ZHCABZ5A November   2021  – December 2022 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1

 

  1.   F2800x 器件的硬件设计指南
  2.   商标
  3. 1引言
  4. 2典型的 F2800x 系统方框图
  5. 3原理图设计
    1. 3.1 封装和器件决策
      1. 3.1.1 F2800x 器件
        1. 3.1.1.1 TMS320F28004x
        2. 3.1.1.2 TMS320F28002x
        3. 3.1.1.3 TMS320F28003x
        4. 3.1.1.4 TMS320F280013x
      2. 3.1.2 迁移指南
      3. 3.1.3 引脚复用 (PinMux) 工具
      4. 3.1.4 可配置逻辑块
    2. 3.2 数字 IO
      1. 3.2.1 通用输入/输出
      2. 3.2.2 集成外设和 X-BAR
      3. 3.2.3 控制外设
      4. 3.2.4 通信外设
      5. 3.2.5 引导引脚和引导外设
    3. 3.3 模拟 IO
      1. 3.3.1 模拟外设
      2. 3.3.2 选择模拟引脚
      3. 3.3.3 内部与外部模拟基准
      4. 3.3.4 ADC 输入
      5. 3.3.5 驱动选项
      6. 3.3.6 低通/抗混叠滤波器
    4. 3.4 电源
      1. 3.4.1 电源要求
      2. 3.4.2 电源时序
      3. 3.4.3 VDD 稳压器
        1. 3.4.3.1 内部与外部稳压器
        2. 3.4.3.2 内部 LDO 与内部直流/直流稳压器
      4. 3.4.4 功耗
      5. 3.4.5 功率计算
    5. 3.5 XRSn 和系统复位
    6. 3.6 计时
      1. 3.6.1 内部与外部振荡器
    7. 3.7 调试和仿真
      1. 3.7.1 JTAG/cJTAG
      2. 3.7.2 调试探针
    8. 3.8 未使用的引脚
  6. 4PCB 布局设计
    1. 4.1 布局设计概述
      1. 4.1.1 建议的布局实践
      2. 4.1.2 电路板尺寸
      3. 4.1.3 层堆叠
    2. 4.2 建议的电路板布局布线
    3. 4.3 放置元件
      1. 4.3.1 电力电子元件注意事项
    4. 4.4 接地层
    5. 4.5 模拟和数字分离
    6. 4.6 信号布线的引线和过孔
    7. 4.7 散热注意事项
  7. 5EOS、EMI/EMC 和 ESD 注意事项
    1. 5.1 电气过载
    2. 5.2 电磁干扰和电磁兼容性
    3. 5.3 静电放电
  8. 6最终详细信息和检查清单
  9. 7参考文献
  10. 8修订历史记录

驱动选项

为了获得出色性能,应使用高速运算放大器缓冲级驱动 ADC。该设计具有高速采样、短 S+H 时间和高阻抗源功能。在某些情况下,可以在没有运算放大器的情况下驱动 ADC,但由于 S+H 时间非常长,这通常会导致控制延迟减少。

另一种可能的 ADC 驱动实现是与一个非常大的电容器共享电荷。该方法在采样和信号带宽要求都很慢的系统中效果最好,因为它会导致基于源阻抗的采样率限制。电荷共享可与成本极低的运算放大器结合使用,以支持更快的采样和更高的输入阻抗。有关更多信息,请参阅 C2000 ADC 的充电共享驱动电路