ZHCSS37J may   2009  – january 2021 XIO2001

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
    1.     Pin Assignments
    2.     Pin Descriptions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Handling Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information #GUID-4E9F689A-942D-492C-8F28-F3CC5F1BD0E6/SCPS2129637AN1
    5. 6.5  Nominal Power Consumption
    6. 6.6  PCI Express Differential Transmitter Output Ranges
    7. 6.7  PCI Express Differential Receiver Input Ranges
    8. 6.8  PCI Express Differential Reference Clock Input Ranges #GUID-60875016-888B-4DD4-A309-543B497BAC9F/SCPS1718455
    9. 6.9  PCI Bus Electrical Characteristics
    10. 6.10 3.3-V I/O Electrical Characteristics
    11. 6.11 PCI Bus Timing Requirements
    12. 6.12 Power-Up/-Down Sequencing
      1. 6.12.1 Power-Up Sequence
      2. 6.12.2 Power-Down Sequence
  8. Parameter Measurement Information
    1.     25
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Bridge Reset Features
      2. 8.3.2  PCI Express Interface
        1. 8.3.2.1 2.5-Gb/s Transmit and Receive Links
        2. 8.3.2.2 Transmitter Reference Resistor
        3. 8.3.2.3 Reference Clock
        4. 8.3.2.4 Reset
        5. 8.3.2.5 Beacon
        6. 8.3.2.6 Wake
        7. 8.3.2.7 Initial Flow Control Credits
        8. 8.3.2.8 PCI Express Message Transactions
      3. 8.3.3  PCI Port Arbitration
        1. 8.3.3.1 Classic PCI Arbiter
      4. 8.3.4  Configuration Register Translation
      5. 8.3.5  PCI Interrupt Conversion to PCI Express Messages
      6. 8.3.6  PME Conversion to PCI Express Messages
      7. 8.3.7  PCI Express to PCI Bus Lock Conversion
      8. 8.3.8  Two-Wire Serial-Bus Interface
        1. 8.3.8.1 Serial-Bus Interface Implementation
        2. 8.3.8.2 Serial-Bus Interface Protocol
        3. 8.3.8.3 Serial-Bus EEPROM Application
        4. 8.3.8.4 Accessing Serial-Bus Devices Through Software
      9. 8.3.9  Advanced Error Reporting Registers
      10. 8.3.10 Data Error Forwarding Capability
      11. 8.3.11 General-Purpose I/O Interface
      12. 8.3.12 Set Slot Power Limit Functionality
      13. 8.3.13 PCI Express and PCI Bus Power Management
      14. 8.3.14 Auto Pre-Fetch Agent
    4. 8.4 Register Maps
      1. 8.4.1  Classic PCI Configuration Space
      2. 8.4.2  Vendor ID Register
      3. 8.4.3  Device ID Register
      4. 8.4.4  Command Register
      5. 8.4.5  Status Register
      6. 8.4.6  Class Code and Revision ID Register
      7. 8.4.7  Cache Line Size Register
      8. 8.4.8  Primary Latency Timer Register
      9. 8.4.9  Header Type Register
      10. 8.4.10 BIST Register
      11. 8.4.11 Device Control Base Address Register
      12. 8.4.12 Primary Bus Number Register
      13. 8.4.13 Secondary Bus Number Register
      14. 8.4.14 Subordinate Bus Number Register
      15. 8.4.15 Secondary Latency Timer Register
      16. 8.4.16 I/O Base Register
      17. 8.4.17 I/O Limit Register
      18. 8.4.18 Secondary Status Register
      19. 8.4.19 Memory Base Register
      20. 8.4.20 Memory Limit Register
      21. 8.4.21 Prefetchable Memory Base Register
      22. 8.4.22 Prefetchable Memory Limit Register
      23. 8.4.23 Prefetchable Base Upper 32-Bit Register
      24. 8.4.24 Prefetchable Limit Upper 32-Bit Register
      25. 8.4.25 I/O Base Upper 16-Bit Register
      26. 8.4.26 I/O Limit Upper 16-Bit Register
      27. 8.4.27 Capabilities Pointer Register
      28. 8.4.28 Interrupt Line Register
      29. 8.4.29 Interrupt Pin Register
      30. 8.4.30 Bridge Control Register
      31. 8.4.31 Capability ID Register
      32. 8.4.32 Next Item Pointer Register
      33. 8.4.33 Subsystem Vendor ID Register
      34. 8.4.34 Subsystem ID Register
      35. 8.4.35 Capability ID Register
      36. 8.4.36 Next Item Pointer Register
      37. 8.4.37 Power Management Capabilities Register
      38. 8.4.38 Power Management Control/Status Register
      39. 8.4.39 Power Management Bridge Support Extension Register
      40. 8.4.40 Power Management Data Register
      41. 8.4.41 MSI Capability ID Register
      42. 8.4.42 Next Item Pointer Register
      43. 8.4.43 MSI Message Control Register
      44. 8.4.44 MSI Message Lower Address Register
      45. 8.4.45 MSI Message Upper Address Register
      46. 8.4.46 MSI Message Data Register
      47. 8.4.47 PCI Express Capability ID Register
      48. 8.4.48 Next Item Pointer Register
      49. 8.4.49 PCI Express Capabilities Register
      50. 8.4.50 Device Capabilities Register
      51. 8.4.51 Device Control Register
      52. 8.4.52 Device Status Register
      53. 8.4.53 Link Capabilities Register
      54. 8.4.54 Link Control Register
      55. 8.4.55 Link Status Register
      56. 8.4.56 Serial-Bus Data Register
      57. 8.4.57 Serial-Bus Word Address Register
      58. 8.4.58 Serial-Bus Slave Address Register
      59. 8.4.59 Serial-Bus Control and Status Register
      60. 8.4.60 GPIO Control Register
      61. 8.4.61 GPIO Data Register
      62. 8.4.62 TL Control and Diagnostic Register 0
      63. 8.4.63 Control and Diagnostic Register 1
      64. 8.4.64 Control and Diagnostic Register 2
      65. 8.4.65 Subsystem Access Register
      66. 8.4.66 General Control Register
      67. 8.4.67 Clock Control Register
      68. 8.4.68 Clock Mask Register
      69. 8.4.69 Clock Run Status Register
      70. 8.4.70 Arbiter Control Register
      71. 8.4.71 Arbiter Request Mask Register
      72. 8.4.72 Arbiter Time-Out Status Register
      73. 8.4.73 Serial IRQ Mode Control Register
      74. 8.4.74 Serial IRQ Edge Control Register
      75. 8.4.75 Serial IRQ Status Register
      76. 8.4.76 Pre-Fetch Agent Request Limits Register
      77. 8.4.77 Cache Timer Transfer Limit Register
      78. 8.4.78 Cache Timer Lower Limit Register
      79. 8.4.79 Cache Timer Upper Limit Register
    5. 8.5 PCI Express Extended Configuration Space
      1. 8.5.1  Advanced Error Reporting Capability ID Register
      2. 8.5.2  Next Capability Offset/Capability Version Register
      3. 8.5.3  Uncorrectable Error Status Register
      4. 8.5.4  Uncorrectable Error Mask Register
      5. 8.5.5  Uncorrectable Error Severity Register
      6. 8.5.6  Correctable Error Status Register
      7. 8.5.7  Correctable Error Mask Register
      8. 8.5.8  Advanced Error Capabilities and Control Register
      9. 8.5.9  Header Log Register
      10. 8.5.10 Secondary Uncorrectable Error Status Register
      11. 8.5.11 Secondary Uncorrectable Error Severity
      12. 8.5.12 Secondary Error Capabilities and Control Register
      13. 8.5.13 Secondary Header Log Register
    6. 8.6 Memory-Mapped TI Proprietary Register Space
      1. 8.6.1  Device Control Map ID Register
      2. 8.6.2  Revision ID Register
      3. 8.6.3  GPIO Control Register
      4. 8.6.4  GPIO Data Register
      5. 8.6.5  Serial-Bus Data Register
      6. 8.6.6  Serial-Bus Word Address Register
      7. 8.6.7  Serial-Bus Slave Address Register
      8. 8.6.8  Serial-Bus Control and Status Register
      9. 8.6.9  Serial IRQ Mode Control Register
      10. 8.6.10 Serial IRQ Edge Control Register
      11. 8.6.11 Serial IRQ Status Register
      12. 8.6.12 Pre-Fetch Agent Request Limits Register
      13. 8.6.13 Cache Timer Transfer Limit Register
      14. 8.6.14 Cache Timer Lower Limit Register
      15. 8.6.15 Cache Timer Upper Limit Register
  10. Application, Implementation, and Layout
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 In-Card Implementation
        1. 9.2.1.1 Design Requirements
          1. 9.2.1.1.1 VCCP Clamping Rail
          2. 9.2.1.1.2 Combined Power Outputs
          3. 9.2.1.1.3 Auxiliary Power
          4. 9.2.1.1.4 VSS and VSSA Pins
          5. 9.2.1.1.5 Capacitor Selection Recommendations
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 PCI Bus Interface
            1. 9.2.1.2.1.1 Bus Parking
            2. 9.2.1.2.1.2 I/O Characteristics
            3. 9.2.1.2.1.3 Clamping Voltage
            4. 9.2.1.2.1.4 PCI Bus Clock Run
            5. 9.2.1.2.1.5 PCI Bus External Arbiter
            6. 9.2.1.2.1.6 MSI Messages Generated from the Serial IRQ Interface
            7. 9.2.1.2.1.7 PCI Bus Clocks
      2. 9.2.2 External EEPROM
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
      3. 9.2.3 JTAG Interface
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
      4. 9.2.4 Combined Power
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
      5. 9.2.5 Power Filtering
        1. 9.2.5.1 Design Requirements
        2. 9.2.5.2 Detailed Design Procedure
    3. 9.3 Layout
      1. 9.3.1 Layout Guidelines
      2. 9.3.2 Layout Example
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 1.5-V and 3.3-V Digital Supplies
      2. 9.4.2 1.5-V and 3.3-V Analog Supplies
      3. 9.4.3 1.5-V PLL Supply
      4. 9.4.4 Power-Up/Down Sequencing
      5. 9.4.5 Power Supply Filtering Recommendations
  11. 10Device and Documentation Support
    1. 10.1 Documents Conventions
      1. 10.1.1 XIO2001 Definition
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documents
        1. 10.2.1.1 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Bridge Reset Features

There are five bridge reset options that include internally-generated power-on reset, resets generated by asserting input terminals, and software-initiated resets that are controlled by sending a PCI Express hot reset or setting a configuration register bit. Table 8-1 identifies these reset sources and describes how the bridge responds to each reset.

Table 8-1 XIO2001 Reset Options
RESET OPTIONXIO2001 FEATURERESET RESPONSE
Bridge internally-generated power-on resetDuring a power-on cycle, the bridge asserts an internal reset and monitors the VDD_15_COMB terminal. When this terminal reaches 90% of the nominal input voltage specification, power is considered stable. After stable power, the bridge monitors the PCI Express reference clock (REFCLK) and waits 10 μs after active clocks are detected. Then, internal power-on reset is deasserted.When the internal power-on reset is asserted, all control registers, state machines, sticky register bits, and power management state machines are initialized to their default state.
In addition, the XIO2001 asserts the internal PCI bus reset.
Global reset input
GRST
When GRST is asserted low, an internal power-on reset occurs. This reset is asynchronous and functions during both normal power states and VAUX power states.When GRST is asserted low, all control registers, state machines, sticky register bits, and power management state machines are initialized to their default state. In addition, the bridge asserts PCI bus reset ( PRST). When the rising edge of GRST occurs, the bridge samples the state of all static control inputs and latches the information internally. If an external serial EEPROM is detected, then a download cycle is initiated. Also, the process to configure and initialize the PCI Express link is started. The bridge starts link training within 80 ms after GRST is deasserted.
PCI Express reset input PERSTThis XIO2001 input terminal is used by an upstream PCI Express device to generate a PCI Express reset and to signal a system power good condition.When PERST is asserted low, all control register bits that are not sticky are reset. Within the configuration register maps, the sticky bits are indicated by the ☆ symbol. Also, all state machines that are not associated with sticky functionality are reset.
When PERST is asserted low, the XIO2001 generates an internal PCI Express reset as defined in the PCI Express specification.
When PERST transitions from low to high, a system power good condition is assumed by the XIO2001.In addition, the XIO2001 asserts the internal PCI bus reset.
Note: The system must assert PERST before power is removed, before REFCLK is removed or before REFCLK becomes unstable.When the rising edge of PERST occurs, the XIO2001 samples the state of all static control inputs and latches the information internally. If an external serial EEPROM is detected, then a download cycle is initiated. Also, the process to configure and initialize the PCI Express link is started. The XIO2001 starts link training within 80 ms after PERST is deasserted.
PCI Express training control hot resetThe XIO2001 responds to a training control hot reset received on the PCI Express interface. After a training control hot reset, the PCI Express interface enters the DL_DOWN state.In the DL_DOWN state, all remaining configuration register bits and state machines are reset. All remaining bits exclude sticky bits and EEPROM loadable bits. All remaining state machines exclude sticky functionality and EEPROM functionality.
Within the configuration register maps, the sticky bits are indicated by the ☆ symbol and the EEPROM loadable bits are indicated by the † symbol.
In addition, the XIO2001 asserts the internal PCI bus reset.
PCI bus reset
PRST
System software has the ability to assert and deassert the PRST terminal on the secondary PCI bus interface. This terminal is the PCI bus reset.When bit 6 (SRST) in the bridge control register at offset 3Eh (see Section 8.4.30) is asserted, the bridge asserts the PRST terminal. A 0 in the SRST bit deasserts the PRST terminal.