ZHCK029A May   2020  – November 2022 ADC08D1520QML-SP , ADC10D1000QML-SP , ADC12D1600QML-SP , ADC12D1620QML-SP , ADC12DJ3200QML-SP , ADC14155QML-SP , ADS1278-SP , ADS1282-SP , ADS5400-SP , ADS5424-SP , ADS5444-SP , ADS5463-SP , ADS5474-SP , AM26LS33A-SP , CDCLVP111-SP , CDCM7005-SP , DAC121S101QML-SP , DAC5670-SP , DAC5675A-SP , DP83561-SP , DS16F95QML-SP , DS26F31MQML-SP , DS26F32MQML-SP , DS90C031QML-SP , DS90C032QML-SP , DS90LV031AQML-SP , DS90LV032AQML-SP , DS96F174MQML-SP , DS96F175MQML-SP , INA901-SP , LF198JAN-SP , LF198QML-SP , LF411QML-SP , LM101AQML-SP , LM111QML-SP , LM117HVQML-SP , LM117QML-SP , LM119QML-SP , LM124-SP , LM124AQML-SP , LM136A-2.5QML-SP , LM137JAN-SP , LM137QML-SP , LM139-SP , LM139AQML-SP , LM148JAN-SP , LM158QML-SP , LM185-1.2QML-SP , LM185-2.5QML-SP , LM193QML-SP , LM2940QML-SP , LM2941QML-SP , LM4050QML-SP , LM6172QML-SP , LM7171QML-SP , LM723JAN-SP , LM98640QML-SP , LMH5401-SP , LMH6628QML-SP , LMH6702QML-SP , LMH6715QML-SP , LMK04832-SP , LMP2012QML-SP , LMP7704-SP , LMX2615-SP , LP2953QML-SP , MSP430FR5969-SP , OPA4277-SP , SE555-SP , SMJ320C6701-SP , SMV320C6727B-SP , SMV512K32-SP , SN54AC00-SP , SN54AC02-SP , SN54AC14-SP , SN54AC244-SP , SN54AC245-SP , SN54AC373-SP , SN54AC74-SP , SN54ACT04-SP , SN54ACT244-SP , SN54ACT245-SP , SN54ACT373-SP , SN54ACT374-SP , SN54AHC244-SP , SN54AHC245-SP , SN54AHCT08-SP , SN54AHCT14-SP , SN54ALS244C-SP , SN54HC00-SP , SN54HC02-SP , SN54HC04-SP , SN54HC08-SP , SN54HC10-SP , SN54HC109-SP , SN54HC11-SP , SN54HC132-SP , SN54HC138-SP , SN54HC139-SP , SN54HC14-SP , SN54HC153-SP , SN54HC157-SP , SN54HC161-SP , SN54HC164-SP , SN54HC166-SP , SN54HC20-SP , SN54HC244-SP , SN54HC245-SP , SN54HC273-SP , SN54HC32-SP , SN54HC373-SP , SN54HC374-SP , SN54HC573A-SP , SN54HC595-SP , SN54HC74-SP , SN54HCT04-SP , SN54HCT244-SP , SN54HCT245-SP , SN54HCT373-SP , SN54LS00-SP , SN54LS02-SP , SN54LS04-SP , SN54LS08-SP , SN54LS10-SP , SN54LS123-SP , SN54LS138-SP , SN54LS139A-SP , SN54LS14-SP , SN54LS145-SP , SN54LS161A-SP , SN54LS164-SP , SN54LS165A-SP , SN54LS193-SP , SN54LS240-SP , SN54LS244-SP , SN54LS245-SP , SN54LS26-SP , SN54LS273-SP , SN54LS283-SP , SN54LS32-SP , SN54LS373-SP , SN54LS393-SP , SN54LS74A-SP , SN54LVC00A-SP , SN54LVC138A-SP , SN54LVC14A-SP , SN54LVC646A-SP , SN54LVC74A-SP , SN54LVCH244A-SP , SN54LVCH245A-SP , SN54LVTH162244-SP , SN54LVTH162245-SP , SN54LVTH162373-SP , SN54LVTH162374-SP , SN54LVTH16244A-SP , SN54LVTH16245A-SP , SN54LVTH244A-SP , SN54LVTH245A-SP , SN54LVTH574-SP , SN55182-SP , SN55183-SP , SN55HVD233-SP , SN55LVCP22-SP , SN55LVCP22A-SP , SN55LVDS31-SP , SN55LVDS32-SP , SN55LVDS33-SP , THS4304-SP , THS4511-SP , THS4513-SP , TL1431-SP , TLC2201-SP , TLK2711-SP , TPS50601-SP , TPS50601A-SP , TPS7A4501-SP , TPS7H1101-SP , TPS7H1101A-SP , TPS7H1111-SP , TPS7H2201-SP , TPS7H2211-SP , TPS7H3301-SP , TPS7H4001-SP , TPS7H4002-SP , TPS7H5001-SP , TPS7H5002-SP , TPS7H5003-SP , TPS7H5004-SP , TPS7H6003-SP , TRF0206-SP , UC1525B-SP , UC1611-SP , UC1625-SP , UC1637-SP , UC1705-SP , UC1707-SP , UC1708-SP , UC1709-SP , UC1710-SP , UC1715-SP , UC1823A-SP , UC1825-SP , UC1825A-SP , UC1825B-SP , UC1832-SP , UC1834-SP , UC1842-SP , UC1842A-SP , UC1843-SP , UC1843A-SP , UC1843B-SP , UC1844-SP , UC1844A-SP , UC1845-SP , UC1845A-SP , UC1846-SP , UC1856-SP , UC1863-SP , UC1875-SP , UC1901-SP , UC19432-SP , UCC1806-SP

 

  1.   单粒子效应 (SEE) 置信区间计算
  2. 1引言
  3. 2参考文献
  4. 3Revision History

引言

由于在整个暴露过程中通常观察到少量事件,甚至观察不到任何事件,因此确定具有强大耐辐射功能的器件的 SEE 截面变得愈发困难。使用具有标准偏差的平均事件发生率来确定截面不再可行,并且假设在结果为零时发生单个错误的常见做法会最终导致截面被大大低估。

在观察到少量事件或观察不到事件的情况下,建议使用置信区间和卡方分布。卡方分布特别适合在事件以恒定速率发生时用于确定可靠性级别。在 SEE 测试中,如果在辐照区域内离子事件的时间和位置随机,则预计事件发生率与时间无关(假设总电离剂量引起的参数偏移不会影响故障率),因此,使用卡方统计技术是有效的(由于事件非常少,通常使用指数分布或泊松分布)。

在典型的 SEE 实验中,将待测器件 (DUT) 暴露在已知的固定通量(离子/cm2)中,同时监控 DUT 上是否发生事件。这类似于固定时间可靠性测试,更具体地说,是定时截尾测试,即在固定时间后,无论是否发生故障,可靠性测试都会终止(在 SEE 测试中,用通量代替时间,因此是固定通量测试)[1]。计算置信区间专门提供了一系列值,其中可能包含所需参数(实际事件数/通量)。置信区间是在特定的置信水平上构建的。例如,95% 的置信水平意味着,如果对给定数量的器件进行多次采样并且估算每次测试的置信区间,那么生成的置信区间将在大约 95% 的情况下包含真实的总体参数。

要使用置信区间从零结果(给定通量下未观察到任何事件)估算截面,请先确定固定时间测试的下限(最小)平均失效前时间的标准可靠性(假定为指数分布):

Equation1. GUID-79E3056F-E9A9-4FB5-AA83-964B9C05F3A6-low.gif

其中

  • MTTF 是最小(下限)平均失效前时间
  • n 是待测器件数(假设每个器件在相同条件下进行测试)
  • T 是测试时间
  • x2 是在 100(1 – α / 2) 置信水平下评估的卡方分布
  • d 是自由度(观察到的事件数)

本文稍作修改,对不等式进行倒数计算并用 F(通量)代替 T:

Equation2. GUID-EA6E8C5B-5DFA-4EF8-8A79-AE6FED03534A-low.gif

其中

  • MFTF 是平均失效前通量
  • F 是测试通量
  • x2 是在 100(1 – α / 2) 置信水平下评估的卡方分布
  • d 是自由度(观察到的故障数)

MTTF 和事件发生率之间的反比关系可用于 MFTF。因此,上限截面等于 MFTF 的倒数:

Equation3. GUID-088604AE-E49F-4DB0-9BE4-ACD2768C0705-low.gif

假设所有测试均在总通量为 106 离子/cm2 时终止。此外,假设在相同条件下测试多个性能差异较大的器件。假设置信水平为 95% (σ = 0.05)。请注意,随着 d 从零事件增加至 100 个事件,实际置信区间会变小,这表示总体参数(在本例中为截面)的真实值范围接近平均值 + 1 标准偏差。这样就解释了为何随着观察到的事件越多,统计信息可以得到优化,从而降低实际器件性能的不确定性。

表 1-1 平均失效前通量 (MFTF) 以及 σ 的实验示例计算(使用 95% 置信水平)(1)
自由度 (d)2(d + 1)χ2 @ 95%计算的截面 (cm2)
上限 @ 95% 置信水平MEAN平均值 + 标准偏差
027.383.69E–060.00E+000.00E+00
1411.145.57E–061.00E–062.00E–06
2614.457.22E–062.00E–063.41E–06
3817.538.77E–063.00E–064.73E–06
41020.481.02E–054.00E–066.00E–06
51223.341.17E–055.00E–067.24E–06
102236.781.84E–051.00E–051.32E–05
50102131.846.59E–055.00E–055.71E–05
100202243.251.22E–041.00E–041.10E–04
针对多个不同的观察结果(在固定通量测试期间,d = 0、1、2...100 个观察到的事件)使用 95% 的置信水平,并假设每个测试的通量为 106 离子/cm2