ZHCSYD5 June   2025 DAC39RF20

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较
  6. 引脚配置和功能
  7. 规格
    1. 6.1  绝对最大额定值
    2. 6.2  ESD 等级
    3. 6.3  建议运行条件
    4. 6.4  热性能信息
    5. 6.5  电气特性 - 直流规格
    6. 6.6  电气特性 - 交流规格
    7. 6.7  电气特性 - 功耗
    8. 6.8  时序要求
    9. 6.9  开关特性
    10. 6.10 SPI 接口时序图
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  DAC 输出模式
        1. 7.3.1.1 NRZ 模式
        2. 7.3.1.2 RF 模式
        3. 7.3.1.3 DES 模式
      2. 7.3.2  DAC 内核
        1. 7.3.2.1 DAC 输出结构
        2. 7.3.2.2 调整满量程电流
      3. 7.3.3  DEM 和抖动
      4. 7.3.4  偏移量调整
      5. 7.3.5  时钟子系统
        1. 7.3.5.1 转换器锁相环 (CPLL)
        2. 7.3.5.2 时钟和 SYSREF 延迟
        3. 7.3.5.3 SYSREF 采集和监控
          1. 7.3.5.3.1 SYSREF 频率要求
          2. 7.3.5.3.2 用于完全对齐的 SYSREF 脉冲
          3. 7.3.5.3.3 自动 SYSREF 校准和跟踪
            1. 7.3.5.3.3.1 SYSREF 自动校准过程
            2. 7.3.5.3.3.2 多器件对齐
            3. 7.3.5.3.3.3 校准失败
            4. 7.3.5.3.3.4 SYSREF 跟踪
        4. 7.3.5.4 触发时钟
      6. 7.3.6  数字信号处理块
        1. 7.3.6.1  旁路模式
        2. 7.3.6.2  DUC 模式
          1. 7.3.6.2.1 数字上变频器 (DUC)
            1. 7.3.6.2.1.1 内插滤波器
            2. 7.3.6.2.1.2 数控振荡器 (NCO)
              1. 7.3.6.2.1.2.1 相位连续 NCO 更新模式
              2. 7.3.6.2.1.2.2 相位同调 NCO 更新模式
              3. 7.3.6.2.1.2.3 相位同步 NCO 更新模式
              4. 7.3.6.2.1.2.4 NCO 同步
                1. 7.3.6.2.1.2.4.1 JESD204C LSB 同步
        3. 7.3.6.3  DDS SPI 模式
        4. 7.3.6.4  DDS 矢量模式
          1. 7.3.6.4.1 二阶振幅支持
          2. 7.3.6.4.2 矢量顺序和对称矢量模式
          3. 7.3.6.4.3 初始启动
          4. 7.3.6.4.4 触发队列
          5. 7.3.6.4.5 触发突发
          6. 7.3.6.4.6 保持模式
          7. 7.3.6.4.7 索引模式
          8. 7.3.6.4.8 索引模式中的已排队或突发触发
          9. 7.3.6.4.9 启用 DDS 时写入矢量
        5. 7.3.6.5  DDS 流模式
        6. 7.3.6.6  DSP 触发
          1. 7.3.6.6.1 触发延迟
        7. 7.3.6.7  NCO 方波模式
          1. 7.3.6.7.1 方波启用
        8. 7.3.6.8  DSP 静音功能
        9. 7.3.6.9  DSP 输出增益
        10. 7.3.6.10 复杂输出支持
        11. 7.3.6.11 通道接合器
        12. 7.3.6.12 可设定 FIR 滤波器
          1. 7.3.6.12.1 PFIR 系数
          2. 7.3.6.12.2 PFIR 反射消除模式
          3. 7.3.6.12.3 PFIR 节能
          4. 7.3.6.12.4 PFIR 使用情况
        13. 7.3.6.13 DES 内插器
          1. 7.3.6.13.1 DAC 静音功能
      7. 7.3.7  串行器/解串器物理层
        1. 7.3.7.1 串行器/解串器 PLL
          1. 7.3.7.1.1 启用串行器/解串器 PLL
          2. 7.3.7.1.2 参考时钟
          3. 7.3.7.1.3 PLL VCO 校准
          4. 7.3.7.1.4 串行器/解串器 PLL 环路带宽
        2. 7.3.7.2 串行器/解串器接收器
          1. 7.3.7.2.1 串行器/解串器数据速率选择
          2. 7.3.7.2.2 串行器/解串器接收器端接
          3. 7.3.7.2.3 串行器/解串器接收器极性
          4. 7.3.7.2.4 串行器/解串器时钟数据恢复
          5. 7.3.7.2.5 串行器/解串器均衡器
            1. 7.3.7.2.5.1 自适应均衡
            2. 7.3.7.2.5.2 固定均衡
            3. 7.3.7.2.5.3 前标和后标分析
          6. 7.3.7.2.6 串行器/解串器接收器眼图扫描
            1. 7.3.7.2.6.1 Eyescan 程序
            2. 7.3.7.2.6.2 构建眼图
        3. 7.3.7.3 串行器/解串器 PHY 状态
      8. 7.3.8  JESD204C 接口
        1. 7.3.8.1 偏离 JESD204C 标准
        2. 7.3.8.2 链路层
          1. 7.3.8.2.1 串行器/解串器纵横制
          2. 7.3.8.2.2 误码率测试仪
          3. 7.3.8.2.3 扰频器和解码器
          4. 7.3.8.2.4 64b 和 66b 解码链路层
            1. 7.3.8.2.4.1 同步报头对齐
            2. 7.3.8.2.4.2 扩展多块对齐
            3. 7.3.8.2.4.3 数据完整性
          5. 7.3.8.2.5 8B 和 10B 编码链路层
            1. 7.3.8.2.5.1 代码组同步 (CGS)
            2. 7.3.8.2.5.2 初始通道对齐序列 (ILAS)
            3. 7.3.8.2.5.3 多帧和本地多帧时钟 (LMFC)
            4. 7.3.8.2.5.4 帧和多帧监控
            5. 7.3.8.2.5.5 链路重新启动
            6. 7.3.8.2.5.6 链路错误报告
            7. 7.3.8.2.5.7 看门狗计时器 (JTIMER)
        3. 7.3.8.3 子类 1 模式下需要 SYSREF 对齐
        4. 7.3.8.4 传输层
        5. 7.3.8.5 JESD204C 调试捕获 (JCAP)
          1. 7.3.8.5.1 物理层调试捕获
          2. 7.3.8.5.2 链路层调试捕获
          3. 7.3.8.5.3 传输层调试捕获
        6. 7.3.8.6 JESD204C 接口模式
          1. 7.3.8.6.1 JESD204C 格式图
            1. 7.3.8.6.1.1 16 位格式
            2. 7.3.8.6.1.2 12 位格式
            3. 7.3.8.6.1.3 8 位格式
          2. 7.3.8.6.2 DUC 和 DDS 模式
      9. 7.3.9  数据路径延迟
      10. 7.3.10 多器件同步和确定性延迟
        1. 7.3.10.1 对 RBD 进行编程
        2. 7.3.10.2 多帧长度小于 32 个八字节(256 字节)
        3. 7.3.10.3 用于确定 RBD 值的建议算法
        4. 7.3.10.4 在子类 0 系统中运行
      11. 7.3.11 链路复位
      12. 7.3.12 生成警报
        1. 7.3.12.1 超范围检测
        2. 7.3.12.2 超范围屏蔽
      13. 7.3.13 静音功能
        1. 7.3.13.1 报警数据路径静音
        2. 7.3.13.2 发送启用
    4. 7.4 器件功能模式
      1. 7.4.1 电源模式
  9. 编程
    1. 8.1 使用标准 SPI 接口
      1. 8.1.1 SCS
      2. 8.1.2 SCLK
      3. 8.1.3 SDI
      4. 8.1.4 SDO
      5. 8.1.5 串行接口协议
      6. 8.1.6 流模式
    2. 8.2 使用快速重新配置接口
    3. 8.3 寄存器映射
      1. 8.3.1  Standard_SPI-3.1 寄存器
      2. 8.3.2  系统寄存器
      3. 8.3.3  触发寄存器
      4. 8.3.4  CPLL_AND_CLOCK 寄存器
      5. 8.3.5  SYSREF 寄存器
      6. 8.3.6  JESD204C 寄存器
      7. 8.3.7  JESD204C_Advanced 寄存器
      8. 8.3.8  SerDes_Equalizer 寄存器
      9. 8.3.9  SerDes_Eye-Scan 寄存器
      10. 8.3.10 SerDes_Lane_Status 寄存器
      11. 8.3.11 SerDes_PLL 寄存器
      12. 8.3.12 DAC_and_Analog_Configuration 寄存器
      13. 8.3.13 Datapath 寄存器
      14. 8.3.14 NCO_and_Mixer 寄存器
      15. 8.3.15 警报寄存器
      16. 8.3.16 Fuse_Control 寄存器
      17. 8.3.17 Fuse_Backed 寄存器
      18. 8.3.18 DDS_Vector_Mode 寄存器
      19. 8.3.19 Programmable_FIR 寄存器
  10. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 启动步骤
      2. 9.1.2 方波模式的带宽优化
    2. 9.2 典型应用:Ku 频带雷达发送器
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
      3. 9.2.3 应用曲线
    3. 9.3 电源相关建议
      1. 9.3.1 上电和断电时序
    4. 9.4 布局
      1. 9.4.1 布局指南和示例
  11. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • ANH|289
散热焊盘机械数据 (封装 | 引脚)
订购信息

电源模式

该器件具有主要通过 MODE 寄存器控制的各种功耗模式。本节概述了每种模式下实际启用的子系统。这些功耗模式仅在 SYS_EN=1 时适用。

表 7-73 功耗模式汇总
系统组件的状态
电源模式应用层(DSP、编码器)链路层PHY 层SYSREF 子系统、LMFC、LEMC、NCO 累加器、DAC 内核、稳压器
正常运行开启开启开启开启
APP 睡眠关闭开启开启开启
链路睡眠关闭关闭开启开启
PHY 睡眠关闭关闭关闭开启
断电关闭关闭关闭关闭
表 7-74 电源模式
电源模式 说明 进入此模式的条件
正常运行
  • 所有系统都正常运行
  • 可以使用 APP_SLEEP0/APP_SLEEP1 特性将各个应用层元件置于睡眠状态。
MODE==0 && !SLEEP(引脚)
APP 睡眠
  • 两个 DAC 根据 IDLE_STATIC 寄存器静音
  • 大多数 DSP 和编码器时钟均关闭。
  • SYSREF 同步将保持不变,因此 LMFC/LEMC 计数器、触发时钟计数器和 NCO 累加器将继续按照配置运行。
  • 在此模式下无法处理使用 TRIG_TYPE 配置的 DSP 触发事件。(1)
MODE==1 || (MODE==0 && SLEEP(引脚)
链路睡眠与 APP 睡眠相同,但 JESD 链路层时钟被关闭(但 LMFC/LEMC 相位保持不变)。MODE=2
PHY 睡眠与链路睡眠相同,但 JESD PHY 层也处于关闭状态。MODE=3
断电
  • JESD、DSP 和编码器子系统关闭(并保持在复位状态)。
  • LMFC/LEMC、触发器时钟计数器和 NCO 累加器关闭(与 SYSREF 的对齐丢失)。
  • DACCLK 和 SYSREF 接收器(和 LDO)关闭
  • CPLL 关闭
  • 两个 DAC 内核均使用防老化静态代码关闭并静音。
  • 这些子系统保持正常运行(与 MODE 寄存器无关):
    • SPI(包括任何粘滞状态位)
    • 模拟测试总线(如果启用)
    • XOR 测试树(如果已启用)
MODE=7
避免在 APP 层处于睡眠状态时或在将器件置于睡眠状态之前的 1000 个 DACCLK 周期发生任何 DSP 触发事件。这样做会产生不可预知的行为。唤醒 APP 层时,在生成触发事件之前验证 PWR_IDLE 返回 1。如果不遵循此建议,用户可以在 APP 层完全唤醒后生成触发来重新建立可预测的 NCO 参数。
注: 无论当前是哪种功耗模式,如果 SYS_EN 为低电平,则会禁用各种元件。有关详细信息,请参阅 SYS_EN。
注: 无论电源模式如何,如果 JESD_M=0,链路层和 PHY 层都会断电
注: 当从正常操作转换到表 7-74 中的任何其他模式时,输出会在 1000 个 DACCLK 周期内静音。

TX_PIN_FUNC0TX_PIN_FUNC1SYNCB_PIN_FUNC 中的任何一个被设置为 4 时,可以分配 TXEN0/1 或 SYNC 引脚来将器件置于 APP_SLEEP 状态(如果器件已经处于更深的睡眠状态,则不会产生任何影响)。