process Call
        7. 25.3.2.7  Block Write
        8. 25.3.2.8  Block Read
        9. 25.3.2.9  Block Write-Block Read Process Call
        10. 25.3.2.10 Alert Response
        11. 25.3.2.11 Extended Command
        12. 25.3.2.12 Group Command
    4. 25.4 Master Mode Operation
      1. 25.4.1 Configuration
      2. 25.4.2 Message Handling
        1. 25.4.2.1  Quick Command
        2. 25.4.2.2  Send Byte
        3. 25.4.2.3  Receive Byte
        4. 25.4.2.4  Write Byte and Write Word
        5. 25.4.2.5  Read Byte and Read Word
        6. 25.4.2.6  Process Call
        7. 25.4.2.7  Block Write
        8. 25.4.2.8  Block Read
        9. 25.4.2.9  Block Write-Block Read Process Call
        10. 25.4.2.10 Alert Response
        11. 25.4.2.11 Extended Command
        12. 25.4.2.12 Group Command
    5. 25.5 PMBus Registers
      1. 25.5.1 PMBUS Base Address Table
      2. 25.5.2 PMBUS_REGS Registers
      3. 25.5.3 PMBUS Registers to Driverlib Functions
  28. 26Serial Communications Interface (SCI)
    1. 26.1  Introduction
      1. 26.1.1 Features
      2. 26.1.2 SCI Related Collateral
      3. 26.1.3 Block Diagram
    2. 26.2  Architecture
    3. 26.3  SCI Module Signal Summary
    4. 26.4  Configuring Device Pins
    5. 26.5  Multiprocessor and Asynchronous Communication Modes
    6. 26.6  SCI Programmable Data Format
    7. 26.7  SCI Multiprocessor Communication
      1. 26.7.1 Recognizing the Address Byte
      2. 26.7.2 Controlling the SCI TX and RX Features
      3. 26.7.3 Receipt Sequence
    8. 26.8  Idle-Line Multiprocessor Mode
      1. 26.8.1 Idle-Line Mode Steps
      2. 26.8.2 Block Start Signal
      3. 26.8.3 Wake-Up Temporary (WUT) Flag
        1. 26.8.3.1 Sending a Block Start Signal
      4. 26.8.4 Receiver Operation
    9. 26.9  Address-Bit Multiprocessor Mode
      1. 26.9.1 Sending an Address
    10. 26.10 SCI Communication Format
      1. 26.10.1 Receiver Signals in Communication Modes
      2. 26.10.2 Transmitter Signals in Communication Modes
    11. 26.11 SCI Port Interrupts
      1. 26.11.1 Break Detect
    12. 26.12 SCI Baud Rate Calculations
    13. 26.13 SCI Enhanced Features
      1. 26.13.1 SCI FIFO Description
      2. 26.13.2 SCI Auto-Baud
      3. 26.13.3 Autobaud-Detect Sequence
    14. 26.14 Software
      1. 26.14.1 SCI Examples
        1. 26.14.1.1 Tune Baud Rate via UART Example
        2. 26.14.1.2 SCI FIFO Digital Loop Back
        3. 26.14.1.3 SCI Digital Loop Back with Interrupts
        4. 26.14.1.4 SCI Echoback
        5. 26.14.1.5 stdout redirect example
    15. 26.15 SCI Registers
      1. 26.15.1 SCI Base Address Table
      2. 26.15.2 SCI_REGS Registers
      3. 26.15.3 SCI Registers to Driverlib Functions
  29. 27Serial Peripheral Interface (SPI)
    1. 27.1 Introduction
      1. 27.1.1 Features
      2. 27.1.2 SPI Related Collateral
      3. 27.1.3 Block Diagram
    2. 27.2 System-Level Integration
      1. 27.2.1 SPI Module Signals
      2. 27.2.2 Configuring Device Pins
        1. 27.2.2.1 GPIOs Required for High-Speed Mode
      3. 27.2.3 SPI Interrupts
      4. 27.2.4 DMA Support
    3. 27.3 SPI Operation
      1. 27.3.1  Introduction to Operation
      2. 27.3.2  Master Mode
      3. 27.3.3  Slave Mode
      4. 27.3.4  Data Format
        1. 27.3.4.1 Transmission of Bit from SPIRXBUF
      5. 27.3.5  Baud Rate Selection
        1. 27.3.5.1 Baud Rate Determination
        2. 27.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 27.3.6  SPI Clocking Schemes
      7. 27.3.7  SPI FIFO Description
      8. 27.3.8  SPI DMA Transfers
        1. 27.3.8.1 Transmitting Data Using SPI with DMA
        2. 27.3.8.2 Receiving Data Using SPI with DMA
      9. 27.3.9  SPI High-Speed Mode
      10. 27.3.10 SPI 3-Wire Mode Description
    4. 27.4 Programming Procedure
      1. 27.4.1 Initialization Upon Reset
      2. 27.4.2 Configuring the SPI
      3. 27.4.3 Configuring the SPI for High-Speed Mode
      4. 27.4.4 Data Transfer Example
      5. 27.4.5 SPI 3-Wire Mode Code Examples
        1. 27.4.5.1 3-Wire Master Mode Transmit
        2.       1365
          1. 27.4.5.2.1 3-Wire Master Mode Receive
        3.       1367
          1. 27.4.5.2.1 3-Wire Slave Mode Transmit
        4.       1369
          1. 27.4.5.2.1 3-Wire Slave Mode Receive
      6. 27.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 27.5 Software
      1. 27.5.1 SPI Examples
        1. 27.5.1.1 SPI Digital Loopback
        2. 27.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 27.5.1.3 SPI Digital External Loopback without FIFO Interrupts
        4. 27.5.1.4 SPI Digital External Loopback with FIFO Interrupts
        5. 27.5.1.5 SPI Digital Loopback with DMA
        6. 27.5.1.6 SPI EEPROM
        7. 27.5.1.7 SPI DMA EEPROM
    6. 27.6 SPI Registers
      1. 27.6.1 SPI Base Address Table
      2. 27.6.2 SPI_REGS Registers
      3. 27.6.3 SPI Registers to Driverlib Functions
  30. 28Revision History

HIC_CFG_REGS Registers

Table 13-9 lists the memory-mapped registers for the HIC_CFG_REGS registers. All register offset addresses not listed in Table 13-9 should be considered as reserved locations and the register contents should not be modified.

Table 13-9 HIC_CFG_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
0hHICREVModule Revision RegisterNoGo
2hHICGCRGlobal Control RegisterEALLOWGo
4hHICLOCKLock RegisterEALLOWGo
6hHICMODECRMode Control RegisterEALLOW and LOCKGo
8hHICPINPOLCRPin Polarity Control RegisterEALLOW and LOCKGo
AhHICBASESELBase Select RegisterNoGo
ChHICHOSTCRHost Control RegisterNoGo
EhHICERRADDRHost Error Address registerNoGo
10hHICH2DTOKENHost to Device Token RegisterNoGo
12hHICD2HTOKENDevie to Host Token RegisterNoGo
14hHICDBADDR0Device Base Address Register 0EALLOW and LOCKGo
16hHICDBADDR1Device Base Address Register 1EALLOW and LOCKGo
18hHICDBADDR2Device Base Address Register 2EALLOW and LOCKGo
1AhHICDBADDR3Device Base Address Register 3EALLOW and LOCKGo
1ChHICDBADDR4Device Base Address Register 4EALLOW and LOCKGo
1EhHICDBADDR5Device Base Address Register 5EALLOW and LOCKGo
20hHICDBADDR6Device Base Address Register 6EALLOW and LOCKGo
22hHICDBADDR7Device Base Address Register 7EALLOW and LOCKGo
28hHICH2DINTENH2D Interrupt EnableNoGo
2AhHICH2DINTFLGH2D Interrupt status FlagNoGo
2ChHICH2DINTCLRH2D Interrupt status ClearNoGo
2EhHICH2DINTFRCH2D Interrupt Set ForceNoGo
30hHICD2HINTEND2H Interrupt EnableNoGo
32hHICD2HINTFLGD2H Interrupt status FlagNoGo
34hHICD2HINTCLRD2H Interrupt status ClearNoGo
36hHICD2HINTFRCD2H Interrupt Set ForceNoGo
38hHICACCVIOADDRAccess Violation AddressGo
40hH2D_BUF0Host to Device Buffer 0NoGo
42hH2D_BUF1Host to Device Buffer 1NoGo
44hH2D_BUF2Host to Device Buffer 2NoGo
46hH2D_BUF3Host to Device Buffer 3NoGo
48hH2D_BUF4Host to Device Buffer 4NoGo
4AhH2D_BUF5Host to Device Buffer 5NoGo
4ChH2D_BUF6Host to Device Buffer 6NoGo
4EhH2D_BUF7Host to Device Buffer 7NoGo
50hH2D_BUF8Host to Device Buffer 8NoGo
52hH2D_BUF9Host to Device Buffer 9NoGo
54hH2D_BUF10Host to Device Buffer 10NoGo
56hH2D_BUF11Host to Device Buffer 11NoGo
58hH2D_BUF12Host to Device Buffer 12NoGo
5AhH2D_BUF13Host to Device Buffer 13NoGo
5ChH2D_BUF14Host to Device Buffer 14NoGo
5EhH2D_BUF15Host to Device Buffer 15NoGo
60hD2H_BUF0Device to Host Buffer 0NoGo
62hD2H_BUF1Device to Host Buffer 1NoGo
64hD2H_BUF2Device to Host Buffer 2NoGo
66hD2H_BUF3Device to Host Buffer 3NoGo
68hD2H_BUF4Device to Host Buffer 4NoGo
6AhD2H_BUF5Device to Host Buffer 5NoGo
6ChD2H_BUF6Device to Host Buffer 6NoGo
6EhD2H_BUF7Device to Host Buffer 7NoGo
70hD2H_BUF8Device to Host Buffer 8NoGo
72hD2H_BUF9Device to Host Buffer 9NoGo
74hD2H_BUF10Device to Host Buffer 10NoGo
76hD2H_BUF11Device to Host Buffer 11NoGo
78hD2H_BUF12Device to Host Buffer 12NoGo
7AhD2H_BUF13Device to Host Buffer 13NoGo
7ChD2H_BUF14Device to Host Buffer 14NoGo
7EhD2H_BUF15Device to Host Buffer 15NoGo

Complex bit access types are encoded to fit into small table cells. Table 13-10 shows the codes that are used for access types in this section.

Table 13-10 HIC_CFG_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1CW
1C
Write
1 to clear
W1SW
1S
Write
1 to set
Reset or Default Value
-nValue after reset or the default value

13.6.2.1 HICREV Register (Offset = 0h) [Reset = 40000000h]

HICREV is shown in Figure 13-10 and described in Table 13-11.

Return to the Summary Table.

Module Revision Register

Figure 13-10 HICREV Register
3130292827262524
SCHEMERESERVEDFUNC
R-1hR-0-0hR-0h
2322212019181716
FUNC
R-0h
15141312111098
RTLMAJOR
R-0hR-0h
76543210
CUSTOMMINOR
R-0hR-0h
Table 13-11 HICREV Register Field Descriptions
BitFieldTypeResetDescription
31-30SCHEMER1hThis identifies the scheme of the module. Returns 01.
Read-only for Host

Reset type: SYSRSn

29-28RESERVEDR-00hReserved
27-16FUNCR0hFunctional Release Number
Reflects software-compatability. If there is no level of software compatability, a unique func number is assigned
for compatible modules, the same number is maintained.
Read-only for Host

Reset type: SYSRSn

15-11RTLR0hDesign Release Number
Incremented for releases due to spec changes or post-release design changes. Reset to 0 when either MAJOR or MINOR is incremented.
Read-only for Host

Reset type: SYSRSn

10-8MAJORR0hMajor Revision Number
Represents major changes to the module (e.g. entirely new features are added/changed). The major revision number for this module.
Read-only for Host

Reset type: SYSRSn

7-6CUSTOMR0hCustom Module Number
Indicates a special version of the module. May not be supported by standard software.
Read-only for Host

Reset type: SYSRSn

5-0MINORR0hMinor Revision Number
Represents minor changes to the module (e.g. enhancements to existing features). The minor revision number for this module.
Read-only for Host

Reset type: SYSRSn

13.6.2.2 HICGCR Register (Offset = 2h) [Reset = 00000000h]

HICGCR is shown in Figure 13-11 and described in Table 13-12.

Return to the Summary Table.

Global Control Register

Figure 13-11 HICGCR Register
31302928272625242322212019181716
RESERVED
R-0-0h
1514131211109876543210
RESERVEDHICEN
R-0-0hR/W-0h
Table 13-12 HICGCR Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3-0HICENR/W0hHost Interface Enable.
Controls the operation of the Host Interface.

0xA : Host Interface is enabled. Access to MBOX and Device region are enabled for Host.
Others : Host Interface is disabled. Access to MBOX and Device region are disabled for Host. Host can still read all the MMRs and write to writable MMRs of HIC module.
Read-only for Host

Reset type: SYSRSn

13.6.2.3 HICLOCK Register (Offset = 4h) [Reset = 00000000h]

HICLOCK is shown in Figure 13-12 and described in Table 13-13.

Return to the Summary Table.

Lock Register

Figure 13-12 HICLOCK Register
3130292827262524
WRITE_ENABLE_KEY
W-0h
2322212019181716
WRITE_ENABLE_KEY
W-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDLOCK
R-0-0hR/W-0h
Table 13-13 HICLOCK Register Field Descriptions
BitFieldTypeResetDescription
31-16WRITE_ENABLE_KEYW0hThese 16 bits act as a key to enable writes to Bit 0 of this register. The only time a '1' can be written to Bit 0 is by a single 32-bit write where bits 31:16 equal 0x5a5a. All other writes are ignored including separate 16-bit writes.
Read returns 0 for this field always.
Read-only for Host

Reset type: SYSRSn

15-1RESERVEDR-00hReserved
0LOCKR/W0hEnable for LOCK feature that blocks writes to certain config registers.
Writing '1' to this field along with a valid WRITE_ENABLE_KEY value while HICCOMMIT.COMMIT=0 will set this bit to '1' and enables the LOCK feature.
Writing '0' to this field along with a valid WRITE_ENABLE_KEY value while HICCOMMIT.COMMIT=0 will set this bit to '0' and disables the LOCK feature.
0 : LOCK is disabled
1 : LOCK is enabled
Read-only for Host

Reset type: SYSRSn

13.6.2.4 HICMODECR Register (Offset = 6h) [Reset = 00000000h]

HICMODECR is shown in Figure 13-13 and described in Table 13-14.

Return to the Summary Table.

Mode Control Register

Figure 13-13 HICMODECR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVEDEN_HOSTWREALLOWEN_DEVACCD2HBUF_HOSTWRENH2DBUF_DEVWREN
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RESERVEDRDY_PRESENTBEN_PRESENTRW_MODERESERVEDDW_MODE
R-0-0hR/W-0hR/W-0hR/W-0hR-0-0hR/W-0h
Table 13-14 HICMODECR Register Field Descriptions
BitFieldTypeResetDescription
31-12RESERVEDR-00hReserved
11EN_HOSTWREALLOWR/W0hEnables Host write to HOSTCR.EALLOW register field
0 : Host write to HOSTCR.EALLOW register field will be ignored
1 : Host can write and reprogram HOSTCR.EALLOW register field
Read-only for Host

Reset type: SYSRSn

10EN_DEVACCR/W0hEnables Host accesses to Device Region
0 : Host cannot access Device region - only HIC internal MMR and MBOX regions accessible
1 : Host can access both HIC Internal address space and Device address space selected by BASEx+ registers
Read-only for Host

Reset type: SYSRSn

9D2HBUF_HOSTWRENR/W0hD2H Buffer Write Enable for Host
0 : D2H Buffer can only be written by Device
1 : D2H Buffer can also be written by Host
For the cases where user wants larger D2H Buffer region (and there is limited or no need for H2D Buffer region), this feature helps.
Read-only for Host

Reset type: SYSRSn

8H2DBUF_DEVWRENR/W0hH2D Buffer Write Enable for Device
0 : H2D Buffer can only be written by Host
1 : H2D Buffer can also be written by Device
For the cases where user wants larger H2D Buffer region (and there is limited or no need for D2H Buffer region), this feature helps.
Read-only for Host

Reset type: SYSRSn

7RESERVEDR-00hReserved
6RDY_PRESENTR/W0hReady pin Present
Defines the presence of nRDY pin.
0 : 'nRDY' pin is not present. Host must ensure to retain the control pins active for the period required by the datasheet.
1 : 'nRDY' pin is present. Host must hold the control/data signals as long as nRDY signal is asserted.
Read-only for Host

Reset type: SYSRSn

5BEN_PRESENTR/W0hByteEnable pin Present.
Defines the presence of Byte Enable pins.
0 : 'nBE' pins are not present. DW_MODE field defines the fixed data width.
1 : 'nBE' pins are present. Data bus for each access is qualified with nBE pin status.
Read-only for Host

Reset type: SYSRSn

4RW_MODER/W0hRead-Write Mode.
Defines pins to control read-write operation.
0 : Both 'nOE' and 'nWE' pins are available to control read and write operations.
1 : The 'nOE' pin will act as a single 'RnW' pin to control both read and write operations.
Read-only for Host

Reset type: SYSRSn

3-2RESERVEDR-00hReserved
1-0DW_MODER/W0hData Width Mode.
Data width of host access
0x0 : 8-bit Data Port
0x1 : 16-bit Data Port
others : default to 16-bit mode
Read-only for Host

Reset type: SYSRSn

13.6.2.5 HICPINPOLCR Register (Offset = 8h) [Reset = 00000000h]

HICPINPOLCR is shown in Figure 13-14 and described in Table 13-15.

Return to the Summary Table.

Pin Polarity Control Register

Figure 13-14 HICPINPOLCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDRDY_POLWE_POLOE_POLBEN_POLCS_POL
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 13-15 HICPINPOLCR Register Field Descriptions
BitFieldTypeResetDescription
31-5RESERVEDR-00hReserved
4RDY_POLR/W0hDefines the Polarity of Ready (nRDY) output pin.
0 : RDY pin is active low
1 : RDY pin is active high
Read-only for Host

Reset type: SYSRSn

3WE_POLR/W0hDefines the Polarity of Write Enable (nWE) input pin.
0 : Write Enable pin is active low
1 : Write Enable pin is active high.
If HIC is configured to use a single RnW pin, then this bit configuration is ignored.
Read-only for Host

Reset type: SYSRSn

2OE_POLR/W0hDefines the Polarity of Output Enable (nOE) input pin.
0 : Output Enable pin is active low
1 : Output Enable pin is active high.
If HIC is configured to use a single RnW pin, then this bit configuration is ignored.
Read-only for Host

Reset type: SYSRSn

1BEN_POLR/W0hDefines Polarity of Byte Enable (nBE) input pins.
0 : Byte Enable is active low
1 : Byte Enable is active high
Read-only for Host

Reset type: SYSRSn

0CS_POLR/W0hDefines Polarity of Chip Select (nCS) input pin.
0 : Chip Select pin is active low
1 : Chip Select is active high.
Read-only for Host

Reset type: SYSRSn

13.6.2.6 HICBASESEL Register (Offset = Ah) [Reset = 00000000h]

HICBASESEL is shown in Figure 13-15 and described in Table 13-16.

Return to the Summary Table.

Base Select Register

Figure 13-15 HICBASESEL Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDBASE_SELECT
R-0-0hR/W-0h
Table 13-16 HICBASESEL Register Field Descriptions
BitFieldTypeResetDescription
31-3RESERVEDR-00hReserved
2-0BASE_SELECTR/W0hSelection value for the collection of Base Address registers
000 : Select Base Address 0 register
001 : Select Base Address 1 register
010 : Select Base Address 2 register
011 : Select Base Address 3 register
100 : Select Base Address 4 register
101 : Select Base Address 5 register
110 : Select Base Address 6 register
111 : Select Base Address 7 register
Read-Write for Host.

Reset type: SYSRSn

13.6.2.7 HICHOSTCR Register (Offset = Ch) [Reset = 00000000h]

HICHOSTCR is shown in Figure 13-16 and described in Table 13-17.

Return to the Summary Table.

Host Control Register

Figure 13-16 HICHOSTCR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
HKEY
R/W-0h
76543210
RESERVEDPAGESELACCSIZEEALLOW_EN
R-0-0hR/W-0hR/W-0hR/W-0h
Table 13-17 HICHOSTCR Register Field Descriptions
BitFieldTypeResetDescription
31-16RESERVEDR-00hReserved
15-8HKEYR/W0hKEY that enables/disables the writes to HOSTCR[7:0] fields.
The HOSTCR[7:0] fields can be written only if the HKEY is set to 0xA5 during the write. Writes with any other pattern on HKEY field will be ignored.
Read from this field returns 0 always.

Read-Write for Host.

Reset type: SYSRSn

7-3RESERVEDR-00hReserved
2PAGESELR/W0hSelection between BASE_SEL pins and BASE_SELECT register
0 : BASE_SELECT register value selects the required HICDBADDRx register for a Host access to the Device region
1 : BASE_SEL pin values select the required HICDBADDRx register for a Host access to the Device region

This field can be written only in conjunction with HKEY field.

Read-Write for Host.

Reset type: SYSRSn

1ACCSIZER/W0hSelection between 16 or 32 bit accesses to the destinations of HIC.
0 :
Writes on the Host Port - MMR or Initiator port writes are of 16-bit size. For 8-bit Host, data will be packed to 16-bits before triggering a write to the MMR or the Initiator port.
Reads on the Host Port - 16-bit reads to MMR or Initiator Port
1 :
Writes on the Host Port - MMR or Initiator port writes are of 32-bit size. For 8/16-bit Host, data will be packed to 32-bit before initiating an access to the MMR or Initiator port

Reads on the Host Port - 32-bit reads to MMR or Initiator Port
This field can be written only in conjunction with HKEY field.

Read-Write for Host.

Reset type: SYSRSn

0EALLOW_ENR/W0hDefines the EALLOW signal for the HIC Initiator port.
0 : HIC cannot write to peripheral registers protected by EALLOW.
1 : HIC can access peripheral registers protected by EALLOW.

This field can be written only in conjuction with HKEY field if HICMODECR.EN_HOSTWREALLOW=1

Read-Write for Host.

Reset type: SYSRSn

13.6.2.8 HICERRADDR Register (Offset = Eh) [Reset = 00000000h]

HICERRADDR is shown in Figure 13-17 and described in Table 13-18.

Return to the Summary Table.

Host Error Address register

Figure 13-17 HICERRADDR Register
3130292827262524
RESERVEDD2H_BASE_SELRESERVED
R-0-0hR-0hR-0-0h
2322212019181716
D2H_ERR_ADDR
R-0h
15141312111098
RESERVEDH2D_BASE_SELRESERVED
R-0-0hR-0hR-0-0h
76543210
H2D_ERR_ADDR
R-0h
Table 13-18 HICERRADDR Register Field Descriptions
BitFieldTypeResetDescription
31RESERVEDR-00hReserved
30-28D2H_BASE_SELR0hBASE_SEL value at the time of Error capturing D2H_ERR_ADDR
The value will freeze upon the first capture until the flags - BUSERR_FLG, ILLWR_FLG and ILLRD_FLG of HICD2HINTFLG register are cleared by the user.
Upon an error event, the HIC_BASESEL pin values will be captured into this register field while setting corresponding error flag in HICD2HINTFLG register.

For the case where PAGESEL=0, user must read BASE_SELECT register to find out the correct value of BASE_SEL.

Read-only for Host.

Reset type: SYSRSn

27-24RESERVEDR-00hReserved
23-16D2H_ERR_ADDRR0hHost address captured upon an erroneous transaction captured for Host to service (as a response to D2HINT interrupt)
The value will freeze upon the first capture until the flags - BUSERR_FLG, ILLWR_FLG and ILLRD_FLG of HICD2HINTFLG register are cleared by the user.
Upon an error event, the Host address will be captured into this register field while setting corresponding error flag in HICD2HINTFLG register.

Read-Write for Host.

Reset type: SYSRSn

15RESERVEDR-00hReserved
14-12H2D_BASE_SELR0hBASE_SEL value at the time of Error capturing H2D_ERR_ADDR.
The value will freeze upon the first capture until the flags - BUSERR_FLG, ILLWR_FLG and ILLRD_FLG of HICH2DINTFLG register are cleared by the user.
Upon an error event, the HIC_BASESEL pin values will be captured into this register field while setting corresponding error flag in HICH2DINTFLG register.

For the case where PAGESEL=0, user must read BASE_SELECT register to find out the correct value of BASE_SEL.

Read-only for Host.

Reset type: SYSRSn

11-8RESERVEDR-00hReserved
7-0H2D_ERR_ADDRR0hHost address captured upon an erroneous transaction captured for Device to service (as a response to H2DINT interrupt)
The value will freeze upon the first capture until the flags - BUSERR_FLG, ILLWR_FLG and ILLRD_FLG of HICH2DINTFLG register are cleared by the user.
Upon an error event, the Host address will be captured into this register field while setting corresponding error flag in HICH2DINTFLG register.

Read-only for Host.

Reset type: SYSRSn

13.6.2.9 HICH2DTOKEN Register (Offset = 10h) [Reset = 00000000h]

HICH2DTOKEN is shown in Figure 13-18 and described in Table 13-19.

Return to the Summary Table.

Host to Device Token Register

Figure 13-18 HICH2DTOKEN Register
313029282726252423222120191817161514131211109876543210
H2D_TOKEN
R/W-0h
Table 13-19 HICH2DTOKEN Register Field Descriptions
BitFieldTypeResetDescription
31-0H2D_TOKENR/W0hHost To Device Token is a general purpose register that can be used to send any information from Host to the Device software. Typical usage is to send the Buffer Count of the H2DBUF region.
Any write to the lower half-word of this register will automatically trigger an interrupt to H2DINT
Read-Write for Host.

Reset type: SYSRSn

13.6.2.10 HICD2HTOKEN Register (Offset = 12h) [Reset = 00000000h]

HICD2HTOKEN is shown in Figure 13-19 and described in Table 13-20.

Return to the Summary Table.

Devie to Host Token Register

Figure 13-19 HICD2HTOKEN Register
313029282726252423222120191817161514131211109876543210
D2H_TOKEN
R/W-0h
Table 13-20 HICD2HTOKEN Register Field Descriptions
BitFieldTypeResetDescription
31-0D2H_TOKENR/W0hDevice to Host Token is a general purpose register that can be used to send any information from Device to the Host software. Typical usage is to send the Buffer Count of the D2HBUF region.
Any write to the lower half-word of this register will automatically trigger an interrupt to D2HINT
Read-only for Host.

Reset type: SYSRSn

13.6.2.11 HICDBADDR0 Register (Offset = 14h) [Reset = 00000000h]

HICDBADDR0 is shown in Figure 13-20 and described in Table 13-21.

Return to the Summary Table.

Device Base Address Register 0

Figure 13-20 HICDBADDR0 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-21 HICDBADDR0 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR0 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.12 HICDBADDR1 Register (Offset = 16h) [Reset = 00000000h]

HICDBADDR1 is shown in Figure 13-21 and described in Table 13-22.

Return to the Summary Table.

Device Base Address Register 1

Figure 13-21 HICDBADDR1 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-22 HICDBADDR1 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR1 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.13 HICDBADDR2 Register (Offset = 18h) [Reset = 00000000h]

HICDBADDR2 is shown in Figure 13-22 and described in Table 13-23.

Return to the Summary Table.

Device Base Address Register 2

Figure 13-22 HICDBADDR2 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-23 HICDBADDR2 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR2 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.14 HICDBADDR3 Register (Offset = 1Ah) [Reset = 00000000h]

HICDBADDR3 is shown in Figure 13-23 and described in Table 13-24.

Return to the Summary Table.

Device Base Address Register 3

Figure 13-23 HICDBADDR3 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-24 HICDBADDR3 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR3 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.15 HICDBADDR4 Register (Offset = 1Ch) [Reset = 00000000h]

HICDBADDR4 is shown in Figure 13-24 and described in Table 13-25.

Return to the Summary Table.

Device Base Address Register 4

Figure 13-24 HICDBADDR4 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-25 HICDBADDR4 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR4 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.16 HICDBADDR5 Register (Offset = 1Eh) [Reset = 00000000h]

HICDBADDR5 is shown in Figure 13-25 and described in Table 13-26.

Return to the Summary Table.

Device Base Address Register 5

Figure 13-25 HICDBADDR5 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-26 HICDBADDR5 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR5 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.17 HICDBADDR6 Register (Offset = 20h) [Reset = 00000000h]

HICDBADDR6 is shown in Figure 13-26 and described in Table 13-27.

Return to the Summary Table.

Device Base Address Register 6

Figure 13-26 HICDBADDR6 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-27 HICDBADDR6 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR6 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.18 HICDBADDR7 Register (Offset = 22h) [Reset = 00000000h]

HICDBADDR7 is shown in Figure 13-27 and described in Table 13-28.

Return to the Summary Table.

Device Base Address Register 7

Figure 13-27 HICDBADDR7 Register
31302928272625242322212019181716
BASE_ADDR
R/W-0h
1514131211109876543210
BASE_ADDRRESERVED
R/W-0hR-0-0h
Table 13-28 HICDBADDR7 Register Field Descriptions
BitFieldTypeResetDescription
31-7BASE_ADDRR/W0hBase address of the region inside Device address space that Host intends to access.
The valide bits from register are concatenated to the incoming Host address appropriately to form the full 32-bit address on the Initiator port of HIC.

When DW_MODE = 8-bit, BASE_ADDR[31..7] should be programmed. In this case, Host can access 256 bytes of Device region through the Initiator port.

When DW_MODE = 16-bit, BASE_ADDR[31..8] should be programmed. In this case, Host can access 512 bytes of Device region through the Initiator port.

Note: Exact HICDBADDR7 register being used for an access is determined by the HICBASESEL.BASE_SELECT field value.

Read-only for Host.

Reset type: SYSRSn

6-0RESERVEDR-00hReserved

13.6.2.19 HICH2DINTEN Register (Offset = 28h) [Reset = 00000000h]

HICH2DINTEN is shown in Figure 13-28 and described in Table 13-29.

Return to the Summary Table.

H2D Interrupt Enable

Figure 13-28 HICH2DINTEN Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDILLRD_INTENILLWR_INTENBUSERR_INTENH2D_INTEN
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 13-29 HICH2DINTEN Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3ILLRD_INTENR/W0hEnables Illegal Read Error Interrupt
0 : Illegal Read event does not result in an interrupt
1 : Illegal Read event will trigger an interrupt on H2DINT port
Read-Write for Host.

Reset type: SYSRSn

2ILLWR_INTENR/W0hEnables Illegal Write Error Interrupt
0 : Illegal Write event does not result in an interrupt
1 : Illegal Write event will trigger an interrupt on H2DINT port
Read-Write for Host.

Reset type: SYSRSn

1BUSERR_INTENR/W0hEnables Bus Error Interrupt
0 : BusError does not result in an interrupt
1 : BusError event will trigger an interrupt on H2DINT port
Read-Write for Host.

Reset type: SYSRSn

0H2D_INTENR/W0hEnables Host-to-Device data ready Interrupt
0 : Host-to-Device data ready does not result in an interrupt
1 : Host-to-Device data ready will trigger an interrupt on H2DINT port
Read-Write for Host.

Reset type: SYSRSn

13.6.2.20 HICH2DINTFLG Register (Offset = 2Ah) [Reset = 00000000h]

HICH2DINTFLG is shown in Figure 13-29 and described in Table 13-30.

Return to the Summary Table.

H2D Interrupt status Flag

Figure 13-29 HICH2DINTFLG Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDILLRD_FLGILLWR_FLGBUSERR_FLGH2D_FLG
R-0-0hR-0hR-0hR-0hR-0h
Table 13-30 HICH2DINTFLG Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3ILLRD_FLGR0hStatus of Illegal Read Error Interrupt
0 : Illegal Read event is not detected
1 : Illegal Read event is detected
Read-only for Host.

Reset type: SYSRSn

2ILLWR_FLGR0hStatus of Illegal Write Error Interrupt
0 : Illegal Write event is not detected
1 : Illegal Write event is detected
Read-only for Host.

Reset type: SYSRSn

1BUSERR_FLGR0hStatus of Bus Error event
0 : BusError event is not detected
1 : BusError event has occurred
BusError is generated when there is a loss of data due to simultaneous write access by Host as well as Device to a single register.
Read-only for Host.

Reset type: SYSRSn

0H2D_FLGR0hStatus of Host-to-Device data ready event
0 : Host-to-Device data ready event is not detected
1 : Host-to-Device data ready event is detected
Read-only for Host.

Reset type: SYSRSn

13.6.2.21 HICH2DINTCLR Register (Offset = 2Ch) [Reset = 00000000h]

HICH2DINTCLR is shown in Figure 13-30 and described in Table 13-31.

Return to the Summary Table.

H2D Interrupt status Clear

Figure 13-30 HICH2DINTCLR Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDILLRD_CLRILLWR_CLRBUSERR_CLRH2D_CLR
R-0-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0h
Table 13-31 HICH2DINTCLR Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3ILLRD_CLRR/W1C0hClear Illegal Read error flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

2ILLWR_CLRR/W1C0hClear Illegal Write error flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

1BUSERR_CLRR/W1C0hClear Bus Error flag and hence the interrupt.
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

0H2D_CLRR/W1C0hClear Host-to-Device data ready flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

13.6.2.22 HICH2DINTFRC Register (Offset = 2Eh) [Reset = 00000000h]

HICH2DINTFRC is shown in Figure 13-31 and described in Table 13-32.

Return to the Summary Table.

H2D Interrupt Set Force

Figure 13-31 HICH2DINTFRC Register
3130292827262524
RESERVED
R-0-0h
2322212019181716
RESERVED
R-0-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDILLRD_INTFRCILLWR_INTFRCBUSERR_INTFRCH2D_INTFRC
R-0-0hR/W1S-0hR/W1S-0hR/W1S-0hR/W1S-0h
Table 13-32 HICH2DINTFRC Register Field Descriptions
BitFieldTypeResetDescription
31-4RESERVEDR-00hReserved
3ILLRD_INTFRCR/W1S0hForce the Illegal Read Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

2ILLWR_INTFRCR/W1S0hForce the Illegal Write Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

1BUSERR_INTFRCR/W1S0hForce the Bus Error Interrupt
Writing a '1' to this bit will set BUSERR_FLG
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

0H2D_INTFRCR/W1S0hForce the Host-to-Device data ready Interrupt
Writing a '1' will set H2D_FLG bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

13.6.2.23 HICD2HINTEN Register (Offset = 30h) [Reset = 00000000h]

HICD2HINTEN is shown in Figure 13-32 and described in Table 13-33.

Return to the Summary Table.

D2H Interrupt Enable

Figure 13-32 HICD2HINTEN Register
3130292827262524
EVTRIG_INTEN
R/W-0h
2322212019181716
EVTRIG_INTEN
R/W-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDACCVIO_INTENILLRD_INTENILLWR_INTENBUSERR_INTEND2H_INTEN
R-0-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 13-33 HICD2HINTEN Register Field Descriptions
BitFieldTypeResetDescription
31-16EVTRIG_INTENR/W0hEnables Interrupts upon Event Triggers
0 : Upon an event on EVT_TRIG[n] (n=0..15), no interrupts will be triggered on D2HINT port
1 : An Interrupt is triggered on D2HINT port when an active high event is detected on EVT_TRIG[n] (n=0..15)
Read-Write for Host.

Reset type: SYSRSn

15-5RESERVEDR-00hReserved
4ACCVIO_INTENR/W0hEnables Access Violation (for Device accesses) Interrupt
0 : Access Violation does not result in an interrupt
1 : Access Violation will trigger an interrupt on D2HINT port
Read-Write for Host.

Reset type: SYSRSn

3ILLRD_INTENR/W0hEnables Illegal Read Error Interrupt
0 : Illegal Read event does not result in an interrupt
1 : Illegal Read event will trigger an interrupt on D2HINT port
Read-Write for Host.

Reset type: SYSRSn

2ILLWR_INTENR/W0hEnables Illegal Write Error Interrupt
0 : Illegal Write event does not result in an interrupt
1 : Illegal Write event will trigger an interrupt on D2HINT port
Read-Write for Host.

Reset type: SYSRSn

1BUSERR_INTENR/W0hEnables Bus Error Interrupt
0 : BusError does not result in an interrupt
1 : BusError event will trigger an interrupt on D2HINT port
Read-Write for Host.

Reset type: SYSRSn

0D2H_INTENR/W0hEnables Device-to-Host data ready Interrupt
0 : Device-to-Host data ready does not result in an interrupt
1 : Device-to-Host data ready will trigger an interrupt on D2HINT port
Read-Write for Host.

Reset type: SYSRSn

13.6.2.24 HICD2HINTFLG Register (Offset = 32h) [Reset = 00000000h]

HICD2HINTFLG is shown in Figure 13-33 and described in Table 13-34.

Return to the Summary Table.

D2H Interrupt status Flag

Figure 13-33 HICD2HINTFLG Register
3130292827262524
EVTRIG_FLG
R-0h
2322212019181716
EVTRIG_FLG
R-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDACCVIO_FLGILLRD_FLGILLWR_FLGBUSERR_FLGD2H_FLG
R-0-0hR-0hR-0hR-0hR-0hR-0h
Table 13-34 HICD2HINTFLG Register Field Descriptions
BitFieldTypeResetDescription
31-16EVTRIG_FLGR0hStatus of Event Trigger
0 : No event detected on EVT_TRIG[n] (n=0..15)
1 : Event detected on EVT_TRIG[n] (n=0..15)
Read-only for Host.

Reset type: SYSRSn

15-5RESERVEDR-00hReserved
4ACCVIO_FLGR0hStatus of Access Violation Error
0 : Initiator Port Access Violation event is not detected
1 : Initiator Port Access Violation event is detected
Read-only for Host.

Reset type: SYSRSn

3ILLRD_FLGR0hStatus of Illegal Read Error
0 : Illegal Read event is not detected
1 : Illegal Read event is detected
Read-only for Host.

Reset type: SYSRSn

2ILLWR_FLGR0hStatus of Illegal Write Error
0 : Illegal Write event is not detected
1 : Illegal Write event is detected
Read-only for Host.

Reset type: SYSRSn

1BUSERR_FLGR0hStatus of Bus Error event
0 : BusError event is not detected
1 : BusError event has occurred
BusError is generated when there is a loss of data due to simultaneous write access by Host as well as Device to a single register.
Read-only for Host.

Reset type: SYSRSn

0D2H_FLGR0hStatus of Device-to-Host data ready event
0 : Device-to-Host data ready event is not detected
1 : Device-to-Host data ready event is detected
Read-only for Host.

Reset type: SYSRSn

13.6.2.25 HICD2HINTCLR Register (Offset = 34h) [Reset = 00000000h]

HICD2HINTCLR is shown in Figure 13-34 and described in Table 13-35.

Return to the Summary Table.

D2H Interrupt status Clear

Figure 13-34 HICD2HINTCLR Register
3130292827262524
EVTRIG_CLR
R/W1C-0h
2322212019181716
EVTRIG_CLR
R/W1C-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDACCVIO_CLRILLRD_CLRILLWR_CLRBUSERR_CLRD2H_CLR
R-0-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0h
Table 13-35 HICD2HINTCLR Register Field Descriptions
BitFieldTypeResetDescription
31-16EVTRIG_CLRR/W1C0hClear Event Trigger flag and hence the interrupt
Writing a '1' clears this flag EVTRIG_FLG[n] (n=0..15)
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

15-5RESERVEDR-00hReserved
4ACCVIO_CLRR/W1C0hClear Access Violation error flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

3ILLRD_CLRR/W1C0hClear Illegal Read error flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

2ILLWR_CLRR/W1C0hClear Illegal Write error flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

1BUSERR_CLRR/W1C0hClear Bus Error flag and hence the interrupt.
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

0D2H_CLRR/W1C0hClear Device-to-Host data ready flag and hence the interrupt
Writing a '1' clears this flag.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Clear for Host.

Reset type: SYSRSn

13.6.2.26 HICD2HINTFRC Register (Offset = 36h) [Reset = 00000000h]

HICD2HINTFRC is shown in Figure 13-35 and described in Table 13-36.

Return to the Summary Table.

D2H Interrupt Set Force

Figure 13-35 HICD2HINTFRC Register
3130292827262524
EVTRIG_INTFRC
R/W1S-0h
2322212019181716
EVTRIG_INTFRC
R/W1S-0h
15141312111098
RESERVED
R-0-0h
76543210
RESERVEDACCVIO_INTFRCILLRD_INTFRCILLWR_INTFRCBUSERR_INTFRCD2H_INTFRC
R-0-0hR/W1S-0hR/W1S-0hR/W1S-0hR/W1S-0hR/W1S-0h
Table 13-36 HICD2HINTFRC Register Field Descriptions
BitFieldTypeResetDescription
31-16EVTRIG_INTFRCR/W1S0hForce the Event Trigger Interrupt
Writing a '1' will set this bit EVTRIG_FLG[n] (n=0..15)
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

15-5RESERVEDR-00hReserved
4ACCVIO_INTFRCR/W1S0hForce the Access Violation Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

3ILLRD_INTFRCR/W1S0hForce the Illegal Read Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

2ILLWR_INTFRCR/W1S0hForce the Illegal Write Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

1BUSERR_INTFRCR/W1S0hForce the Bus Error Interrupt
Writing a '1' to this bit will set BUSERR_FLG
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

0D2H_INTFRCR/W1S0hForce the Device-to-Host data ready Interrupt
Writing a '1' will set this bit.
Writing '0' has no impact.
Read returns '0' always.
Read-Write-to-Set for Host.

Reset type: SYSRSn

13.6.2.27 HICACCVIOADDR Register (Offset = 38h) [Reset = 00000000h]

HICACCVIOADDR is shown in Figure 13-36 and described in Table 13-37.

Return to the Summary Table.

Access Violation Address

Figure 13-36 HICACCVIOADDR Register
313029282726252423222120191817161514131211109876543210
ACCVIO_ADDR
R-0h
Table 13-37 HICACCVIOADDR Register Field Descriptions
BitFieldTypeResetDescription
31-0ACCVIO_ADDRR0hAddress of the Initiator port accessing the Device region that resulted in violations like unimplemented range or access protection violation.

The value will freeze upon the first capture until the ACCVIO_FLG of HICD2HINTFLG register are cleared by the user.
When an access is issued by HIC to its Initiator port to allow Host to access the Device region, if any violations are reported, the address on the Initiator port will be captured into this register field while setting corresponding error flag in HICD2HINTFLG register.

Read-only for Host.

Reset type: SYSRSn

13.6.2.28 H2D_BUF0 Register (Offset = 40h) [Reset = 00000000h]

H2D_BUF0 is shown in Figure 13-37 and described in Table 13-38.

Return to the Summary Table.

Host to Device Buffer 0

Figure 13-37 H2D_BUF0 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-38 H2D_BUF0 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.29 H2D_BUF1 Register (Offset = 42h) [Reset = 00000000h]

H2D_BUF1 is shown in Figure 13-38 and described in Table 13-39.

Return to the Summary Table.

Host to Device Buffer 1

Figure 13-38 H2D_BUF1 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-39 H2D_BUF1 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.30 H2D_BUF2 Register (Offset = 44h) [Reset = 00000000h]

H2D_BUF2 is shown in Figure 13-39 and described in Table 13-40.

Return to the Summary Table.

Host to Device Buffer 2

Figure 13-39 H2D_BUF2 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-40 H2D_BUF2 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.31 H2D_BUF3 Register (Offset = 46h) [Reset = 00000000h]

H2D_BUF3 is shown in Figure 13-40 and described in Table 13-41.

Return to the Summary Table.

Host to Device Buffer 3

Figure 13-40 H2D_BUF3 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-41 H2D_BUF3 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.32 H2D_BUF4 Register (Offset = 48h) [Reset = 00000000h]

H2D_BUF4 is shown in Figure 13-41 and described in Table 13-42.

Return to the Summary Table.

Host to Device Buffer 4

Figure 13-41 H2D_BUF4 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-42 H2D_BUF4 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.33 H2D_BUF5 Register (Offset = 4Ah) [Reset = 00000000h]

H2D_BUF5 is shown in Figure 13-42 and described in Table 13-43.

Return to the Summary Table.

Host to Device Buffer 5

Figure 13-42 H2D_BUF5 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-43 H2D_BUF5 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.34 H2D_BUF6 Register (Offset = 4Ch) [Reset = 00000000h]

H2D_BUF6 is shown in Figure 13-43 and described in Table 13-44.

Return to the Summary Table.

Host to Device Buffer 6

Figure 13-43 H2D_BUF6 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-44 H2D_BUF6 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.35 H2D_BUF7 Register (Offset = 4Eh) [Reset = 00000000h]

H2D_BUF7 is shown in Figure 13-44 and described in Table 13-45.

Return to the Summary Table.

Host to Device Buffer 7

Figure 13-44 H2D_BUF7 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-45 H2D_BUF7 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.36 H2D_BUF8 Register (Offset = 50h) [Reset = 00000000h]

H2D_BUF8 is shown in Figure 13-45 and described in Table 13-46.

Return to the Summary Table.

Host to Device Buffer 8

Figure 13-45 H2D_BUF8 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-46 H2D_BUF8 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.37 H2D_BUF9 Register (Offset = 52h) [Reset = 00000000h]

H2D_BUF9 is shown in Figure 13-46 and described in Table 13-47.

Return to the Summary Table.

Host to Device Buffer 9

Figure 13-46 H2D_BUF9 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-47 H2D_BUF9 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.38 H2D_BUF10 Register (Offset = 54h) [Reset = 00000000h]

H2D_BUF10 is shown in Figure 13-47 and described in Table 13-48.

Return to the Summary Table.

Host to Device Buffer 10

Figure 13-47 H2D_BUF10 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-48 H2D_BUF10 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.39 H2D_BUF11 Register (Offset = 56h) [Reset = 00000000h]

H2D_BUF11 is shown in Figure 13-48 and described in Table 13-49.

Return to the Summary Table.

Host to Device Buffer 11

Figure 13-48 H2D_BUF11 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-49 H2D_BUF11 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.40 H2D_BUF12 Register (Offset = 58h) [Reset = 00000000h]

H2D_BUF12 is shown in Figure 13-49 and described in Table 13-50.

Return to the Summary Table.

Host to Device Buffer 12

Figure 13-49 H2D_BUF12 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-50 H2D_BUF12 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.41 H2D_BUF13 Register (Offset = 5Ah) [Reset = 00000000h]

H2D_BUF13 is shown in Figure 13-50 and described in Table 13-51.

Return to the Summary Table.

Host to Device Buffer 13

Figure 13-50 H2D_BUF13 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-51 H2D_BUF13 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.42 H2D_BUF14 Register (Offset = 5Ch) [Reset = 00000000h]

H2D_BUF14 is shown in Figure 13-51 and described in Table 13-52.

Return to the Summary Table.

Host to Device Buffer 14

Figure 13-51 H2D_BUF14 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-52 H2D_BUF14 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.43 H2D_BUF15 Register (Offset = 5Eh) [Reset = 00000000h]

H2D_BUF15 is shown in Figure 13-52 and described in Table 13-53.

Return to the Summary Table.

Host to Device Buffer 15

Figure 13-52 H2D_BUF15 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-53 H2D_BUF15 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Host to be consumed by the Device.
These registers can be read and written by primarily HOST, but can also be written by Device if H2DBUF_DEVWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.44 D2H_BUF0 Register (Offset = 60h) [Reset = 00000000h]

D2H_BUF0 is shown in Figure 13-53 and described in Table 13-54.

Return to the Summary Table.

Device to Host Buffer 0

Figure 13-53 D2H_BUF0 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-54 D2H_BUF0 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.45 D2H_BUF1 Register (Offset = 62h) [Reset = 00000000h]

D2H_BUF1 is shown in Figure 13-54 and described in Table 13-55.

Return to the Summary Table.

Device to Host Buffer 1

Figure 13-54 D2H_BUF1 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-55 D2H_BUF1 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.46 D2H_BUF2 Register (Offset = 64h) [Reset = 00000000h]

D2H_BUF2 is shown in Figure 13-55 and described in Table 13-56.

Return to the Summary Table.

Device to Host Buffer 2

Figure 13-55 D2H_BUF2 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-56 D2H_BUF2 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.47 D2H_BUF3 Register (Offset = 66h) [Reset = 00000000h]

D2H_BUF3 is shown in Figure 13-56 and described in Table 13-57.

Return to the Summary Table.

Device to Host Buffer 3

Figure 13-56 D2H_BUF3 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-57 D2H_BUF3 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.48 D2H_BUF4 Register (Offset = 68h) [Reset = 00000000h]

D2H_BUF4 is shown in Figure 13-57 and described in Table 13-58.

Return to the Summary Table.

Device to Host Buffer 4

Figure 13-57 D2H_BUF4 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-58 D2H_BUF4 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.49 D2H_BUF5 Register (Offset = 6Ah) [Reset = 00000000h]

D2H_BUF5 is shown in Figure 13-58 and described in Table 13-59.

Return to the Summary Table.

Device to Host Buffer 5

Figure 13-58 D2H_BUF5 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-59 D2H_BUF5 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.50 D2H_BUF6 Register (Offset = 6Ch) [Reset = 00000000h]

D2H_BUF6 is shown in Figure 13-59 and described in Table 13-60.

Return to the Summary Table.

Device to Host Buffer 6

Figure 13-59 D2H_BUF6 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-60 D2H_BUF6 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.51 D2H_BUF7 Register (Offset = 6Eh) [Reset = 00000000h]

D2H_BUF7 is shown in Figure 13-60 and described in Table 13-61.

Return to the Summary Table.

Device to Host Buffer 7

Figure 13-60 D2H_BUF7 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-61 D2H_BUF7 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.52 D2H_BUF8 Register (Offset = 70h) [Reset = 00000000h]

D2H_BUF8 is shown in Figure 13-61 and described in Table 13-62.

Return to the Summary Table.

Device to Host Buffer 8

Figure 13-61 D2H_BUF8 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-62 D2H_BUF8 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.53 D2H_BUF9 Register (Offset = 72h) [Reset = 00000000h]

D2H_BUF9 is shown in Figure 13-62 and described in Table 13-63.

Return to the Summary Table.

Device to Host Buffer 9

Figure 13-62 D2H_BUF9 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-63 D2H_BUF9 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.54 D2H_BUF10 Register (Offset = 74h) [Reset = 00000000h]

D2H_BUF10 is shown in Figure 13-63 and described in Table 13-64.

Return to the Summary Table.

Device to Host Buffer 10

Figure 13-63 D2H_BUF10 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-64 D2H_BUF10 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.55 D2H_BUF11 Register (Offset = 76h) [Reset = 00000000h]

D2H_BUF11 is shown in Figure 13-64 and described in Table 13-65.

Return to the Summary Table.

Device to Host Buffer 11

Figure 13-64 D2H_BUF11 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-65 D2H_BUF11 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.56 D2H_BUF12 Register (Offset = 78h) [Reset = 00000000h]

D2H_BUF12 is shown in Figure 13-65 and described in Table 13-66.

Return to the Summary Table.

Device to Host Buffer 12

Figure 13-65 D2H_BUF12 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-66 D2H_BUF12 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.57 D2H_BUF13 Register (Offset = 7Ah) [Reset = 00000000h]

D2H_BUF13 is shown in Figure 13-66 and described in Table 13-67.

Return to the Summary Table.

Device to Host Buffer 13

Figure 13-66 D2H_BUF13 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-67 D2H_BUF13 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.58 D2H_BUF14 Register (Offset = 7Ch) [Reset = 00000000h]

D2H_BUF14 is shown in Figure 13-67 and described in Table 13-68.

Return to the Summary Table.

Device to Host Buffer 14

Figure 13-67 D2H_BUF14 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-68 D2H_BUF14 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn

13.6.2.59 D2H_BUF15 Register (Offset = 7Eh) [Reset = 00000000h]

D2H_BUF15 is shown in Figure 13-68 and described in Table 13-69.

Return to the Summary Table.

Device to Host Buffer 15

Figure 13-68 D2H_BUF15 Register
313029282726252423222120191817161514131211109876543210
Data
R/W-0h
Table 13-69 D2H_BUF15 Register Field Descriptions
BitFieldTypeResetDescription
31-0DataR/W0hData written by the Device to be consumed by the Host.
These registers are primarily written by Device, but can also be written by Host if the D2HBUF_HOSTWREN bit is set '1'.

Reset type: SYSRSn