ZHCACF7A june   2021  – march 2023 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   摘要
  2.   商标
  3. 1引言
    1. 1.1 存储器串扰挑战
    2. 1.2 信号调节电路设计资源
      1. 1.2.1 TI 精密实验室 - SAR ADC 输入驱动器设计系列
      2. 1.2.2 模拟工程师计算器
      3. 1.2.3 相关应用报告
      4. 1.2.4 TINA-TI 基于 SPICE 的模拟仿真程序
      5. 1.2.5 PSPICE for TI
      6. 1.2.6 C2000 MCU 的 ADC 输入电路评估
      7. 1.2.7 C2000 ADC 的电荷共享驱动电路
  4. 2ADC 输入趋稳综述
    1. 2.1 ADC 输入趋稳的机制
    2. 2.2 稳定不足的症状
      1. 2.2.1 失真
      2. 2.2.2 存储器串扰
      3. 2.2.3 精度
    3. 2.3 C2000 ADC 架构
  5. 3问题说明
    1. 3.1 示例系统
    2. 3.2 S+H 趋稳分析
    3. 3.3 电荷共享分析
    4. 3.4 问题总结
  6. 4专用 ADC 采样
    1. 4.1 专用 ADC 概念
    2. 4.2 专用 ADC 的趋稳机制
    3. 4.3 专用 ADC 的设计流程
    4. 4.4 专用 ADC 电路的稳定性能仿真
  7. 5预采样 VREFLO
    1. 5.1 VREFLO 采样概念
    2. 5.2 VREFLO 采样方法误差的属性
    3. 5.3 增益误差补偿
      1. 5.3.1 确定补偿系数的方法
    4. 5.4 VREFLO 采样设计流程
    5. 5.5 讨论 VREFLO 采样序列
  8. 6总结
  9. 7参考文献
  10. 8修订历史记录

ADC 输入趋稳的机制

要将检测到的模拟电压转换为数字转换结果,ADC 必须首先准确地将施加的输入电压捕获到其采样保持电路 (S+H) 中。如图 2-1 所示,这需要在配置的采集窗口时间(也称为 S+H 时间)内,将内部 ADC S+H 电容器 (Ch) 充电至所施加电压的某个可接受容差(通常为 0.5LSB)范围内。

GUID-37FEDD25-34F9-4E4D-A3BE-003BBD8FC904-low.gif图 2-1 ADC S+H 电容器的趋稳

考虑到外部 ADC 驱动器电路的有限带宽和稳定时间以及内部 ADC S+H 电路的稳定时间,快速将 Ch 充电至所施加电压的过程会变得复杂。在图 2-1 中,驱动器显示为具有有限带宽的运算放大器 (OPA320),驱动器电路也有意放置了源电阻 (Rs) 并有意放置了源电容 (Cs),其有限的稳定时间由 RC 时间常数决定。请注意,其他电路拓扑可用于驱动 ADC,这些电路可能具有额外的元件,需要对这些元件进行建模以确保适当的稳定时间。这些元件可能包括无意寄生效应,例如传感器的输出阻抗或分压器的有效源电阻。从图 2-1 还可以看到,ADC 具有内部寄生开关电阻 (Ron)。这与 Ch 一起提供了一个会限制稳定速度的额外 RC 时间常数。