SPRUIN7C March   2020  – March 2024 TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Notational Conventions
    3.     Glossary
    4.     Related Documentation From Texas Instruments
    5.     Support Resources
    6.     Trademarks
  3. C2000™ Microcontrollers Software Support
    1. 1.1 Introduction
    2. 1.2 C2000Ware Structure
    3. 1.3 Documentation
    4. 1.4 Devices
    5. 1.5 Libraries
    6. 1.6 Code Composer Studio™ Integrated Development Environment (IDE)
    7. 1.7 SysConfig and PinMUX Tool
  4. C28x Processor
    1. 2.1 Introduction
    2. 2.2 C28X Related Collateral
    3. 2.3 Features
    4. 2.4 Floating-Point Unit
    5. 2.5 Trigonometric Math Unit (TMU)
    6. 2.6 VCRC Unit
  5. System Control and Interrupts
    1. 3.1  Introduction
      1. 3.1.1 SYSCTL Related Collateral
      2. 3.1.2 LOCK Protection on System Configuration Registers
      3. 3.1.3 EALLOW Protection
    2. 3.2  Power Management
    3. 3.3  Device Identification and Configuration Registers
    4. 3.4  Resets
      1. 3.4.1  Reset Sources
      2. 3.4.2  External Reset (XRS)
      3. 3.4.3  Simulate External Reset
      4. 3.4.4  Power-On Reset (POR)
      5. 3.4.5  Brown-Out-Reset (BOR)
      6. 3.4.6  Debugger Reset (SYSRS)
      7. 3.4.7  Simulate CPU Reset
      8. 3.4.8  Watchdog Reset (WDRS)
      9. 3.4.9  Hardware BIST Reset (HWBISTRS)
      10. 3.4.10 NMI Watchdog Reset (NMIWDRS)
      11. 3.4.11 DCSM Safe Code Copy Reset (SCCRESET)
    5. 3.5  Peripheral Interrupts
      1. 3.5.1 Interrupt Concepts
      2. 3.5.2 Interrupt Architecture
        1. 3.5.2.1 Peripheral Stage
        2. 3.5.2.2 PIE Stage
        3. 3.5.2.3 CPU Stage
      3. 3.5.3 Interrupt Entry Sequence
      4. 3.5.4 Configuring and Using Interrupts
        1. 3.5.4.1 Enabling Interrupts
        2. 3.5.4.2 Handling Interrupts
        3. 3.5.4.3 Disabling Interrupts
        4. 3.5.4.4 Nesting Interrupts
        5. 3.5.4.5 Vector Address Validity Check
      5. 3.5.5 PIE Channel Mapping
        1. 3.5.5.1 PIE Interrupt Priority
          1. 3.5.5.1.1 Channel Priority
          2. 3.5.5.1.2 Group Priority
      6. 3.5.6 Vector Tables
    6. 3.6  Exceptions and Non-Maskable Interrupts
      1. 3.6.1 Configuring and Using NMIs
      2. 3.6.2 Emulation Considerations
      3. 3.6.3 NMI Sources
        1. 3.6.3.1 Missing Clock Detection
        2. 3.6.3.2 RAM Uncorrectable ECC Error
        3. 3.6.3.3 Flash Uncorrectable ECC Error
        4. 3.6.3.4 CPU HWBIST Error
        5. 3.6.3.5 Software-Forced Error
      4. 3.6.4 CRC Fail
      5. 3.6.5 ERAD NMI
      6. 3.6.6 Illegal Instruction Trap (ITRAP)
      7. 3.6.7 Error Pin
    7. 3.7  Clocking
      1. 3.7.1  Clock Sources
        1. 3.7.1.1 Primary Internal Oscillator (INTOSC2)
        2. 3.7.1.2 Backup Internal Oscillator (INTOSC1)
        3. 3.7.1.3 External Oscillator (XTAL)
      2. 3.7.2  Derived Clocks
        1. 3.7.2.1 Oscillator Clock (OSCCLK)
        2. 3.7.2.2 System PLL Output Clock (PLLRAWCLK)
      3. 3.7.3  Device Clock Domains
        1. 3.7.3.1 System Clock (PLLSYSCLK)
        2. 3.7.3.2 CPU Clock (CPUCLK)
        3. 3.7.3.3 CPU Subsystem Clock (SYSCLK and PERx.SYSCLK)
        4. 3.7.3.4 Low-Speed Peripheral Clock (LSPCLK and PERx.LSPCLK)
        5. 3.7.3.5 CAN Bit Clock
        6. 3.7.3.6 CPU Timer2 Clock (TIMER2CLK)
      4. 3.7.4  XCLKOUT
      5. 3.7.5  Clock Connectivity
      6. 3.7.6  Clock Source and PLL Setup
      7. 3.7.7  Using an External Crystal or Resonator
        1. 3.7.7.1 X1/X2 Precondition Circuit
      8. 3.7.8  Using an External Oscillator
      9. 3.7.9  Choosing PLL Settings
      10. 3.7.10 System Clock Setup
      11. 3.7.11 SYS PLL Bypass
      12. 3.7.12 Clock (OSCCLK) Failure Detection
        1. 3.7.12.1 Missing Clock Detection
    8. 3.8  32-Bit CPU Timers 0/1/2
    9. 3.9  Watchdog Timer
      1. 3.9.1 Servicing the Watchdog Timer
      2. 3.9.2 Minimum Window Check
      3. 3.9.3 Watchdog Reset or Watchdog Interrupt Mode
      4. 3.9.4 Watchdog Operation in Low-Power Modes
      5. 3.9.5 Emulation Considerations
    10. 3.10 Low-Power Modes
      1. 3.10.1 Clock-Gating Low-Power Modes
      2. 3.10.2 IDLE
      3. 3.10.3 STANDBY
      4. 3.10.4 HALT
      5. 3.10.5 Flash Power-down Considerations
    11. 3.11 Memory Controller Module
      1. 3.11.1 Functional Description
        1. 3.11.1.1 Dedicated RAM (Mx RAM)
        2. 3.11.1.2 Local Shared RAM (LSx RAM)
        3. 3.11.1.3 Global Shared RAM (GSx RAM)
        4. 3.11.1.4 Access Arbitration
        5. 3.11.1.5 Access Protection
          1. 3.11.1.5.1 CPU Fetch Protection
          2. 3.11.1.5.2 CPU Write Protection
          3. 3.11.1.5.3 CPU Read Protection
          4. 3.11.1.5.4 HIC Write Protection
          5. 3.11.1.5.5 DMA Write Protection
        6. 3.11.1.6 Memory Error Detection, Correction and Error Handling
          1. 3.11.1.6.1 Error Detection and Correction
          2. 3.11.1.6.2 Error Handling
        7. 3.11.1.7 Application Test Hooks for Error Detection and Correction
        8. 3.11.1.8 RAM Initialization
    12. 3.12 JTAG
      1. 3.12.1 JTAG Noise and TAP_STATUS
    13. 3.13 Dual Code Security Module (DCSM)
      1. 3.13.1 Functional Description
        1. 3.13.1.1 CSM Passwords
        2. 3.13.1.2 Emulation Code Security Logic (ECSL)
        3. 3.13.1.3 CPU Secure Logic
        4. 3.13.1.4 Execute-Only Protection
        5. 3.13.1.5 Password Lock
        6. 3.13.1.6 JTAG Lock
        7. 3.13.1.7 Link Pointer and Zone Select
      2. 3.13.2 C Code Example to Get Zone Select Block Addr for Zone1 in BANK0
      3. 3.13.3 Flash and OTP Erase/Program
      4. 3.13.4 Safe Copy Code
      5. 3.13.5 SafeCRC
      6. 3.13.6 CSM Impact on Other On-Chip Resources
      7. 3.13.7 Incorporating Code Security in User Applications
        1. 3.13.7.1 Environments That Require Security Unlocking
        2. 3.13.7.2 CSM Password Match Flow
        3. 3.13.7.3 C Code Example to Unsecure C28x Zone1
        4.       150
        5. 3.13.7.4 C Code Example to Resecure C28x Zone1
        6.       152
        7. 3.13.7.5 Environments That Require ECSL Unlocking
        8. 3.13.7.6 ECSL Password Match Flow
        9. 3.13.7.7 ECSL Disable Considerations for Any Zone
          1. 3.13.7.7.1 C Code Example to Disable ECSL for C28x-Zone1
        10.       157
        11. 3.13.7.8 Device Unique ID
    14. 3.14 System Control Register Configuration Restrictions
    15. 3.15 Software
      1. 3.15.1 SYSCTL Examples
        1. 3.15.1.1 Missing clock detection (MCD)
        2. 3.15.1.2 XCLKOUT (External Clock Output) Configuration
      2. 3.15.2 DCSM Examples
        1. 3.15.2.1 Empty DCSM Tool Example
      3. 3.15.3 MEMCFG Examples
        1. 3.15.3.1 Correctable & Uncorrectable Memory Error Handling
      4. 3.15.4 NMI Examples
      5. 3.15.5 TIMER Examples
        1. 3.15.5.1 CPU Timers
        2. 3.15.5.2 CPU Timers
      6. 3.15.6 WATCHDOG Examples
        1. 3.15.6.1 Watchdog
    16. 3.16 System Control Registers
      1. 3.16.1  SYSCTRL Base Address Table
      2. 3.16.2  CPUTIMER_REGS Registers
      3. 3.16.3  PIE_CTRL_REGS Registers
      4. 3.16.4  WD_REGS Registers
      5. 3.16.5  NMI_INTRUPT_REGS Registers
      6. 3.16.6  XINT_REGS Registers
      7. 3.16.7  SYNC_SOC_REGS Registers
      8. 3.16.8  DMA_CLA_SRC_SEL_REGS Registers
      9. 3.16.9  DEV_CFG_REGS Registers
      10. 3.16.10 CLK_CFG_REGS Registers
      11. 3.16.11 CPU_SYS_REGS Registers
      12. 3.16.12 PERIPH_AC_REGS Registers
      13. 3.16.13 DCSM_BANK0_Z1_REGS Registers
      14. 3.16.14 DCSM_BANK0_Z2_REGS Registers
      15. 3.16.15 DCSM_COMMON_REGS Registers
      16. 3.16.16 MEM_CFG_REGS Registers
      17. 3.16.17 ACCESS_PROTECTION_REGS Registers
      18. 3.16.18 MEMORY_ERROR_REGS Registers
      19. 3.16.19 TEST_ERROR_REGS Registers
      20. 3.16.20 UID_REGS Registers
      21. 3.16.21 DCSM_BANK0_Z1_OTP Registers
      22. 3.16.22 DCSM_BANK0_Z2_OTP Registers
      23. 3.16.23 Register to Driverlib Function Mapping
        1. 3.16.23.1 ASYSCTL Registers to Driverlib Functions
        2. 3.16.23.2 CPUTIMER Registers to Driverlib Functions
        3. 3.16.23.3 DCSM Registers to Driverlib Functions
        4. 3.16.23.4 MEMCFG Registers to Driverlib Functions
        5. 3.16.23.5 NMI Registers to Driverlib Functions
        6. 3.16.23.6 PIE Registers to Driverlib Functions
        7. 3.16.23.7 SYSCTL Registers to Driverlib Functions
        8. 3.16.23.8 XINT Registers to Driverlib Functions
  6. ROM Code and Peripheral Booting
    1. 4.1 Introduction
      1. 4.1.1 ROM Related Collateral
    2. 4.2 Device Boot Sequence
    3. 4.3 Device Boot Modes
    4. 4.4 Device Boot Configurations
      1. 4.4.1 Configuring Boot Mode Pins
      2. 4.4.2 Configuring Boot Mode Table Options
      3. 4.4.3 Boot Mode Example Use Cases
        1. 4.4.3.1 Zero Boot Mode Select Pins
        2. 4.4.3.2 One Boot Mode Select Pin
        3. 4.4.3.3 Three Boot Mode Select Pins
    5. 4.5 Device Boot Flow Diagrams
      1. 4.5.1 Boot Flow
    6. 4.6 Device Reset and Exception Handling
      1. 4.6.1 Reset Causes and Handling
      2. 4.6.2 Exceptions and Interrupts Handling
    7. 4.7 Boot ROM Description
      1. 4.7.1  Boot ROM Configuration Registers
        1. 4.7.1.1 GPREG2 Usage and MPOST Configuration
      2. 4.7.2  Entry Points
      3. 4.7.3  Wait Points
      4. 4.7.4  Memory Maps
        1. 4.7.4.1 Boot ROM Memory Maps
        2. 4.7.4.2 Reserved RAM Memory Maps
      5. 4.7.5  ROM Tables
      6. 4.7.6  Boot Modes and Loaders
        1. 4.7.6.1 Boot Modes
          1. 4.7.6.1.1 Wait Boot
          2. 4.7.6.1.2 Flash Boot
          3. 4.7.6.1.3 RAM Boot
        2. 4.7.6.2 Bootloaders
          1. 4.7.6.2.1 SCI Boot Mode
          2. 4.7.6.2.2 SPI Boot Mode
          3. 4.7.6.2.3 I2C Boot Mode
          4. 4.7.6.2.4 Parallel Boot Mode
          5. 4.7.6.2.5 CAN Boot Mode
      7. 4.7.7  GPIO Assignments
      8. 4.7.8  Secure ROM Function APIs
      9. 4.7.9  Clock Initializations
      10. 4.7.10 Boot Status Information
        1. 4.7.10.1 Booting Status
        2. 4.7.10.2 Boot Mode and MPOST (Memory Power On Self-Test) Status
      11. 4.7.11 ROM Version
    8. 4.8 Application Notes for Using the Bootloaders
      1. 4.8.1 Boot Data Stream Structure
        1. 4.8.1.1 Bootloader Data Stream Structure
          1. 4.8.1.1.1 Data Stream Structure 8-bit
      2. 4.8.2 The C2000 Hex Utility
        1. 4.8.2.1 HEX2000.exe Command Syntax
    9. 4.9 Software
      1. 4.9.1 BOOT Examples
  7. Flash Module
    1. 5.1  Introduction to Flash and OTP Memory
      1. 5.1.1 FLASH Related Collateral
      2. 5.1.2 Features
      3. 5.1.3 Flash Tools
      4. 5.1.4 Default Flash Configuration
    2. 5.2  Flash Bank, OTP, and Pump
    3. 5.3  Flash Module Controller (FMC)
    4. 5.4  Flash and OTP Memory Power-Down Modes and Wakeup
    5. 5.5  Active Grace Period
    6. 5.6  Flash and OTP Memory Performance
    7. 5.7  Flash Read Interface
      1. 5.7.1 C28x-FMC Flash Read Interface
        1. 5.7.1.1 Standard Read Mode
        2. 5.7.1.2 Prefetch Mode
          1. 5.7.1.2.1 Data Cache
    8. 5.8  Flash Erase and Program
      1. 5.8.1 Erase
      2. 5.8.2 Program
      3. 5.8.3 Verify
    9. 5.9  Error Correction Code (ECC) Protection
      1. 5.9.1 Single-Bit Data Error
      2. 5.9.2 Uncorrectable Error
      3. 5.9.3 SECDED Logic Correctness Check
    10. 5.10 Reserved Locations Within Flash and OTP Memory
    11. 5.11 Migrating an Application from RAM to Flash
    12. 5.12 Procedure to Change the Flash Control Registers
    13. 5.13 Software
      1. 5.13.1 FLASH Examples
        1. 5.13.1.1 Live Firmware Update Example
        2. 5.13.1.2 Flash Programming with AutoECC, DataAndECC, DataOnly and EccOnly
        3. 5.13.1.3 Flash ECC Test Mode
        4. 5.13.1.4 Boot Source Code
        5. 5.13.1.5 Erase Source Code
        6. 5.13.1.6 Live DFU Command Functionality
        7. 5.13.1.7 Verify Source Code
        8. 5.13.1.8 SCI Boot Mode Routines
        9. 5.13.1.9 Flash Programming Solution using SCI
    14. 5.14 Flash Registers
      1. 5.14.1 FLASH Base Address Table
      2. 5.14.2 FLASH_CTRL_REGS Registers
      3. 5.14.3 FLASH_ECC_REGS Registers
      4. 5.14.4 FLASH Registers to Driverlib Functions
  8. Dual-Clock Comparator (DCC)
    1. 6.1 Introduction
      1. 6.1.1 Features
      2. 6.1.2 Block Diagram
    2. 6.2 Module Operation
      1. 6.2.1 Configuring DCC Counters
      2. 6.2.2 Single-Shot Measurement Mode
      3. 6.2.3 Continuous Monitoring Mode
      4. 6.2.4 Error Conditions
    3. 6.3 Interrupts
    4. 6.4 Software
      1. 6.4.1 DCC Examples
        1. 6.4.1.1 DCC Single shot Clock verification
        2. 6.4.1.2 DCC Single shot Clock measurement
        3. 6.4.1.3 DCC Continuous clock monitoring
        4. 6.4.1.4 DCC Continuous clock monitoring
        5. 6.4.1.5 DCC Detection of clock failure
    5. 6.5 DCC Registers
      1. 6.5.1 DCC Base Address Table
      2. 6.5.2 DCC_REGS Registers
      3. 6.5.3 DCC Registers to Driverlib Functions
  9. Background CRC-32 (BGCRC)
    1. 7.1 Introduction
      1. 7.1.1 BGCRC Related Collateral
      2. 7.1.2 Features
      3. 7.1.3 Block Diagram
      4. 7.1.4 Memory Wait States and Memory Map
    2. 7.2 Functional Description
      1. 7.2.1 Data Read Unit
      2. 7.2.2 CRC-32 Compute Unit
      3. 7.2.3 CRC Notification Unit
        1. 7.2.3.1 CPU Interrupt and NMI
      4. 7.2.4 Operating Modes
        1. 7.2.4.1 CRC Mode
        2. 7.2.4.2 Scrub Mode
      5. 7.2.5 BGCRC Watchdog
      6. 7.2.6 Hardware and Software Faults Protection
    3. 7.3 Application of the BGCRC
      1. 7.3.1 Software Configuration
      2. 7.3.2 Decision on Error Response Severity
      3. 7.3.3 Execution of Time Critical Code from Wait-Stated Memories
      4. 7.3.4 BGCRC Execution
      5. 7.3.5 Debug/Error Response for BGCRC Errors
      6. 7.3.6 BGCRC Golden CRC-32 Value Computation
    4. 7.4 Software
      1. 7.4.1 BGCRC Examples
        1. 7.4.1.1 BGCRC CPU Interrupt Example
        2. 7.4.1.2 BGCRC Example with Watchdog and Lock
    5. 7.5 BGCRC Registers
      1. 7.5.1 BGCRC Base Address Table
      2. 7.5.2 BGCRC_REGS Registers
      3. 7.5.3 BGCRC Registers to Driverlib Functions
  10. General-Purpose Input/Output (GPIO)
    1. 8.1 Introduction
      1. 8.1.1 GPIO Related Collateral
    2. 8.2 Configuration Overview
    3. 8.3 Digital Inputs on ADC Pins (AIOs)
    4. 8.4 Digital General-Purpose I/O Control
    5. 8.5 Input Qualification
      1. 8.5.1 No Synchronization (Asynchronous Input)
      2. 8.5.2 Synchronization to SYSCLKOUT Only
      3. 8.5.3 Qualification Using a Sampling Window
    6. 8.6 GPIO and Peripheral Muxing
      1. 8.6.1 GPIO Muxing
      2. 8.6.2 Peripheral Muxing
    7. 8.7 Internal Pullup Configuration Requirements
    8. 8.8 Software
      1. 8.8.1 GPIO Examples
        1. 8.8.1.1 Device GPIO Setup
        2. 8.8.1.2 Device GPIO Toggle
        3. 8.8.1.3 Device GPIO Interrupt
        4. 8.8.1.4 External Interrupt (XINT)
      2. 8.8.2 LED Examples
        1. 8.8.2.1 LED Blinky Example with DCSM
    9. 8.9 GPIO Registers
      1. 8.9.1 GPIO Base Address Table
      2. 8.9.2 GPIO_CTRL_REGS Registers
      3. 8.9.3 GPIO_DATA_REGS Registers
      4. 8.9.4 GPIO_DATA_READ_REGS Registers
      5. 8.9.5 GPIO Registers to Driverlib Functions
  11. Crossbar (X-BAR)
    1. 9.1 Input X-BAR and CLB Input X-BAR
      1. 9.1.1 CLB Input X-BAR
    2. 9.2 ePWM, CLB, and GPIO Output X-BAR
      1. 9.2.1 ePWM X-BAR
        1. 9.2.1.1 ePWM X-BAR Architecture
      2. 9.2.2 CLB X-BAR
        1. 9.2.2.1 CLB X-BAR Architecture
      3. 9.2.3 GPIO Output X-BAR
        1. 9.2.3.1 GPIO Output X-BAR Architecture
      4. 9.2.4 CLB Output X-BAR
        1. 9.2.4.1 CLB Output X-BAR Architecture
      5. 9.2.5 X-BAR Flags
    3. 9.3 XBAR Registers
      1. 9.3.1 XBAR Base Address Table
      2. 9.3.2 INPUT_XBAR_REGS Registers
      3. 9.3.3 XBAR_REGS Registers
      4. 9.3.4 EPWM_XBAR_REGS Registers
      5. 9.3.5 CLB_XBAR_REGS Registers
      6. 9.3.6 OUTPUT_XBAR_REGS Registers
      7. 9.3.7 Register to Driverlib Function Mapping
        1. 9.3.7.1 INPUTXBAR Registers to Driverlib Functions
        2. 9.3.7.2 XBAR Registers to Driverlib Functions
        3. 9.3.7.3 EPWMXBAR Registers to Driverlib Functions
        4. 9.3.7.4 CLBXBAR Registers to Driverlib Functions
        5. 9.3.7.5 OUTPUTXBAR Registers to Driverlib Functions
        6. 9.3.7.6 TRIGXBAR Registers to Driverlib Functions
  12. 10Direct Memory Access (DMA)
    1. 10.1 Introduction
      1. 10.1.1 Features
      2. 10.1.2 Block Diagram
    2. 10.2 Architecture
      1. 10.2.1 Peripheral Interrupt Event Trigger Sources
      2. 10.2.2 DMA Bus
    3. 10.3 Address Pointer and Transfer Control
    4. 10.4 Pipeline Timing and Throughput
    5. 10.5 Channel Priority
      1. 10.5.1 Round-Robin Mode
      2. 10.5.2 Channel 1 High-Priority Mode
    6. 10.6 Overrun Detection Feature
    7. 10.7 Software
      1. 10.7.1 DMA Examples
        1. 10.7.1.1 DMA GSRAM Transfer (dma_ex1_gsram_transfer)
        2. 10.7.1.2 DMA GSRAM Transfer (dma_ex2_gsram_transfer)
    8. 10.8 DMA Registers
      1. 10.8.1 DMA Base Address Table
      2. 10.8.2 DMA_REGS Registers
      3. 10.8.3 DMA_CH_REGS Registers
      4. 10.8.4 DMA Registers to Driverlib Functions
  13. 11Embedded Real-time Analysis and Diagnostic (ERAD)
    1. 11.1 Introduction
      1. 11.1.1 ERAD Related Collateral
    2. 11.2 Enhanced Bus Comparator Unit
      1. 11.2.1 Enhanced Bus Comparator Unit Operations
      2. 11.2.2 Event Masking and Exporting
    3. 11.3 System Event Counter Unit
      1. 11.3.1 System Event Counter Modes
        1. 11.3.1.1 Counting Active Levels Versus Edges
        2. 11.3.1.2 Max Mode
        3. 11.3.1.3 Cumulative Mode
        4. 11.3.1.4 Input Signal Selection
      2. 11.3.2 Reset on Event
      3. 11.3.3 Operation Conditions
    4. 11.4 ERAD Ownership, Initialization and Reset
    5. 11.5 ERAD Programming Sequence
      1. 11.5.1 Hardware Breakpoint and Hardware Watch Point Programming Sequence
      2. 11.5.2 Timer and Counter Programming Sequence
    6. 11.6 Cyclic Redundancy Check Unit
      1. 11.6.1 CRC Unit Qualifier
      2. 11.6.2 CRC Unit Programming Sequence
    7. 11.7 Software
      1. 11.7.1 ERAD Examples
        1. 11.7.1.1  ERAD Profiling Interrupts
        2. 11.7.1.2  ERAD Profile Function
        3. 11.7.1.3  ERAD Profile Function
        4. 11.7.1.4  ERAD HWBP Monitor Program Counter
        5. 11.7.1.5  ERAD HWBP Monitor Program Counter
        6. 11.7.1.6  ERAD Profile Function
        7. 11.7.1.7  ERAD HWBP Stack Overflow Detection
        8. 11.7.1.8  ERAD HWBP Stack Overflow Detection
        9. 11.7.1.9  ERAD Stack Overflow
        10. 11.7.1.10 ERAD Profiling Interrupts
        11. 11.7.1.11 ERAD Profiling Interrupts
        12. 11.7.1.12 ERAD MEMORY ACCESS RESTRICT
        13. 11.7.1.13 ERAD INTERRUPT ORDER
        14. 11.7.1.14 ERAD AND CLB
        15. 11.7.1.15 ERAD PWM PROTECTION
    8. 11.8 ERAD Registers
      1. 11.8.1 ERAD Base Address Table
      2. 11.8.2 ERAD_GLOBAL_REGS Registers
      3. 11.8.3 ERAD_HWBP_REGS Registers
      4. 11.8.4 ERAD_COUNTER_REGS Registers
      5. 11.8.5 ERAD_CRC_GLOBAL_REGS Registers
      6. 11.8.6 ERAD_CRC_REGS Registers
      7. 11.8.7 ERAD Registers to Driverlib Functions
  14. 12Configurable Logic Block (CLB)
    1. 12.1 Introduction
      1. 12.1.1 CLB Related Collateral
    2. 12.2 Description
      1. 12.2.1 CLB Clock
    3. 12.3 CLB Input/Output Connection
      1. 12.3.1 Overview
      2. 12.3.2 CLB Input Selection
      3. 12.3.3 CLB Output Selection
      4. 12.3.4 CLB Output Signal Multiplexer
    4. 12.4 CLB Tile
      1. 12.4.1 Static Switch Block
      2. 12.4.2 Counter Block
        1. 12.4.2.1 Counter Description
        2. 12.4.2.2 Counter Operation
        3. 12.4.2.3 Serializer Mode
        4. 12.4.2.4 Linear Feedback Shift Register (LFSR) Mode
      3. 12.4.3 FSM Block
      4. 12.4.4 LUT4 Block
      5. 12.4.5 Output LUT Block
      6. 12.4.6 Asynchronous Output Conditioning (AOC) Block
      7. 12.4.7 High Level Controller (HLC)
        1. 12.4.7.1 High Level Controller Events
        2. 12.4.7.2 High Level Controller Instructions
        3. 12.4.7.3 <Src> and <Dest>
        4. 12.4.7.4 Operation of the PUSH and PULL Instructions (Overflow and Underflow Detection)
    5. 12.5 CPU Interface
      1. 12.5.1 Register Description
      2. 12.5.2 Non-Memory Mapped Registers
    6. 12.6 DMA Access
    7. 12.7 CLB Data Export Through SPI RX Buffer
    8. 12.8 Software
      1. 12.8.1 CLB Examples
        1. 12.8.1.1  CLB Empty Project
        2. 12.8.1.2  CLB Combinational Logic
        3. 12.8.1.3  CLB GPIO Input Filter
        4. 12.8.1.4  CLB Auxilary PWM
        5. 12.8.1.5  CLB PWM Protection
        6. 12.8.1.6  CLB Signal Generator
        7. 12.8.1.7  CLB State Machine
        8. 12.8.1.8  CLB External Signal AND Gate
        9. 12.8.1.9  CLB Timer
        10. 12.8.1.10 CLB Timer Two States
        11. 12.8.1.11 CLB Interrupt Tag
        12. 12.8.1.12 CLB Output Intersect
        13. 12.8.1.13 CLB PUSH PULL
        14. 12.8.1.14 CLB Multi Tile
        15. 12.8.1.15 CLB Glue Logic
        16. 12.8.1.16 CLB AOC Control
        17. 12.8.1.17 CLB AOC Release Control
        18. 12.8.1.18 CLB XBARs
        19. 12.8.1.19 CLB AOC Control
        20. 12.8.1.20 CLB Serializer
        21. 12.8.1.21 CLB LFSR
        22. 12.8.1.22 CLB Lock Output Mask
        23. 12.8.1.23 CLB INPUT Pipeline Mode
        24. 12.8.1.24 CLB Clocking and PIPELINE Mode
        25. 12.8.1.25 CLB SPI Data Export
        26. 12.8.1.26 CLB SPI Data Export DMA
        27. 12.8.1.27 CLB Trip Zone Timestamp
        28. 12.8.1.28 CLB CRC
        29. 12.8.1.29 CLB TDM Serial Port
        30. 12.8.1.30 CLB LED Driver
    9. 12.9 CLB Registers
      1. 12.9.1 CLB Base Address Table
      2. 12.9.2 CLB_LOGIC_CONFIG_REGS Registers
      3. 12.9.3 CLB_LOGIC_CONTROL_REGS Registers
      4. 12.9.4 CLB_DATA_EXCHANGE_REGS Registers
      5. 12.9.5 CLB Registers to Driverlib Functions
  15. 13Host Interface Controller (HIC)
    1. 13.1 Introduction
      1. 13.1.1 HIC Related Collateral
      2. 13.1.2 Features
      3. 13.1.3 Block Diagram
    2. 13.2 Functional Description
      1. 13.2.1 Memory Map
      2. 13.2.2 Connections
        1. 13.2.2.1 Functions of the Connections
      3. 13.2.3 Interrupts and Triggers
    3. 13.3 Operation
      1. 13.3.1 Mailbox Access Mode Overview
        1. 13.3.1.1 Mailbox Access Mode Operation
        2. 13.3.1.2 Configuring HIC Registers With External Host
        3. 13.3.1.3 Mailbox Access Mode Read/Write
      2. 13.3.2 Direct Access Mode Overview
        1. 13.3.2.1 Direct Access Mode Operation
        2. 13.3.2.2 Direct Access Mode Read/Write
      3. 13.3.3 Controlling Reads and Writes
        1. 13.3.3.1 Single-Pin Read/Write Mode (nOE/RnW Pin)
        2. 13.3.3.2 Dual-Pin Read/Write Mode (nOE and nWE Pins)
      4. 13.3.4 Data Lines, Data Width, Data Packing and Unpacking
      5. 13.3.5 Address Translation
      6. 13.3.6 Access Errors
      7. 13.3.7 Security
      8. 13.3.8 HIC Usage
    4. 13.4 Usage Scenarious for Reduced Number of Pins
    5. 13.5 Software
      1. 13.5.1 HIC Examples
        1. 13.5.1.1 HIC 16-bit Memory Access Example
        2. 13.5.1.2 HIC 8-bit Memory Access Example
        3. 13.5.1.3 HIC 16-bit Memory Access FSI Example
    6. 13.6 HIC Registers
      1. 13.6.1 HIC Base Address Table
      2. 13.6.2 HIC_CFG_REGS Registers
      3. 13.6.3 HIC Registers to Driverlib Functions
  16. 14Analog Subsystem
    1. 14.1 Introduction
      1. 14.1.1 Features
      2. 14.1.2 Block Diagram
    2. 14.2 Optimizing Power-Up Time
    3. 14.3 Digital Inputs on ADC Pins (AIOs)
    4. 14.4 Digital Inputs and Outputs on ADC Pins (AGPIOs)
    5. 14.5 Analog Pins and Internal Connections
    6. 14.6 Analog Subsystem Registers
      1. 14.6.1 ASBSYS Base Address Table
      2. 14.6.2 ANALOG_SUBSYS_REGS Registers
  17. 15Analog-to-Digital Converter (ADC)
    1. 15.1  Introduction
      1. 15.1.1 ADC Related Collateral
      2. 15.1.2 Features
      3. 15.1.3 Block Diagram
    2. 15.2  ADC Configurability
      1. 15.2.1 Clock Configuration
      2. 15.2.2 Resolution
      3. 15.2.3 Voltage Reference
        1. 15.2.3.1 External Reference Mode
        2. 15.2.3.2 Internal Reference Mode
        3. 15.2.3.3 Selecting Reference Mode
      4. 15.2.4 Signal Mode
      5. 15.2.5 Expected Conversion Results
      6. 15.2.6 Interpreting Conversion Results
    3. 15.3  SOC Principle of Operation
      1. 15.3.1 SOC Configuration
      2. 15.3.2 Trigger Operation
      3. 15.3.3 ADC Acquisition (Sample and Hold) Window
      4. 15.3.4 ADC Input Models
      5. 15.3.5 Channel Selection
    4. 15.4  SOC Configuration Examples
      1. 15.4.1 Single Conversion from ePWM Trigger
      2. 15.4.2 Oversampled Conversion from ePWM Trigger
      3. 15.4.3 Multiple Conversions from CPU Timer Trigger
      4. 15.4.4 Software Triggering of SOCs
    5. 15.5  ADC Conversion Priority
    6. 15.6  Burst Mode
      1. 15.6.1 Burst Mode Example
      2. 15.6.2 Burst Mode Priority Example
    7. 15.7  EOC and Interrupt Operation
      1. 15.7.1 Interrupt Overflow
      2. 15.7.2 Continue to Interrupt Mode
      3. 15.7.3 Early Interrupt Configuration Mode
    8. 15.8  Post-Processing Blocks
      1. 15.8.1 PPB Offset Correction
      2. 15.8.2 PPB Error Calculation
      3. 15.8.3 PPB Limit Detection and Zero-Crossing Detection
      4. 15.8.4 PPB Sample Delay Capture
    9. 15.9  Opens/Shorts Detection Circuit (OSDETECT)
      1. 15.9.1 Implementation
      2. 15.9.2 Detecting an Open Input Pin
      3. 15.9.3 Detecting a Shorted Input Pin
    10. 15.10 Power-Up Sequence
    11. 15.11 ADC Calibration
      1. 15.11.1 ADC Zero Offset Calibration
    12. 15.12 ADC Timings
      1. 15.12.1 ADC Timing Diagrams
    13. 15.13 Additional Information
      1. 15.13.1 Ensuring Synchronous Operation
        1. 15.13.1.1 Basic Synchronous Operation
        2. 15.13.1.2 Synchronous Operation with Multiple Trigger Sources
        3. 15.13.1.3 Synchronous Operation with Uneven SOC Numbers
        4. 15.13.1.4 Non-overlapping Conversions
      2. 15.13.2 Choosing an Acquisition Window Duration
      3. 15.13.3 Achieving Simultaneous Sampling
      4. 15.13.4 Result Register Mapping
      5. 15.13.5 Internal Temperature Sensor
      6. 15.13.6 Designing an External Reference Circuit
      7. 15.13.7 ADC-DAC Loopback Testing
      8. 15.13.8 Internal Test Mode
      9. 15.13.9 ADC Gain and Offset Calibration
    14. 15.14 Software
      1. 15.14.1 ADC Examples
        1. 15.14.1.1  ADC Software Triggering
        2. 15.14.1.2  ADC ePWM Triggering
        3. 15.14.1.3  ADC Temperature Sensor Conversion
        4. 15.14.1.4  ADC Synchronous SOC Software Force (adc_soc_software_sync)
        5. 15.14.1.5  ADC Continuous Triggering (adc_soc_continuous)
        6. 15.14.1.6  ADC Continuous Conversions Read by DMA (adc_soc_continuous_dma)
        7. 15.14.1.7  ADC PPB Offset (adc_ppb_offset)
        8. 15.14.1.8  ADC PPB Limits (adc_ppb_limits)
        9. 15.14.1.9  ADC PPB Delay Capture (adc_ppb_delay)
        10. 15.14.1.10 ADC ePWM Triggering Multiple SOC
        11. 15.14.1.11 ADC Burst Mode
        12. 15.14.1.12 ADC Burst Mode Oversampling
        13. 15.14.1.13 ADC SOC Oversampling
        14. 15.14.1.14 ADC PPB PWM trip (adc_ppb_pwm_trip)
        15. 15.14.1.15 ADC Open Shorts Detection (adc_open_shorts_detection)
    15. 15.15 ADC Registers
      1. 15.15.1 ADC Base Address Table
      2. 15.15.2 ADC_RESULT_REGS Registers
      3. 15.15.3 ADC_REGS Registers
      4. 15.15.4 ADC Registers to Driverlib Functions
  18. 16Comparator Subsystem (CMPSS)
    1. 16.1 Introduction
      1. 16.1.1 CMPSS Related Collateral
      2. 16.1.2 Features
      3. 16.1.3 Block Diagram
    2. 16.2 Comparator
    3. 16.3 Reference DAC
    4. 16.4 Ramp Generator
      1. 16.4.1 Ramp Generator Overview
      2. 16.4.2 Ramp Generator Behavior
      3. 16.4.3 Ramp Generator Behavior at Corner Cases
    5. 16.5 Digital Filter
      1. 16.5.1 Filter Initialization Sequence
    6. 16.6 Using the CMPSS
      1. 16.6.1 LATCHCLR, EPWMSYNCPER, and EPWMBLANK Signals
      2. 16.6.2 Synchronizer, Digital Filter, and Latch Delays
      3. 16.6.3 Calibrating the CMPSS
      4. 16.6.4 Enabling and Disabling the CMPSS Clock
    7. 16.7 Software
      1. 16.7.1 CMPSS Examples
        1. 16.7.1.1 CMPSS Asynchronous Trip
        2. 16.7.1.2 CMPSS Digital Filter Configuration
    8. 16.8 CMPSS Registers
      1. 16.8.1 CMPSS Base Address Table
      2. 16.8.2 CMPSS_REGS Registers
      3. 16.8.3 CMPSS Registers to Driverlib Functions
  19. 17Enhanced Pulse Width Modulator (ePWM)
    1. 17.1  Introduction
      1. 17.1.1 EPWM Related Collateral
      2. 17.1.2 Submodule Overview
    2. 17.2  Configuring Device Pins
    3. 17.3  ePWM Modules Overview
    4. 17.4  Time-Base (TB) Submodule
      1. 17.4.1 Purpose of the Time-Base Submodule
      2. 17.4.2 Controlling and Monitoring the Time-Base Submodule
      3. 17.4.3 Calculating PWM Period and Frequency
        1. 17.4.3.1 Time-Base Period Shadow Register
        2. 17.4.3.2 Time-Base Clock Synchronization
        3. 17.4.3.3 Time-Base Counter Synchronization
        4. 17.4.3.4 ePWM SYNC Selection
      4. 17.4.4 Phase Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 17.4.5 Simultaneous Writes to TBPRD and CMPx Registers Between ePWM Modules
      6. 17.4.6 Time-Base Counter Modes and Timing Waveforms
      7. 17.4.7 Global Load
        1. 17.4.7.1 Global Load Pulse Pre-Scalar
        2. 17.4.7.2 One-Shot Load Mode
        3. 17.4.7.3 One-Shot Sync Mode
    5. 17.5  Counter-Compare (CC) Submodule
      1. 17.5.1 Purpose of the Counter-Compare Submodule
      2. 17.5.2 Controlling and Monitoring the Counter-Compare Submodule
      3. 17.5.3 Operational Highlights for the Counter-Compare Submodule
      4. 17.5.4 Count Mode Timing Waveforms
    6. 17.6  Action-Qualifier (AQ) Submodule
      1. 17.6.1 Purpose of the Action-Qualifier Submodule
      2. 17.6.2 Action-Qualifier Submodule Control and Status Register Definitions
      3. 17.6.3 Action-Qualifier Event Priority
      4. 17.6.4 AQCTLA and AQCTLB Shadow Mode Operations
      5. 17.6.5 Configuration Requirements for Common Waveforms
    7. 17.7  Dead-Band Generator (DB) Submodule
      1. 17.7.1 Purpose of the Dead-Band Submodule
      2. 17.7.2 Dead-band Submodule Additional Operating Modes
      3. 17.7.3 Operational Highlights for the Dead-Band Submodule
    8. 17.8  PWM Chopper (PC) Submodule
      1. 17.8.1 Purpose of the PWM Chopper Submodule
      2. 17.8.2 Operational Highlights for the PWM Chopper Submodule
      3. 17.8.3 Waveforms
        1. 17.8.3.1 One-Shot Pulse
        2. 17.8.3.2 Duty Cycle Control
    9. 17.9  Trip-Zone (TZ) Submodule
      1. 17.9.1 Purpose of the Trip-Zone Submodule
      2. 17.9.2 Operational Highlights for the Trip-Zone Submodule
        1. 17.9.2.1 Trip-Zone Configurations
      3. 17.9.3 Generating Trip Event Interrupts
    10. 17.10 Event-Trigger (ET) Submodule
      1. 17.10.1 Operational Overview of the ePWM Event-Trigger Submodule
    11. 17.11 Digital Compare (DC) Submodule
      1. 17.11.1 Purpose of the Digital Compare Submodule
      2. 17.11.2 Enhanced Trip Action Using CMPSS
      3. 17.11.3 Using CMPSS to Trip the ePWM on a Cycle-by-Cycle Basis
      4. 17.11.4 Operation Highlights of the Digital Compare Submodule
        1. 17.11.4.1 Digital Compare Events
        2. 17.11.4.2 Event Filtering
        3. 17.11.4.3 Valley Switching
    12. 17.12 ePWM Crossbar (X-BAR)
    13. 17.13 Applications to Power Topologies
      1. 17.13.1  Overview of Multiple Modules
      2. 17.13.2  Key Configuration Capabilities
      3. 17.13.3  Controlling Multiple Buck Converters With Independent Frequencies
      4. 17.13.4  Controlling Multiple Buck Converters With Same Frequencies
      5. 17.13.5  Controlling Multiple Half H-Bridge (HHB) Converters
      6. 17.13.6  Controlling Dual 3-Phase Inverters for Motors (ACI and PMSM)
      7. 17.13.7  Practical Applications Using Phase Control Between PWM Modules
      8. 17.13.8  Controlling a 3-Phase Interleaved DC/DC Converter
      9. 17.13.9  Controlling Zero Voltage Switched Full Bridge (ZVSFB) Converter
      10. 17.13.10 Controlling a Peak Current Mode Controlled Buck Module
      11. 17.13.11 Controlling H-Bridge LLC Resonant Converter
    14. 17.14 Register Lock Protection
    15. 17.15 High-Resolution Pulse Width Modulator (HRPWM)
      1. 17.15.1 Operational Description of HRPWM
        1. 17.15.1.1 Controlling the HRPWM Capabilities
        2. 17.15.1.2 HRPWM Source Clock
        3. 17.15.1.3 Configuring the HRPWM
        4. 17.15.1.4 Configuring High-Resolution in Deadband Rising-Edge and Falling-Edge Delay
        5. 17.15.1.5 Principle of Operation
          1. 17.15.1.5.1 Edge Positioning
          2. 17.15.1.5.2 Scaling Considerations
          3. 17.15.1.5.3 Duty Cycle Range Limitation
          4. 17.15.1.5.4 High-Resolution Period
            1. 17.15.1.5.4.1 High-Resolution Period Configuration
        6. 17.15.1.6 Deadband High-Resolution Operation
        7. 17.15.1.7 Scale Factor Optimizing Software (SFO)
        8. 17.15.1.8 HRPWM Examples Using Optimized Assembly Code
          1. 17.15.1.8.1 #Defines for HRPWM Header Files
          2. 17.15.1.8.2 Implementing a Simple Buck Converter
            1. 17.15.1.8.2.1 HRPWM Buck Converter Initialization Code
            2. 17.15.1.8.2.2 HRPWM Buck Converter Run-Time Code
          3. 17.15.1.8.3 Implementing a DAC Function Using an R+C Reconstruction Filter
            1. 17.15.1.8.3.1 PWM DAC Function Initialization Code
            2. 17.15.1.8.3.2 PWM DAC Function Run-Time Code
      2. 17.15.2 SFO Library Software - SFO_TI_Build_V8.lib
        1. 17.15.2.1 Scale Factor Optimizer Function - int SFO()
        2. 17.15.2.2 Software Usage
          1. 17.15.2.2.1 A Sample of How to Add "Include" Files
          2.        799
          3. 17.15.2.2.2 Declaring an Element
          4.        801
          5. 17.15.2.2.3 Initializing With a Scale Factor Value
          6.        803
          7. 17.15.2.2.4 SFO Function Calls
    16. 17.16 Software
      1. 17.16.1 EPWM Examples
        1. 17.16.1.1  ePWM Trip Zone
        2. 17.16.1.2  ePWM Up Down Count Action Qualifier
        3. 17.16.1.3  ePWM Synchronization
        4. 17.16.1.4  ePWM Digital Compare
        5. 17.16.1.5  ePWM Digital Compare Event Filter Blanking Window
        6. 17.16.1.6  ePWM Valley Switching
        7. 17.16.1.7  ePWM Digital Compare Edge Filter
        8. 17.16.1.8  ePWM Deadband
        9. 17.16.1.9  ePWM DMA
        10. 17.16.1.10 ePWM Chopper
        11. 17.16.1.11 EPWM Configure Signal
        12. 17.16.1.12 Realization of Monoshot mode
        13. 17.16.1.13 EPWM Action Qualifier (epwm_up_aq)
      2. 17.16.2 HRPWM Examples
        1. 17.16.2.1 HRPWM Duty Control with SFO
        2. 17.16.2.2 HRPWM Slider
        3. 17.16.2.3 HRPWM Period Control
        4. 17.16.2.4 HRPWM Duty Control with UPDOWN Mode
        5. 17.16.2.5 HRPWM Slider Test
        6. 17.16.2.6 HRPWM Duty Up Count
        7. 17.16.2.7 HRPWM Period Up-Down Count
    17. 17.17 ePWM Registers
      1. 17.17.1 EPWM Base Address Table
      2. 17.17.2 EPWM_REGS Registers
      3. 17.17.3 Register to Driverlib Function Mapping
        1. 17.17.3.1 EPWM Registers to Driverlib Functions
        2. 17.17.3.2 HRPWM Registers to Driverlib Functions
  20. 18Enhanced Capture (eCAP)
    1. 18.1 Introduction
      1. 18.1.1 Features
      2. 18.1.2 ECAP Related Collateral
    2. 18.2 Description
    3. 18.3 Configuring Device Pins for the eCAP
    4. 18.4 Capture and APWM Operating Mode
    5. 18.5 Capture Mode Description
      1. 18.5.1  Event Prescaler
      2. 18.5.2  Edge Polarity Select and Qualifier
      3. 18.5.3  Continuous/One-Shot Control
      4. 18.5.4  32-Bit Counter and Phase Control
      5. 18.5.5  CAP1-CAP4 Registers
      6. 18.5.6  eCAP Synchronization
        1. 18.5.6.1 Example 1 - Using SWSYNC with ECAP Module
      7. 18.5.7  Interrupt Control
      8. 18.5.8  DMA Interrupt
      9. 18.5.9  Shadow Load and Lockout Control
      10. 18.5.10 APWM Mode Operation
    6. 18.6 Application of the eCAP Module
      1. 18.6.1 Example 1 - Absolute Time-Stamp Operation Rising-Edge Trigger
      2. 18.6.2 Example 2 - Absolute Time-Stamp Operation Rising- and Falling-Edge Trigger
      3. 18.6.3 Example 3 - Time Difference (Delta) Operation Rising-Edge Trigger
      4. 18.6.4 Example 4 - Time Difference (Delta) Operation Rising- and Falling-Edge Trigger
    7. 18.7 Application of the APWM Mode
      1. 18.7.1 Example 1 - Simple PWM Generation (Independent Channels)
    8. 18.8 Software
      1. 18.8.1 ECAP Examples
        1. 18.8.1.1 eCAP APWM Example
        2. 18.8.1.2 eCAP Capture PWM Example
        3. 18.8.1.3 eCAP APWM Phase-shift Example
        4. 18.8.1.4 eCAP Software Sync Example
    9. 18.9 eCAP Registers
      1. 18.9.1 ECAP Base Address Table
      2. 18.9.2 ECAP_REGS Registers
      3. 18.9.3 ECAP Registers to Driverlib Functions
  21. 19High Resolution Capture (HRCAP)
    1. 19.1 Introduction
      1. 19.1.1 HRCAP Related Collateral
      2. 19.1.2 Features
      3. 19.1.3 Description
    2. 19.2 Operational Details
      1. 19.2.1 HRCAP Clocking
      2. 19.2.2 HRCAP Initialization Sequence
      3. 19.2.3 HRCAP Interrupts
      4. 19.2.4 HRCAP Calibration
        1. 19.2.4.1 Applying the Scale Factor
    3. 19.3 Known Exceptions
    4. 19.4 Software
      1. 19.4.1 HRCAP Examples
        1. 19.4.1.1 HRCAP Capture and Calibration Example
    5. 19.5 HRCAP Registers
      1. 19.5.1 HRCAP Base Address Table
      2. 19.5.2 HRCAP_REGS Registers
      3. 19.5.3 HRCAP Registers to Driverlib Functions
  22. 20Enhanced Quadrature Encoder Pulse (eQEP)
    1. 20.1  Introduction
      1. 20.1.1 EQEP Related Collateral
    2. 20.2  Configuring Device Pins
    3. 20.3  Description
      1. 20.3.1 EQEP Inputs
      2. 20.3.2 Functional Description
      3. 20.3.3 eQEP Memory Map
    4. 20.4  Quadrature Decoder Unit (QDU)
      1. 20.4.1 Position Counter Input Modes
        1. 20.4.1.1 Quadrature Count Mode
        2. 20.4.1.2 Direction-Count Mode
        3. 20.4.1.3 Up-Count Mode
        4. 20.4.1.4 Down-Count Mode
      2. 20.4.2 eQEP Input Polarity Selection
      3. 20.4.3 Position-Compare Sync Output
    5. 20.5  Position Counter and Control Unit (PCCU)
      1. 20.5.1 Position Counter Operating Modes
        1. 20.5.1.1 Position Counter Reset on Index Event (QEPCTL[PCRM]=00)
        2. 20.5.1.2 Position Counter Reset on Maximum Position (QEPCTL[PCRM]=01)
        3. 20.5.1.3 Position Counter Reset on the First Index Event (QEPCTL[PCRM] = 10)
        4. 20.5.1.4 Position Counter Reset on Unit Time-out Event (QEPCTL[PCRM] = 11)
      2. 20.5.2 Position Counter Latch
        1. 20.5.2.1 Index Event Latch
        2. 20.5.2.2 Strobe Event Latch
      3. 20.5.3 Position Counter Initialization
      4. 20.5.4 eQEP Position-compare Unit
    6. 20.6  eQEP Edge Capture Unit
    7. 20.7  eQEP Watchdog
    8. 20.8  eQEP Unit Timer Base
    9. 20.9  QMA Module
      1. 20.9.1 Modes of Operation
        1. 20.9.1.1 QMA Mode-1 (QMACTRL[MODE]=1)
        2. 20.9.1.2 QMA Mode-2 (QMACTRL[MODE]=2)
      2. 20.9.2 Interrupt and Error Generation
    10. 20.10 eQEP Interrupt Structure
    11. 20.11 Software
      1. 20.11.1 EQEP Examples
        1. 20.11.1.1 Frequency Measurement Using eQEP
        2. 20.11.1.2 Position and Speed Measurement Using eQEP
        3. 20.11.1.3 ePWM frequency Measurement Using eQEP via xbar connection
        4. 20.11.1.4 Frequency Measurement Using eQEP via unit timeout interrupt
        5. 20.11.1.5 Motor speed and direction measurement using eQEP via unit timeout interrupt
    12. 20.12 eQEP Registers
      1. 20.12.1 EQEP Base Address Table
      2. 20.12.2 EQEP_REGS Registers
      3. 20.12.3 EQEP Registers to Driverlib Functions
  23. 21Controller Area Network (CAN)
    1. 21.1  Introduction
      1. 21.1.1 DCAN Related Collateral
      2. 21.1.2 Features
      3. 21.1.3 Block Diagram
        1. 21.1.3.1 CAN Core
        2. 21.1.3.2 Message Handler
        3. 21.1.3.3 Message RAM
        4. 21.1.3.4 Registers and Message Object Access (IFx)
    2. 21.2  Functional Description
      1. 21.2.1 Configuring Device Pins
      2. 21.2.2 Address/Data Bus Bridge
    3. 21.3  Operating Modes
      1. 21.3.1 Initialization
      2. 21.3.2 CAN Message Transfer (Normal Operation)
        1. 21.3.2.1 Disabled Automatic Retransmission
        2. 21.3.2.2 Auto-Bus-On
      3. 21.3.3 Test Modes
        1. 21.3.3.1 Silent Mode
        2. 21.3.3.2 Loopback Mode
        3. 21.3.3.3 External Loopback Mode
        4. 21.3.3.4 Loopback Combined with Silent Mode
    4. 21.4  Multiple Clock Source
    5. 21.5  Interrupt Functionality
      1. 21.5.1 Message Object Interrupts
      2. 21.5.2 Status Change Interrupts
      3. 21.5.3 Error Interrupts
      4. 21.5.4 Peripheral Interrupt Expansion (PIE) Module Nomenclature for DCAN Interrupts
      5. 21.5.5 Interrupt Topologies
    6. 21.6  DMA Functionality
    7. 21.7  Parity Check Mechanism
      1. 21.7.1 Behavior on Parity Error
    8. 21.8  Debug Mode
    9. 21.9  Module Initialization
    10. 21.10 Configuration of Message Objects
      1. 21.10.1 Configuration of a Transmit Object for Data Frames
      2. 21.10.2 Configuration of a Transmit Object for Remote Frames
      3. 21.10.3 Configuration of a Single Receive Object for Data Frames
      4. 21.10.4 Configuration of a Single Receive Object for Remote Frames
      5. 21.10.5 Configuration of a FIFO Buffer
    11. 21.11 Message Handling
      1. 21.11.1  Message Handler Overview
      2. 21.11.2  Receive/Transmit Priority
      3. 21.11.3  Transmission of Messages in Event Driven CAN Communication
      4. 21.11.4  Updating a Transmit Object
      5. 21.11.5  Changing a Transmit Object
      6. 21.11.6  Acceptance Filtering of Received Messages
      7. 21.11.7  Reception of Data Frames
      8. 21.11.8  Reception of Remote Frames
      9. 21.11.9  Reading Received Messages
      10. 21.11.10 Requesting New Data for a Receive Object
      11. 21.11.11 Storing Received Messages in FIFO Buffers
      12. 21.11.12 Reading from a FIFO Buffer
    12. 21.12 CAN Bit Timing
      1. 21.12.1 Bit Time and Bit Rate
        1. 21.12.1.1 Synchronization Segment
        2. 21.12.1.2 Propagation Time Segment
        3. 21.12.1.3 Phase Buffer Segments and Synchronization
        4. 21.12.1.4 Oscillator Tolerance Range
      2. 21.12.2 Configuration of the CAN Bit Timing
        1. 21.12.2.1 Calculation of the Bit Timing Parameters
        2. 21.12.2.2 Example for Bit Timing at High Baudrate
        3. 21.12.2.3 Example for Bit Timing at Low Baudrate
    13. 21.13 Message Interface Register Sets
      1. 21.13.1 Message Interface Register Sets 1 and 2 (IF1 and IF2)
      2. 21.13.2 Message Interface Register Set 3 (IF3)
    14. 21.14 Message RAM
      1. 21.14.1 Structure of Message Objects
      2. 21.14.2 Addressing Message Objects in RAM
      3. 21.14.3 Message RAM Representation in Debug Mode
    15. 21.15 Software
      1. 21.15.1 CAN Examples
        1. 21.15.1.1 CAN External Loopback
        2. 21.15.1.2 CAN External Loopback with Interrupts
        3. 21.15.1.3 CAN External Loopback with DMA
        4. 21.15.1.4 CAN Transmit and Receive Configurations
        5. 21.15.1.5 CAN Error Generation Example
        6. 21.15.1.6 CAN Remote Request Loopback
        7. 21.15.1.7 CAN example that illustrates the usage of Mask registers
    16. 21.16 CAN Registers
      1. 21.16.1 CAN Base Address Table
      2. 21.16.2 CAN_REGS Registers
      3. 21.16.3 CAN Registers to Driverlib Functions
  24. 22Fast Serial Interface (FSI)
    1. 22.1 Introduction
      1. 22.1.1 FSI Related Collateral
      2. 22.1.2 FSI Features
    2. 22.2 System-level Integration
      1. 22.2.1 CPU Interface
      2. 22.2.2 Signal Description
        1. 22.2.2.1 Configuring Device Pins
      3. 22.2.3 FSI Interrupts
        1. 22.2.3.1 Transmitter Interrupts
        2. 22.2.3.2 Receiver Interrupts
        3. 22.2.3.3 Configuring Interrupts
        4. 22.2.3.4 Handling Interrupts
      4. 22.2.4 DMA Interface
      5. 22.2.5 External Frame Trigger Mux
    3. 22.3 FSI Functional Description
      1. 22.3.1  Introduction to Operation
      2. 22.3.2  FSI Transmitter Module
        1. 22.3.2.1 Initialization
        2. 22.3.2.2 FSI_TX Clocking
        3. 22.3.2.3 Transmitting Frames
          1. 22.3.2.3.1 Software Triggered Frames
          2. 22.3.2.3.2 Externally Triggered Frames
          3. 22.3.2.3.3 Ping Frame Generation
            1. 22.3.2.3.3.1 Automatic Ping Frames
            2. 22.3.2.3.3.2 Software Triggered Ping Frame
            3. 22.3.2.3.3.3 Externally Triggered Ping Frame
          4. 22.3.2.3.4 Transmitting Frames with DMA
        4. 22.3.2.4 Transmit Buffer Management
        5. 22.3.2.5 CRC Submodule
        6. 22.3.2.6 Conditions in Which the Transmitter Must Undergo a Soft Reset
        7. 22.3.2.7 Reset
      3. 22.3.3  FSI Receiver Module
        1. 22.3.3.1  Initialization
        2. 22.3.3.2  FSI_RX Clocking
        3. 22.3.3.3  Receiving Frames
          1. 22.3.3.3.1 Receiving Frames with DMA
        4. 22.3.3.4  Ping Frame Watchdog
        5. 22.3.3.5  Frame Watchdog
        6. 22.3.3.6  Delay Line Control
        7. 22.3.3.7  Buffer Management
        8. 22.3.3.8  CRC Submodule
        9. 22.3.3.9  Using the Zero Bits of the Receiver Tag Registers
        10. 22.3.3.10 Conditions in Which the Receiver Must Undergo a Soft Reset
        11. 22.3.3.11 FSI_RX Reset
      4. 22.3.4  Frame Format
        1. 22.3.4.1 FSI Frame Phases
        2. 22.3.4.2 Frame Types
          1. 22.3.4.2.1 Ping Frames
          2. 22.3.4.2.2 Error Frames
          3. 22.3.4.2.3 Data Frames
        3. 22.3.4.3 Multi-Lane Transmission
      5. 22.3.5  Flush Sequence
      6. 22.3.6  Internal Loopback
      7. 22.3.7  CRC Generation
      8. 22.3.8  ECC Module
      9. 22.3.9  Tag Matching
      10. 22.3.10 TDM Configurations
      11. 22.3.11 FSI Trigger Generation
      12. 22.3.12 FSI-SPI Compatibility Mode
        1. 22.3.12.1 Available SPI Modes
          1. 22.3.12.1.1 FSITX as SPI Master, Transmit Only
            1. 22.3.12.1.1.1 Initialization
            2. 22.3.12.1.1.2 Operation
          2. 22.3.12.1.2 FSIRX as SPI Slave, Receive Only
            1. 22.3.12.1.2.1 Initialization
            2. 22.3.12.1.2.2 Operation
          3. 22.3.12.1.3 FSITX and FSIRX Emulating a Full Duplex SPI Master
            1. 22.3.12.1.3.1 Initialization
            2. 22.3.12.1.3.2 Operation
    4. 22.4 FSI Programing Guide
      1. 22.4.1 Establishing the Communication Link
        1. 22.4.1.1 Establishing the Communication Link from the Master Device
        2. 22.4.1.2 Establishing the Communication Link from the Slave Device
      2. 22.4.2 Register Protection
      3. 22.4.3 Emulation Mode
    5. 22.5 Software
      1. 22.5.1 FSI Examples
        1. 22.5.1.1  FSI Loopback:CPU Control
        2. 22.5.1.2  FSI DMA frame transfers:DMA Control
        3. 22.5.1.3  FSI data transfer by external trigger
        4. 22.5.1.4  FSI data transfers upon CPU Timer event
        5. 22.5.1.5  FSI and SPI communication(fsi_ex6_spi_main_tx)
        6. 22.5.1.6  FSI and SPI communication(fsi_ex7_spi_remote_rx)
        7. 22.5.1.7  FSI P2Point Connection:Rx Side
        8. 22.5.1.8  FSI P2Point Connection:Tx Side
        9. 22.5.1.9  FSI daisy chain topology, lead device example
        10. 22.5.1.10 FSI daisy chain topology, node device example
    6. 22.6 FSI Registers
      1. 22.6.1 FSI Base Address Table
      2. 22.6.2 FSI_TX_REGS Registers
      3. 22.6.3 FSI_RX_REGS Registers
      4. 22.6.4 FSI Registers to Driverlib Functions
  25. 23Inter-Integrated Circuit Module (I2C)
    1. 23.1 Introduction
      1. 23.1.1 I2C Related Collateral
      2. 23.1.2 Features
      3. 23.1.3 Features Not Supported
      4. 23.1.4 Functional Overview
      5. 23.1.5 Clock Generation
      6. 23.1.6 I2C Clock Divider Registers (I2CCLKL and I2CCLKH)
        1. 23.1.6.1 Formula for the Master Clock Period
    2. 23.2 Configuring Device Pins
    3. 23.3 I2C Module Operational Details
      1. 23.3.1  Input and Output Voltage Levels
      2. 23.3.2  Selecting Pullup Resistors
      3. 23.3.3  Data Validity
      4. 23.3.4  Operating Modes
      5. 23.3.5  I2C Module START and STOP Conditions
      6. 23.3.6  Non-repeat Mode versus Repeat Mode
      7. 23.3.7  Serial Data Formats
        1. 23.3.7.1 7-Bit Addressing Format
        2. 23.3.7.2 10-Bit Addressing Format
        3. 23.3.7.3 Free Data Format
        4. 23.3.7.4 Using a Repeated START Condition
      8. 23.3.8  Clock Synchronization
      9. 23.3.9  Arbitration
      10. 23.3.10 Digital Loopback Mode
      11. 23.3.11 NACK Bit Generation
    4. 23.4 Interrupt Requests Generated by the I2C Module
      1. 23.4.1 Basic I2C Interrupt Requests
      2. 23.4.2 I2C FIFO Interrupts
    5. 23.5 Resetting or Disabling the I2C Module
    6. 23.6 Software
      1. 23.6.1 I2C Examples
        1. 23.6.1.1 C28x-I2C Library source file for FIFO interrupts
        2. 23.6.1.2 C28x-I2C Library source file for FIFO using polling
        3. 23.6.1.3 C28x-I2C Library source file for FIFO interrupts
        4. 23.6.1.4 I2C Digital Loopback with FIFO Interrupts
        5. 23.6.1.5 I2C EEPROM
        6. 23.6.1.6 I2C Digital External Loopback with FIFO Interrupts
        7. 23.6.1.7 I2C EEPROM
        8. 23.6.1.8 I2C controller target communication using FIFO interrupts
        9. 23.6.1.9 I2C EEPROM
    7. 23.7 I2C Registers
      1. 23.7.1 I2C Base Address Table
      2. 23.7.2 I2C_REGS Registers
      3. 23.7.3 I2C Registers to Driverlib Functions
  26. 24Local Interconnect Network (LIN)
    1. 24.1 Introduction
      1. 24.1.1 SCI Features
      2. 24.1.2 LIN Features
      3. 24.1.3 LIN Related Collateral
      4. 24.1.4 Block Diagram
    2. 24.2 Serial Communications Interface Module
      1. 24.2.1 SCI Communication Formats
        1. 24.2.1.1 SCI Frame Formats
        2. 24.2.1.2 SCI Asynchronous Timing Mode
        3. 24.2.1.3 SCI Baud Rate
          1. 24.2.1.3.1 Superfractional Divider, SCI Asynchronous Mode
        4. 24.2.1.4 SCI Multiprocessor Communication Modes
          1. 24.2.1.4.1 Idle-Line Multiprocessor Modes
          2. 24.2.1.4.2 Address-Bit Multiprocessor Mode
        5. 24.2.1.5 SCI Multibuffered Mode
      2. 24.2.2 SCI Interrupts
        1. 24.2.2.1 Transmit Interrupt
        2. 24.2.2.2 Receive Interrupt
        3. 24.2.2.3 WakeUp Interrupt
        4. 24.2.2.4 Error Interrupts
      3. 24.2.3 SCI DMA Interface
        1. 24.2.3.1 Receive DMA Requests
        2. 24.2.3.2 Transmit DMA Requests
      4. 24.2.4 SCI Configurations
        1. 24.2.4.1 Receiving Data
          1. 24.2.4.1.1 Receiving Data in Single-Buffer Mode
          2. 24.2.4.1.2 Receiving Data in Multibuffer Mode
        2. 24.2.4.2 Transmitting Data
          1. 24.2.4.2.1 Transmitting Data in Single-Buffer Mode
          2. 24.2.4.2.2 Transmitting Data in Multibuffer Mode
      5. 24.2.5 SCI Low-Power Mode
        1. 24.2.5.1 Sleep Mode for Multiprocessor Communication
    3. 24.3 Local Interconnect Network Module
      1. 24.3.1 LIN Communication Formats
        1. 24.3.1.1  LIN Standards
        2. 24.3.1.2  Message Frame
          1. 24.3.1.2.1 Message Header
          2. 24.3.1.2.2 Response
        3. 24.3.1.3  Synchronizer
        4. 24.3.1.4  Baud Rate
          1. 24.3.1.4.1 Fractional Divider
          2. 24.3.1.4.2 Superfractional Divider
            1. 24.3.1.4.2.1 Superfractional Divider In LIN Mode
        5. 24.3.1.5  Header Generation
          1. 24.3.1.5.1 Event Triggered Frame Handling
          2. 24.3.1.5.2 Header Reception and Adaptive Baud Rate
        6. 24.3.1.6  Extended Frames Handling
        7. 24.3.1.7  Timeout Control
          1. 24.3.1.7.1 No-Response Error (NRE)
          2. 24.3.1.7.2 Bus Idle Detection
          3. 24.3.1.7.3 Timeout After Wakeup Signal and Timeout After Three Wakeup Signals
        8. 24.3.1.8  TXRX Error Detector (TED)
          1. 24.3.1.8.1 Bit Errors
          2. 24.3.1.8.2 Physical Bus Errors
          3. 24.3.1.8.3 ID Parity Errors
          4. 24.3.1.8.4 Checksum Errors
        9. 24.3.1.9  Message Filtering and Validation
        10. 24.3.1.10 Receive Buffers
        11. 24.3.1.11 Transmit Buffers
      2. 24.3.2 LIN Interrupts
      3. 24.3.3 Servicing LIN Interrupts
      4. 24.3.4 LIN DMA Interface
        1. 24.3.4.1 LIN Receive DMA Requests
        2. 24.3.4.2 LIN Transmit DMA Requests
      5. 24.3.5 LIN Configurations
        1. 24.3.5.1 Receiving Data
          1. 24.3.5.1.1 Receiving Data in Single-Buffer Mode
          2. 24.3.5.1.2 Receiving Data in Multibuffer Mode
        2. 24.3.5.2 Transmitting Data
          1. 24.3.5.2.1 Transmitting Data in Single-Buffer Mode
          2. 24.3.5.2.2 Transmitting Data in Multibuffer Mode
    4. 24.4 Low-Power Mode
      1. 24.4.1 Entering Sleep Mode
      2. 24.4.2 Wakeup
      3. 24.4.3 Wakeup Timeouts
    5. 24.5 Emulation Mode
    6. 24.6 Software
      1. 24.6.1 LIN Examples
        1. 24.6.1.1 LIN Internal Loopback with Interrupts
        2. 24.6.1.2 LIN SCI Mode Internal Loopback with Interrupts
        3. 24.6.1.3 LIN SCI MODE Internal Loopback with DMA
        4. 24.6.1.4 LIN Internal Loopback without interrupts(polled mode)
        5. 24.6.1.5 LIN Internal Loopback with Interrupts using Sysconfig
        6. 24.6.1.6 LIN Incomplete Header Detection
        7. 24.6.1.7 LIN SCI MODE (Single Buffer) Internal Loopback with DMA
        8. 24.6.1.8 LIN External Loopback without interrupts(polled mode)
    7. 24.7 SCI/LIN Registers
      1. 24.7.1 LIN Base Address Table
      2. 24.7.2 LIN_REGS Registers
      3. 24.7.3 LIN Registers to Driverlib Functions
  27. 25Power Management Bus Module (PMBus)
    1. 25.1 Introduction
      1. 25.1.1 PMBUS Related Collateral
      2. 25.1.2 Features
      3. 25.1.3 Block Diagram
    2. 25.2 Configuring Device Pins
    3. 25.3 Slave Mode Operation
      1. 25.3.1 Configuration
      2. 25.3.2 Message Handling
        1. 25.3.2.1  Quick Command
        2. 25.3.2.2  Send Byte
        3. 25.3.2.3  Receive Byte
        4. 25.3.2.4  Write Byte and Write Word
        5. 25.3.2.5  Read Byte and Read Word
        6. 25.3.2.6  Process Call
        7. 25.3.2.7  Block Write
        8. 25.3.2.8  Block Read
        9. 25.3.2.9  Block Write-Block Read Process Call
        10. 25.3.2.10 Alert Response
        11. 25.3.2.11 Extended Command
        12. 25.3.2.12 Group Command
    4. 25.4 Master Mode Operation
      1. 25.4.1 Configuration
      2. 25.4.2 Message Handling
        1. 25.4.2.1  Quick Command
        2. 25.4.2.2  Send Byte
        3. 25.4.2.3  Receive Byte
        4. 25.4.2.4  Write Byte and Write Word
        5. 25.4.2.5  Read Byte and Read Word
        6. 25.4.2.6  Process Call
        7. 25.4.2.7  Block Write
        8. 25.4.2.8  Block Read
        9. 25.4.2.9  Block Write-Block Read Process Call
        10. 25.4.2.10 Alert Response
        11. 25.4.2.11 Extended Command
        12. 25.4.2.12 Group Command
    5. 25.5 PMBus Registers
      1. 25.5.1 PMBUS Base Address Table
      2. 25.5.2 PMBUS_REGS Registers
      3. 25.5.3 PMBUS Registers to Driverlib Functions
  28. 26Serial Communications Interface (SCI)
    1. 26.1  Introduction
      1. 26.1.1 Features
      2. 26.1.2 SCI Related Collateral
      3. 26.1.3 Block Diagram
    2. 26.2  Architecture
    3. 26.3  SCI Module Signal Summary
    4. 26.4  Configuring Device Pins
    5. 26.5  Multiprocessor and Asynchronous Communication Modes
    6. 26.6  SCI Programmable Data Format
    7. 26.7  SCI Multiprocessor Communication
      1. 26.7.1 Recognizing the Address Byte
      2. 26.7.2 Controlling the SCI TX and RX Features
      3. 26.7.3 Receipt Sequence
    8. 26.8  Idle-Line Multiprocessor Mode
      1. 26.8.1 Idle-Line Mode Steps
      2. 26.8.2 Block Start Signal
      3. 26.8.3 Wake-Up Temporary (WUT) Flag
        1. 26.8.3.1 Sending a Block Start Signal
      4. 26.8.4 Receiver Operation
    9. 26.9  Address-Bit Multiprocessor Mode
      1. 26.9.1 Sending an Address
    10. 26.10 SCI Communication Format
      1. 26.10.1 Receiver Signals in Communication Modes
      2. 26.10.2 Transmitter Signals in Communication Modes
    11. 26.11 SCI Port Interrupts
      1. 26.11.1 Break Detect
    12. 26.12 SCI Baud Rate Calculations
    13. 26.13 SCI Enhanced Features
      1. 26.13.1 SCI FIFO Description
      2. 26.13.2 SCI Auto-Baud
      3. 26.13.3 Autobaud-Detect Sequence
    14. 26.14 Software
      1. 26.14.1 SCI Examples
        1. 26.14.1.1 Tune Baud Rate via UART Example
        2. 26.14.1.2 SCI FIFO Digital Loop Back
        3. 26.14.1.3 SCI Digital Loop Back with Interrupts
        4. 26.14.1.4 SCI Echoback
        5. 26.14.1.5 stdout redirect example
    15. 26.15 SCI Registers
      1. 26.15.1 SCI Base Address Table
      2. 26.15.2 SCI_REGS Registers
      3. 26.15.3 SCI Registers to Driverlib Functions
  29. 27Serial Peripheral Interface (SPI)
    1. 27.1 Introduction
      1. 27.1.1 Features
      2. 27.1.2 SPI Related Collateral
      3. 27.1.3 Block Diagram
    2. 27.2 System-Level Integration
      1. 27.2.1 SPI Module Signals
      2. 27.2.2 Configuring Device Pins
        1. 27.2.2.1 GPIOs Required for High-Speed Mode
      3. 27.2.3 SPI Interrupts
      4. 27.2.4 DMA Support
    3. 27.3 SPI Operation
      1. 27.3.1  Introduction to Operation
      2. 27.3.2  Master Mode
      3. 27.3.3  Slave Mode
      4. 27.3.4  Data Format
        1. 27.3.4.1 Transmission of Bit from SPIRXBUF
      5. 27.3.5  Baud Rate Selection
        1. 27.3.5.1 Baud Rate Determination
        2. 27.3.5.2 Baud Rate Calculation in Non-High Speed Mode (HS_MODE = 0)
      6. 27.3.6  SPI Clocking Schemes
      7. 27.3.7  SPI FIFO Description
      8. 27.3.8  SPI DMA Transfers
        1. 27.3.8.1 Transmitting Data Using SPI with DMA
        2. 27.3.8.2 Receiving Data Using SPI with DMA
      9. 27.3.9  SPI High-Speed Mode
      10. 27.3.10 SPI 3-Wire Mode Description
    4. 27.4 Programming Procedure
      1. 27.4.1 Initialization Upon Reset
      2. 27.4.2 Configuring the SPI
      3. 27.4.3 Configuring the SPI for High-Speed Mode
      4. 27.4.4 Data Transfer Example
      5. 27.4.5 SPI 3-Wire Mode Code Examples
        1. 27.4.5.1 3-Wire Master Mode Transmit
        2.       1365
          1. 27.4.5.2.1 3-Wire Master Mode Receive
        3.       1367
          1. 27.4.5.2.1 3-Wire Slave Mode Transmit
        4.       1369
          1. 27.4.5.2.1 3-Wire Slave Mode Receive
      6. 27.4.6 SPI STEINV Bit in Digital Audio Transfers
    5. 27.5 Software
      1. 27.5.1 SPI Examples
        1. 27.5.1.1 SPI Digital Loopback
        2. 27.5.1.2 SPI Digital Loopback with FIFO Interrupts
        3. 27.5.1.3 SPI Digital External Loopback without FIFO Interrupts
        4. 27.5.1.4 SPI Digital External Loopback with FIFO Interrupts
        5. 27.5.1.5 SPI Digital Loopback with DMA
        6. 27.5.1.6 SPI EEPROM
        7. 27.5.1.7 SPI DMA EEPROM
    6. 27.6 SPI Registers
      1. 27.6.1 SPI Base Address Table
      2. 27.6.2 SPI_REGS Registers
      3. 27.6.3 SPI Registers to Driverlib Functions
  30. 28Revision History

I2C_REGS Registers

Table 23-8 lists the memory-mapped registers for the I2C_REGS registers. All register offset addresses not listed in Table 23-8 should be considered as reserved locations and the register contents should not be modified.

Table 23-8 I2C_REGS Registers
OffsetAcronymRegister NameWrite ProtectionSection
0hI2COARI2C Own addressGo
1hI2CIERI2C Interrupt EnableGo
2hI2CSTRI2C StatusGo
3hI2CCLKLI2C Clock low-time dividerGo
4hI2CCLKHI2C Clock high-time dividerGo
5hI2CCNTI2C Data countGo
6hI2CDRRI2C Data receiveGo
7hI2CSARI2C Slave addressGo
8hI2CDXRI2C Data TransmitGo
9hI2CMDRI2C ModeGo
AhI2CISRCI2C Interrupt SourceGo
BhI2CEMDRI2C Extended ModeGo
ChI2CPSCI2C PrescalerGo
20hI2CFFTXI2C FIFO TransmitGo
21hI2CFFRXI2C FIFO ReceiveGo

Complex bit access types are encoded to fit into small table cells. Table 23-9 shows the codes that are used for access types in this section.

Table 23-9 I2C_REGS Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
R-0R
-0
Read
Returns 0s
Write Type
WWWrite
W1CW
1C
Write
1 to clear
W1SW
1S
Write
1 to set
Reset or Default Value
-nValue after reset or the default value
Register Array Variables
i,j,k,l,m,nWhen these variables are used in a register name, an offset, or an address, they refer to the value of a register array where the register is part of a group of repeating registers. The register groups form a hierarchical structure and the array is represented with a formula.
yWhen this variable is used in a register name, an offset, or an address it refers to the value of a register array.

23.7.2.1 I2COAR Register (Offset = 0h) [Reset = 0000h]

I2COAR is shown in Figure 23-20 and described in Table 23-10.

Return to the Summary Table.

The I2C own address register (I2COAR) is a 16-bit register. The I2C module uses this register to specify its own slave address, which distinguishes it from other slaves connected to the I2C-bus. If the 7-bit addressing mode is selected (XA = 0 in I2CMDR), only bits 6-0 are used
write 0s to bits 9-7.

Figure 23-20 I2COAR Register
15141312111098
RESERVEDOAR
R-0hR/W-0h
76543210
OAR
R/W-0h
Table 23-10 I2COAR Register Field Descriptions
BitFieldTypeResetDescription
15-10RESERVEDR0hReserved
9-0OARR/W0hIn 7-bit addressing mode (XA = 0 in I2CMDR):
00h-7Fh Bits 6-0 provide the 7-bit slave address of the I2C module. Write 0s to bits 9-7.

In 10-bit addressing mode (XA = 1 in I2CMDR):
000h-3FFh Bits 9-0 provide the 10-bit slave address of the I2C module.

Reset type: SYSRSn

23.7.2.2 I2CIER Register (Offset = 1h) [Reset = 0000h]

I2CIER is shown in Figure 23-21 and described in Table 23-11.

Return to the Summary Table.

I2CIER is used by the CPU to individually enable or disable I2C interrupt requests.

Figure 23-21 I2CIER Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDAASSCDXRDYRRDYARDYNACKARBL
R-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 23-11 I2CIER Register Field Descriptions
BitFieldTypeResetDescription
15-7RESERVEDR0hReserved
6AASR/W0hAddressed as slave interrupt enable

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
5SCDR/W0hStop condition detected interrupt enable

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
4XRDYR/W0hTransmit-data-ready interrupt enable bit.
This bit should not be set when using FIFO mode.

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
3RRDYR/W0hReceive-data-ready interrupt enable bit.
This bit should not be set when using FIFO mode.

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
2ARDYR/W0hRegister-access-ready interrupt enable

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
1NACKR/W0hNo-acknowledgment interrupt enable

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled
0ARBLR/W0hArbitration-lost interrupt enable

Reset type: SYSRSn


0h (R/W) = Interrupt request disabled
1h (R/W) = Interrupt request enabled

23.7.2.3 I2CSTR Register (Offset = 2h) [Reset = 0410h]

I2CSTR is shown in Figure 23-22 and described in Table 23-12.

Return to the Summary Table.

The I2C status register (I2CSTR) is a 16-bit register used to determine which interrupt has occurred and to read status information.

Figure 23-22 I2CSTR Register
15141312111098
RESERVEDSDIRNACKSNTBBRSFULLXSMTAASAD0
R-0hR/W1C-0hR/W1C-0hR-0hR-0hR-1hR-0hR-0h
76543210
RESERVEDBYTESENTSCDXRDYRRDYARDYNACKARBL
R-0hR/W1C-0hR/W1C-0hR-1hR/W1C-0hR/W1C-0hR/W1C-0hR/W1C-0h
Table 23-12 I2CSTR Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14SDIRR/W1C0hSlave direction bit

Reset type: SYSRSn


0h (R/W) = I2C is not addressed as a slave transmitter. SDIR is cleared by one of the following events:
- It is manually cleared. To clear this bit, write a 1 to it.
- Digital loopback mode is enabled.
- A START or STOP condition occurs on the I2C bus.

1h (R/W) = I2C is addressed as a slave transmitter.
13NACKSNTR/W1C0hNACK sent bit.
This bit is used when the I2C module is in the receiver mode. One instance in which NACKSNT is affected is when the NACK mode is used (see the description for NACKMOD in

Reset type: SYSRSn


0h (R/W) = NACK not sent. NACKSNT bit is cleared by any one of the following events:
- It is manually cleared. To clear this bit, write a 1 to it.
- The I2C module is reset (either when 0 is written to the IRS bit of I2CMDR or when the whole device is reset).

1h (R/W) = NACK sent: A no-acknowledge bit was sent during the acknowledge cycle on the I2C-bus.
12BBR0hBus busy bit.
BB indicates whether the I2C-bus is busy or is free for another data transfer. See the paragraph following the table for more information

Reset type: SYSRSn


0h (R/W) = Bus free. BB is cleared by any one of the following events:
- The I2C module receives or transmits a STOP bit (bus free).
- The I2C module is reset.

1h (R/W) = Bus busy: The I2C module has received or transmitted a START bit on the bus.
11RSFULLR0hReceive shift register full bit.
RSFULL indicates an overrun condition during reception. Overrun occurs when new data is received into the shift register (I2CRSR) and the old data has not been read from the receive register (I2CDRR). As new bits arrive from the SDA pin, they overwrite the bits in I2CRSR. The new data will not be copied to ICDRR until the previous data is read.

Reset type: SYSRSn


0h (R/W) = No overrun detected. RSFULL is cleared by any one of the following events:
- I2CDRR is read by the CPU. Emulator reads of the I2CDRR do not affect this bit.
- The I2C module is reset.

1h (R/W) = Overrun detected
10XSMTR1hTransmit shift register empty bit.
XSMT = 0 indicates that the transmitter has experienced underflow. Underflow occurs when the transmit shift register (I2CXSR) is empty but the data transmit register (I2CDXR) has not been loaded since the last I2CDXR-to-I2CXSR transfer. The next I2CDXR-to-I2CXSR transfer will not occur until new data is in I2CDXR. If new data is not transferred in time, the previous data may be re-transmitted on the SDA pin.

Reset type: SYSRSn


0h (R/W) = Underflow detected (empty)
1h (R/W) = No underflow detected (not empty). XSMT is set by one of the following events:
- Data is written to I2CDXR.
- The I2C module is reset
9AASR0hAddressed-as-slave bit

Reset type: SYSRSn


0h (R/W) = In the 7-bit addressing mode, the AAS bit is cleared when receiving a NACK, a STOP condition, or a repeated START condition. In the 10-bit addressing mode, the AAS bit is cleared when receiving a NACK, a STOP condition, or by a slave address different from the I2C peripheral's own slave address.
1h (R/W) = The I2C module has recognized its own slave address or an address of all zeros (general call).
8AD0R0hAddress 0 bits

Reset type: SYSRSn


0h (R/W) = AD0 has been cleared by a START or STOP condition.
1h (R/W) = An address of all zeros (general call) is detected.
7RESERVEDR0hReserved
6BYTESENTR/W1C0hByte Transmit over indication.
BYTESENT is set when the master/slave has successfully sent the byte on SCL/SDA lines. This is diagnostic register which needs to be explicitly cleared by Software. In case not cleared the stale status would keep reflecting as no automated clear incorporated to avoid corner conditions.

Reset type: SYSRSn


0h (R/W) = The I2C module has not finished transmitting the next data byte. BYTESENT is cleared by any one of the following events:
- It is manually cleared. To clear this bit, write a 1 to it.
- The I2C module is reset.

1h (R/W) = The I2C module has completed the transmission of a byte.
5SCDR/W1C0hStop condition detected bit.
SCD is set when the I2C sends or receives a STOP condition. The I2C module delays clearing of the I2CMDR[STP] bit until the SCD bit is set.

Reset type: SYSRSn


0h (R/W) = STOP condition not detected since SCD was last cleared. SCD is cleared by any one of the following events:
- I2CISRC is read by the CPU when it contains the value 110b (stop condition detected). Emulator reads of the I2CISRC do not affect this bit.
- SCD is manually cleared. To clear this bit, write a 1 to it.
- The I2C module is reset.

1h (R/W) = A STOP condition has been detected on the I2C bus.
4XRDYR1hTransmit-data-ready interrupt flag bit. When not in FIFO mode, XRDY indicates that the data transmit register (I2CDXR) is ready to accept new data.
FCM=0 : When the previous data has been copied from I2CDXR to the transmit shift register (I2CXSR). The CPU can poll XRDY or use the XRDY interrupt request When in FIFO mode, use TXFFINT instead.
FCM=1: XRDY is asserted only when next data is required
it gets deasserted with write to I2CDXR. Both Polling and interrupt based data transfers are allowed in the FCM mode.

Reset type: SYSRSn


0h (R/W) = I2CDXR not ready. XRDY is cleared when data is written to I2CDXR.
1h (R/W) = I2CDXR ready: Data has been copied from I2CDXR to I2CXSR.
XRDY is also forced to 1 when the I2C module is reset.
3RRDYR/W1C0hReceive-data-ready interrupt flag bit.
When not in FIFO mode, RRDY indicates that the data receive register (I2CDRR) is ready to be read because data has been copied from the receive shift register (I2CRSR) to I2CDRR. The CPU can poll RRDY or use the RRDY interrupt request When in FIFO mode, use RXFFINT instead.

Reset type: SYSRSn


0h (R/W) = I2CDRR not ready. RRDY is cleared by any one of the following events:
- I2CDRR is read by the CPU. Emulator reads of the I2CDRR do not affect this bit.
- RRDY is manually cleared. To clear this bit, write a 1 to it.
- The I2C module is reset.

1h (R/W) = I2CDRR ready: Data has been copied from I2CRSR to I2CDRR.
2ARDYR/W1C0hRegister-access-ready interrupt flag bit (only Applicable when the I2C module is in the master mode).
ARDY indicates that the I2C module registers are ready to be accessed because the previously programmed address, data, and command values have been used. The CPU can poll ARDY or use the ARDY interrupt request

Reset type: SYSRSn


0h (R/W) = The registers are not ready to be accessed. ARDY is cleared by any one of the following events:
- The I2C module starts using the current register contents.
- ARDY is manually cleared. To clear this bit, write a 1 to it.
- The I2C module is reset.

1h (R/W) = The registers are ready to be accessed.
In the nonrepeat mode (RM = 0 in I2CMDR): If STP = 0 in I2CMDR, the ARDY bit is set when the internal data counter counts down to 0. If STP = 1, ARDY is not affected (instead, the I2C module generates a STOP condition when the counter reaches 0).
In the repeat mode (RM = 1): ARDY is set at the end of each byte transmitted from I2CDXR.
1NACKR/W1C0hNo-acknowledgment interrupt flag bit.
NACK applies when the I2C module is a master transmitter. NACK indicates whether the I2C module has detected an acknowledge bit (ACK) or a noacknowledge bit (NACK) from the slave receiver. The CPU can poll NACK or use the NACK interrupt request.

Reset type: SYSRSn


0h (R/W) = ACK received/NACK not received. This bit is cleared by any one of the following events:
- An acknowledge bit (ACK) has been sent by the slave receiver.
- NACK is manually cleared. To clear this bit, write a 1 to it.
- The CPU reads the interrupt source register (I2CISRC) and the register contains the code for a NACK interrupt. Emulator reads of the I2CISRC do not affect this bit.
- The I2C module is reset.

1h (R/W) = NACK bit received. The hardware detects that a no-acknowledge (NACK) bit has been received.
Note: While the I2C module performs a general call transfer, NACK is 1, even if one or more slaves send acknowledgment.
0ARBLR/W1C0hArbitration-lost interrupt flag bit (only applicable when the I2C module is a master-transmitter).
ARBL primarily indicates when the I2C module has lost an arbitration contest with another master/transmitter. The CPU can poll ARBL or use the ARBL interrupt request.

Reset type: SYSRSn


0h (R/W) = Arbitration not lost. AL is cleared by any one of the following events:
- AL is manually cleared. To clear this bit, write a 1 to it.
- The CPU reads the interrupt source register (I2CISRC) and the register contains the code for an
AL interrupt. Emulator reads of the I2CISRC do not affect this bit.
- The I2C module is reset.

1h (R/W) = Arbitration lost. AL is set by any one of the following events:
- The I2C module senses that it has lost an arbitration with two or more competing transmitters that started a transmission almost simultaneously.
- The I2C module attempts to start a transfer while the BB (bus busy) bit is set to 1.
When AL becomes 1, the MST and STP bits of I2CMDR are cleared, and the I2C module becomes a slave-receiver.

23.7.2.4 I2CCLKL Register (Offset = 3h) [Reset = 0000h]

I2CCLKL is shown in Figure 23-23 and described in Table 23-13.

Return to the Summary Table.

I2C Clock low-time divider

Figure 23-23 I2CCLKL Register
15141312111098
I2CCLKL
R/W-0h
76543210
I2CCLKL
R/W-0h
Table 23-13 I2CCLKL Register Field Descriptions
BitFieldTypeResetDescription
15-0I2CCLKLR/W0hClock low-time divide-down value.
To produce the low time duration of the master clock, the period of the module clock is multiplied by (ICCL + d). d is an adjustment factor based on the prescaler. See the Clock Divider Registers section of the Introduction for details.

Note: These bits must be set to a non-zero value for proper I2C clock generation.

Reset type: SYSRSn

23.7.2.5 I2CCLKH Register (Offset = 4h) [Reset = 0000h]

I2CCLKH is shown in Figure 23-24 and described in Table 23-14.

Return to the Summary Table.

I2C Clock high-time divider

Figure 23-24 I2CCLKH Register
15141312111098
I2CCLKH
R/W-0h
76543210
I2CCLKH
R/W-0h
Table 23-14 I2CCLKH Register Field Descriptions
BitFieldTypeResetDescription
15-0I2CCLKHR/W0hClock high-time divide-down value.
To produce the high time duration of the master clock, the period of the module clock is multiplied by (ICCL + d). d is an adjustment factor based on the prescaler. See the Clock Divider Registers section of the Introduction for details.

Note: These bits must be set to a non-zero value for proper I2C clock generation.

Reset type: SYSRSn

23.7.2.6 I2CCNT Register (Offset = 5h) [Reset = 0000h]

I2CCNT is shown in Figure 23-25 and described in Table 23-15.

Return to the Summary Table.

I2CCNT is a 16-bit register used to indicate how many data bytes to transfer when the I2C module is configured as a transmitter, or to receive when configured as a master receiver. In the repeat mode (RM = 1), I2CCNT is not used.

The value written to I2CCNT is copied to an internal data counter. The internal data counter is decremented by 1 for each byte transferred (I2CCNT remains unchanged). If a STOP condition is requested in the master mode (STP = 1 in I2CMDR), the I2C module terminates the transfer with a STOP condition when the countdown is complete (that is, when the last byte has been transferred).

Figure 23-25 I2CCNT Register
15141312111098
I2CCNT
R/W-0h
76543210
I2CCNT
R/W-0h
Table 23-15 I2CCNT Register Field Descriptions
BitFieldTypeResetDescription
15-0I2CCNTR/W0hData count value. I2CCNT indicates the number of data bytes to transfer or receive.
If a STOP condition is specified (STP=1) then I2CCNT will decrease after each byte is sent until it reaches zero, which in turn will generate a STOP condition.
The value in I2CCNT is a don't care when the RM bit in I2CMDR is set to 1.

Reset type: SYSRSn


0h (R/W) = data count value is 65536
1h (R/W) = data count value is 1
2h (R/W) = data count value is 2
FFFFh (R/W) = data count value is 65535

23.7.2.7 I2CDRR Register (Offset = 6h) [Reset = 0000h]

I2CDRR is shown in Figure 23-26 and described in Table 23-16.

Return to the Summary Table.

I2CDRR is a 16-bit register used by the CPU to read received data. The I2C module can receive a data byte with 1 to 8 bits. The number of bits is selected with the bit count (BC) bits in I2CMDR. One bit at a time is shifted in from the SDA pin to the receive shift register (I2CRSR). When a complete data byte has been received, the I2C module copies the data byte from I2CRSR to I2CDRR. The CPU cannot access I2CRSR directly.

If a data byte with fewer than 8 bits is in I2CDRR, the data value is right-justified, and the other bits of I2CDRR(7-0) are undefined. For example, if BC = 011 (3-bit data size), the receive data is in I2CDRR(2-0), and the content of I2CDRR(7-3) is undefined.

When in the receive FIFO mode, the I2CDRR register acts as the receive FIFO buffer.

Figure 23-26 I2CDRR Register
15141312111098
RESERVED
R-0h
76543210
DATA
R-0h
Table 23-16 I2CDRR Register Field Descriptions
BitFieldTypeResetDescription
15-8RESERVEDR0hReserved
7-0DATAR0hReceive data

Reset type: SYSRSn

23.7.2.8 I2CSAR Register (Offset = 7h) [Reset = 03FFh]

I2CSAR is shown in Figure 23-27 and described in Table 23-17.

Return to the Summary Table.

The I2C slave address register (I2CSAR) is a 16-bit register for storing the next slave address that will be transmitted by the I2C module when it is a master. The SAR field of I2CSAR contains a 7-bit or 10-bit slave address. When the I2C module is not using the free data format (FDF = 0 in I2CMDR), it uses this address to initiate data transfers with a slave, or slaves. When the address is nonzero, the address is for a particular slave. When the address is 0, the address is a general call to all slaves. If the 7-bit addressing mode is selected (XA = 0 in I2CMDR), only bits 6-0 of I2CSAR are used
write 0s to bits 9-7.

Figure 23-27 I2CSAR Register
15141312111098
RESERVEDSAR
R-0hR/W-3FFh
76543210
SAR
R/W-3FFh
Table 23-17 I2CSAR Register Field Descriptions
BitFieldTypeResetDescription
15-10RESERVEDR0hReserved
9-0SARR/W3FFhIn 7-bit addressing mode (XA = 0 in I2CMDR):
00h-7Fh Bits 6-0 provide the 7-bit slave address that the I2C module transmits when it is in the master-transmitter
mode. Write 0s to bits 9-7.

In 10-bit addressing mode (XA = 1 in I2CMDR):
000h-3FFh Bits 9-0 provide the 10-bit slave address that the I2C module transmits when it is in the master transmitter mode.

Reset type: SYSRSn

23.7.2.9 I2CDXR Register (Offset = 8h) [Reset = 0000h]

I2CDXR is shown in Figure 23-28 and described in Table 23-18.

Return to the Summary Table.

The CPU writes transmit data to I2CDXR. This 16-bit register accepts a data byte with 1 to 8 bits. Before writing to I2CDXR, specify how many bits are in a data byte by loading the appropriate value into the bit count (BC) bits of I2CMDR. When writing a data byte with fewer than 8 bits, make sure the value is right-aligned in I2CDXR.

After a data byte is written to I2CDXR, the I2C module copies the data byte to the transmit shift register (I2CXSR). The CPU cannot access I2CXSR directly. From I2CXSR, the I2C module shifts the data byte out on the SDA pin, one bit at a time.

When in the transmit FIFO mode, the I2CDXR register acts as the transmit FIFO buffer.

Figure 23-28 I2CDXR Register
15141312111098
RESERVED
R-0h
76543210
DATA
R/W-0h
Table 23-18 I2CDXR Register Field Descriptions
BitFieldTypeResetDescription
15-8RESERVEDR0hReserved
7-0DATAR/W0hTransmit data

Reset type: SYSRSn

23.7.2.10 I2CMDR Register (Offset = 9h) [Reset = 0000h]

I2CMDR is shown in Figure 23-29 and described in Table 23-19.

Return to the Summary Table.

The I2C mode register (I2CMDR) is a 16-bit register that contains the control bits of the I2C module.

Figure 23-29 I2CMDR Register
15141312111098
NACKMODFREESTTRESERVEDSTPMSTTRXXA
R/W-0hR/W-0hR/W-0hR-0hR/W-0hR/W-0hR/W-0hR/W-0h
76543210
RMDLBIRSSTBFDFBC
R/W-0hR/W-0hR/W-0hR/W-0hR/W-0hR/W-0h
Table 23-19 I2CMDR Register Field Descriptions
BitFieldTypeResetDescription
15NACKMODR/W0hNACK mode bit. This bit is only applicable when the I2C module is acting as a receiver.

Reset type: SYSRSn


0h (R/W) = In the slave-receiver mode: The I2C module sends an acknowledge (ACK) bit to the transmitter during each acknowledge cycle on the bus. The I2C module only sends a no-acknowledge (NACK) bit if you set the NACKMOD bit.

In the master-receiver mode: The I2C module sends an ACK bit during each acknowledge cycle until the internal data counter counts down to 0. At that point, the I2C module sends a NACK bit to the transmitter. To have a NACK bit sent earlier, you must set the NACKMOD bit

1h (R/W) = In either slave-receiver or master-receiver mode: The I2C module sends a NACK bit to the transmitter during the next acknowledge cycle on the bus. Once the NACK bit has been sent, NACKMOD is cleared.

Important: To send a NACK bit in the next acknowledge cycle, you must set NACKMOD before the rising edge of the last data bit.
14FREER/W0hThis bit controls the action taken by the I2C module when a debugger breakpoint is encountered.

Reset type: SYSRSn


0h (R/W) = When I2C module is master:
If SCL is low when the breakpoint occurs, the I2C module stops immediately and keeps driving SCL low, whether the I2C module is the transmitter or the receiver. If SCL is high, the I2C module waits until SCL becomes low and then stops.
When I2C module is slave:
A breakpoint forces the I2C module to stop when the current transmission/reception is complete.

1h (R/W) = The I2C module runs free
that is, it continues to operate when a breakpoint occurs.
13STTR/W0hSTART condition bit (only applicable when the I2C module is a master). The RM, STT, and STP bits determine when the I2C module starts and stops data transmissions (see Table 9-6). Note that the STT and STP bits can be used to terminate the repeat mode, and that this bit is not writable when IRS = 0.

Reset type: SYSRSn


0h (R/W) = In the master mode, STT is automatically cleared after the START condition has been generated.
1h (R/W) = In the master mode, setting STT to 1 causes the I2C module to generate a START condition on the I2C-bus
12RESERVEDR0hReserved
11STPR/W0hSTOP condition bit (only applicable when the I2C module is a master).
In the master mode, the RM,STT, and STP bits determine when the I2C module starts and stops data transmissions.
Note that the STT and STP bits can be used to terminate the repeat mode, and that this bit is not writable when IRS=0. When in non-repeat mode, at least one byte must be transferred before a stop condition can be generated. The I2C module delays clearing of this bit until after the I2CSTR[SCD] bit is set. To avoid disrupting the I2C state machine, the user must wait until this bit is clear before initiating a new message.

Reset type: SYSRSn


0h (R/W) = STP is automatically cleared after the STOP condition has been generated
1h (R/W) = STP has been set by the device to generate a STOP condition when the internal data counter of the I2C module counts down to 0.
10MSTR/W0hMaster mode bit.
MST determines whether the I2C module is in the slave mode or the master mode. MST is automatically changed from 1 to 0 when the I2C master generates a STOP condition

Reset type: SYSRSn


0h (R/W) = Slave mode. The I2C module is a slave and receives the serial clock from the master.
1h (R/W) = Master mode. The I2C module is a master and generates the serial clock on the SCL pin.
9TRXR/W0hTransmitter mode bit.
When relevant, TRX selects whether the I2C module is in the transmitter mode or the receiver mode.

Reset type: SYSRSn


0h (R/W) = Receiver mode. The I2C module is a receiver and receives data on the SDA pin.
1h (R/W) = Transmitter mode. The I2C module is a transmitter and transmits data on the SDA pin.
8XAR/W0hExpanded address enable bit.

Reset type: SYSRSn


0h (R/W) = 7-bit addressing mode (normal address mode). The I2C module transmits 7-bit slave addresses (from bits 6-0 of I2CSAR), and its own slave address has 7 bits (bits 6-0 of I2COAR).
1h (R/W) = 10-bit addressing mode (expanded address mode). The I2C module transmits 10-bit slave addresses (from bits 9-0 of I2CSAR), and its own slave address has 10 bits (bits 9-0 of I2COAR).
7RMR/W0hRepeat mode bit (only applicable when the I2C module is a master-transmitter or master-receiver).
The RM, STT, and STP bits determine when the I2C module starts and stops data transmissions

Reset type: SYSRSn


0h (R/W) = Nonrepeat mode. The value in the data count register (I2CCNT) determines how many bytes are
received/transmitted by the I2C module.

1h (R/W) = Repeat mode. A data byte is transmitted each time the I2CDXR register is written to (or until the transmit FIFO is empty when in FIFO mode) until the STP bit is manually set. The value of I2CCNT is ignored. The ARDY bit/interrupt can be used to determine when the I2CDXR (or FIFO) is ready for more data, or when the data has all been sent and the CPU is allowed to write to the STP bit.
6DLBR/W0hDigital loopback mode bit.

Reset type: SYSRSn


0h (R/W) = Digital loopback mode is disabled.
1h (R/W) = Digital loopback mode is enabled. For proper operation in this mode, the MST bit must be 1.
In the digital loopback mode, data transmitted out of I2CDXR is received in I2CDRR after n device cycles by an internal path, where:
n = ((I2C input clock frequency/module clock frequency) x 8)
The transmit clock is also the receive clock. The address transmitted on the SDA pin is the address in I2COAR.
Note: The free data format (FDF = 1) is not supported in the digital loopback mode.
5IRSR/W0hI2C module reset bit.

Reset type: SYSRSn


0h (R/W) = The I2C module is in reset/disabled. When this bit is cleared to 0, all status bits (in I2CSTR) are set to their default values.
1h (R/W) = The I2C module is enabled. This has the effect of releasing the I2C bus if the I2C peripheral is holding it.
4STBR/W0hSTART byte mode bit. This bit is only applicable when the I2C module is a master. As described in version 2.1 of the Philips Semiconductors I2C-bus specification, the START byte can be used to help a slave that needs extra time to detect a START condition. When the I2C module is a slave, it ignores a START byte from a master, regardless of the value of the STB bit.

Reset type: SYSRSn


0h (R/W) = The I2C module is not in the START byte mode.
1h (R/W) = The I2C module is in the START byte mode. When you set the START condition bit (STT), the I2C module begins the transfer with more than just a START condition. Specifically, it generates:
1. A START condition
2. A START byte (0000 0001b)
3. A dummy acknowledge clock pulse
4. A repeated START condition
Then, as normal, the I2C module sends the slave address that is in I2CSAR.
3FDFR/W0hFree data format mode bit.

Reset type: SYSRSn


0h (R/W) = Free data format mode is disabled. Transfers use the 7-/10-bit addressing format selected by the XA bit.
1h (R/W) = Free data format mode is enabled. Transfers have the free data (no address) format described in Section 9.2.5.
The free data format is not supported in the digital loopback mode (DLB=1).
2-0BCR/W0hBit count bits.
BC defines the number of bits (1 to 8) in the next data byte that is to be received or transmitted by the I2C module. The number of bits selected with BC must match the data size of the other device. Notice that when BC = 000b, a data byte has 8 bits. BC does not affect address bytes, which always have 8 bits.
Note: If the bit count is less than 8, receive data is right-justified in I2CDRR(7-0), and the other bits of I2CDRR(7-0) are undefined. Also, transmit data written to I2CDXR must be right-justified

Reset type: SYSRSn


0h (R/W) = 8 bits per data byte
1h (R/W) = 1 bit per data byte
2h (R/W) = 2 bits per data byte
3h (R/W) = 3 bits per data byte
4h (R/W) = 4 bits per data byte
5h (R/W) = 5 bits per data byte
6h (R/W) = 6 bits per data byte
7h (R/W) = 7 bits per data byte

23.7.2.11 I2CISRC Register (Offset = Ah) [Reset = 0000h]

I2CISRC is shown in Figure 23-30 and described in Table 23-20.

Return to the Summary Table.

The I2C interrupt source register (I2CISRC) is a 16-bit register used by the CPU to determine which event generated the I2C interrupt.

Figure 23-30 I2CISRC Register
15141312111098
RESERVEDWRITE_ZEROS
R-0hR/W-0h
76543210
RESERVEDINTCODE
R-0hR-0h
Table 23-20 I2CISRC Register Field Descriptions
BitFieldTypeResetDescription
15-12RESERVEDR0hReserved
11-8WRITE_ZEROSR/W0hTI internal testing bits
These reserved bit locations should always be written as zeros.

Reset type: SYSRSn

7-3RESERVEDR0hReserved
2-0INTCODER0hInterrupt code bits.
The binary code in INTCODE indicates the event that generated an I2C interrupt.

A CPU read will clear this field. If another lower priority interrupt is pending and enabled, the value corresponding to that interrupt will then be loaded. Otherwise, the value will stay cleared.
The interrupt events below are listed in descending order of priority. That is INTCODE 1 (Arbitration lost) has the highest priority and INTCODE 7 (Addressed as slave) has the lowest priority.
In the case of an arbitration lost, a no-acknowledgment condition detected, or a stop condition detected, a CPU read will also clear the associated interrupt flag bit in the I2CSTR register.
Emulator reads will not affect the state of this field or of the status bits in the I2CSTR register.

Reset type: SYSRSn


0h (R/W) = None
1h (R/W) = Arbitration lost
2h (R/W) = No-acknowledgment condition detected
3h (R/W) = Registers ready to be accessed
4h (R/W) = Receive data ready
5h (R/W) = Transmit data ready
6h (R/W) = Stop condition detected
7h (R/W) = Addressed as slave

23.7.2.12 I2CEMDR Register (Offset = Bh) [Reset = 0001h]

I2CEMDR is shown in Figure 23-31 and described in Table 23-21.

Return to the Summary Table.

I2C Extended Mode

Figure 23-31 I2CEMDR Register
15141312111098
RESERVED
R-0h
76543210
RESERVEDFCMBC
R-0hR/W-0hR/W-1h
Table 23-21 I2CEMDR Register Field Descriptions
BitFieldTypeResetDescription
15-2RESERVEDR0hReserved
1FCMR/W0hForward Compatibility mode.
This bit when programmed brings the functionality of Tx request only when Tx data required regardless of data status in Tx buffer for non-FIFO mode.
This register affects the XRDY behavior hence needs to be set after releasing the IRS (I2CMDR[5]).

Reset type: SYSRSn


0h (R/W) = Legacy functionality of requesting Tx data upon buffer copy to shift register or upon start condition is active. Stale data is reused after illegal start, ARB Lost, NACK conditions.
1h (R/W) = New functionality of requesting data only upon ACK (address/data) is active.
0BCR/W1hBackwards compatibility mode.
This bit affects the timing of the transmit status bits (XRDY and XSMT) in the I2CSTR register when in slave transmitter mode.

Reset type: SYSRSn


0h (R/W) = See the 'Backwards Compatibility Mode Bit, Slave Transmitter' Figure for details.
1h (R/W) = See the 'Backwards Compatibility Mode Bit, Slave Transmitter' Figure for details.

23.7.2.13 I2CPSC Register (Offset = Ch) [Reset = 0000h]

I2CPSC is shown in Figure 23-32 and described in Table 23-22.

Return to the Summary Table.

The I2C prescaler register (I2CPSC) is a 16-bit register (see Figure 14-21) used for dividing down the I2C input clock to obtain the desired module clock for the operation of the I2C module. See the device-specific data manual for the supported range of values for the module clock frequency.

IPSC must be initialized while the I2C module is in reset (IRS = 0 in I2CMDR). The prescaled frequency takes effect only when IRS is changed to 1. Changing the IPSC value while IRS = 1 has no effect.

Figure 23-32 I2CPSC Register
15141312111098
RESERVED
R-0h
76543210
IPSC
R/W-0h
Table 23-22 I2CPSC Register Field Descriptions
BitFieldTypeResetDescription
15-8RESERVEDR0hReserved
7-0IPSCR/W0hI2C prescaler divide-down value.
IPSC determines how much the CPU clock is divided to create the module clock of the I2C module:
module clock frequency = I2C input clock frequency/(IPSC + 1)
Note: IPSC must be initialized while the I2C module is in reset (IRS = 0 in I2CMDR).

Reset type: SYSRSn

23.7.2.14 I2CFFTX Register (Offset = 20h) [Reset = 0000h]

I2CFFTX is shown in Figure 23-33 and described in Table 23-23.

Return to the Summary Table.

The I2C transmit FIFO register (I2CFFTX) is a 16-bit register that contains the I2C FIFO mode enable bit as well as the control and status bits for the transmit FIFO mode of operation on the I2C peripheral.

Figure 23-33 I2CFFTX Register
15141312111098
RESERVEDI2CFFENTXFFRSTTXFFST
R-0hR/W-0hR/W-0hR-0h
76543210
TXFFINTTXFFINTCLRTXFFIENATXFFIL
R-0hR-0/W1S-0hR/W-0hR/W-0h
Table 23-23 I2CFFTX Register Field Descriptions
BitFieldTypeResetDescription
15RESERVEDR0hReserved
14I2CFFENR/W0hI2C FIFO mode enable bit.
This bit must be enabled for either the transmit or the receive FIFO to operate correctly.

Reset type: SYSRSn


0h (R/W) = Disable the I2C FIFO mode.
1h (R/W) = Enable the I2C FIFO mode.
13TXFFRSTR/W0hTransmit FIFO Reset

Reset type: SYSRSn


0h (R/W) = Reset the transmit FIFO pointer to 0000 and hold the transmit FIFO in the reset state.
1h (R/W) = Enable the transmit FIFO operation.
12-8TXFFSTR0hContains the status of the transmit FIFO:
xxxxx Transmit FIFO contains xxxxx bytes.
00000 Transmit FIFO is empty.

Note: Since these bits are reset to zero, the transmit FIFO interrupt flag will be set when the transmit FIFO operation is enabled and the I2C is taken out of reset. This will generate a transmit FIFO interrupt if enabled. To avoid any detrimental effects from this, write a one to the TXFFINTCLR once the transmit FIFO operation is enabled and the I2C is taken out of reset.

Reset type: SYSRSn

7TXFFINTR0hTransmit FIFO interrupt flag.
This bit cleared by a CPU write of a 1 to the TXFFINTCLR bit. If the TXFFIENA bit is set, this bit will generate an interrupt when it is set.

Reset type: SYSRSn


0h (R/W) = Transmit FIFO interrupt condition has not occurred.
1h (R/W) = Transmit FIFO interrupt condition has occurred.
6TXFFINTCLRR-0/W1S0hTransmit FIFO Interrupt Flag Clear

Reset type: SYSRSn


0h (R/W) = Writes of zeros have no effect. Reads return a 0.
1h (R/W) = Writing a 1 to this bit clears the TXFFINT flag.
5TXFFIENAR/W0hTransmit FIFO Interrupt Enable

Reset type: SYSRSn


0h (R/W) = Disabled. TXFFINT flag does not generate an interrupt when set.
1h (R/W) = Enabled. TXFFINT flag does generate an interrupt when set.
4-0TXFFILR/W0hTransmit FIFO interrupt level.

These bits set the status level that will set the transmit interrupt flag. When the TXFFST4-0 bits reach a value equal to or less than these bits, the TXFFINT flag will be set. This will generate an interrupt if the TXFFIENA bit is set. Because the I2C on this device has a 16-level transmit FIFO, these bits cannot be configured for an interrupt of more than 16 FIFO levels.

Reset type: SYSRSn

23.7.2.15 I2CFFRX Register (Offset = 21h) [Reset = 0000h]

I2CFFRX is shown in Figure 23-34 and described in Table 23-24.

Return to the Summary Table.

The I2C receive FIFO register (I2CFFRX) is a 16-bit register that contains the control and status bits for the receive FIFO mode of operation on the I2C peripheral.

Figure 23-34 I2CFFRX Register
15141312111098
RESERVEDRXFFRSTRXFFST
R-0hR/W-0hR-0h
76543210
RXFFINTRXFFINTCLRRXFFIENARXFFIL
R-0hR-0/W1S-0hR/W-0hR/W-0h
Table 23-24 I2CFFRX Register Field Descriptions
BitFieldTypeResetDescription
15-14RESERVEDR0hReserved
13RXFFRSTR/W0hI2C receive FIFO reset bit

Reset type: SYSRSn


0h (R/W) = Reset the receive FIFO pointer to 0000 and hold the receive FIFO in the reset state.
1h (R/W) = Enable the receive FIFO operation.
12-8RXFFSTR0hContains the status of the receive FIFO:

xxxxx Receive FIFO contains xxxxx bytes
00000 Receive FIFO is empty.

Reset type: SYSRSn

7RXFFINTR0hReceive FIFO interrupt flag.
This bit cleared by a CPU write of a 1 to the RXFFINTCLR bit. If the RXFFIENA bit is set, this bit will generate an interrupt when it is set

Reset type: SYSRSn


0h (R/W) = Receive FIFO interrupt condition has not occurred.
1h (R/W) = Receive FIFO interrupt condition has occurred.
6RXFFINTCLRR-0/W1S0hReceive FIFO interrupt flag clear bit.

Reset type: SYSRSn


0h (R/W) = Writes of zeros have no effect. Reads return a zero.
1h (R/W) = Writing a 1 to this bit clears the RXFFINT flag.
5RXFFIENAR/W0hReceive FIFO interrupt enable bit.

Reset type: SYSRSn


0h (R/W) = Disabled. RXFFINT flag does not generate an interrupt when set.
1h (R/W) = Enabled. RXFFINT flag does generate an interrupt when set.
4-0RXFFILR/W0hReceive FIFO interrupt level.
These bits set the status level that will set the receive interrupt flag. When the RXFFST4-0 bits reach a value equal to or greater than these bits, the RXFFINT flag is set. This will generate an interrupt if the RXFFIENA bit is set.

Note: Since these bits are reset to zero, the receive FIFO interrupt flag will be set if the receive FIFO operation is enabled and the I2C is taken out of reset. This will generate a receive FIFO interrupt if enabled. To avoid this, modify these bits on the same instruction as or prior to setting the RXFFRST bit. Because the I2C on this device has a 16-level receive FIFO, these bits cannot be configured for an interrupt of more than 16 FIFO levels.

Reset type: SYSRSn