ZHCUBR5A October   2022  – February 2024

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. CLLLC 系统说明
    1. 1.1 主要系统规格
  8. CLLLC 系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项和系统设计原理
      1. 2.2.1 谐振回路设计
        1. 2.2.1.1 电压增益
        2. 2.2.1.2 变压器增益比设计 (NCLLLC)
        3. 2.2.1.3 磁化电感选择 (Lm)
        4. 2.2.1.4 谐振电感器和电容器选择(Lrp 和 Crp)
      2. 2.2.2 电流和电压检测
        1. 2.2.2.1 VPRIM 电压检测
        2. 2.2.2.2 VSEC 电压检测
        3. 2.2.2.3 ISEC 电流检测
        4. 2.2.2.4 ISEC 谐振回路和 IPRIM 谐振回路
        5. 2.2.2.5 IPRIM 电流检测
        6. 2.2.2.6 保护(CMPSS 和 X-Bar)
      3. 2.2.3 PWM 调制
  9. 图腾柱 PFC 系统说明
    1. 3.1 图腾柱无桥 PFC 的优势
    2. 3.2 图腾柱无桥 PFC 运行
    3. 3.3 主要系统规格
    4. 3.4 系统概述
      1. 3.4.1 方框图
    5. 3.5 系统设计原理
      1. 3.5.1 PWM
      2. 3.5.2 电流环路模型
      3. 3.5.3 直流母线调节环路
      4. 3.5.4 过零附近的软启动可消除或减少电流尖峰
      5. 3.5.5 电流计算
      6. 3.5.6 电感器计算
      7. 3.5.7 输出电容器计算
      8. 3.5.8 电流和电压感应
  10. 重点产品
    1. 4.1 C2000 MCU TMS320F28003x
    2. 4.2 LMG352xR30-Q1
    3. 4.3 UCC21222-Q1
    4. 4.4 AMC3330-Q1
    5. 4.5 AMC3302-Q1
  11. 硬件、软件、测试要求和测试结果
    1. 5.1 所需的硬件和软件
      1. 5.1.1 硬件设置
        1. 5.1.1.1 控制卡设置
      2. 5.1.2 软件
        1. 5.1.2.1 在 Code Composer Studio 中打开工程
        2. 5.1.2.2 工程结构
    2. 5.2 测试和结果
      1. 5.2.1 测试设置(初始)
      2. 5.2.2 CLLLC 测试程序
        1. 5.2.2.1 实验 1.初级到次级功率流,开环检查 PWM 驱动器
        2. 5.2.2.2 实验 2.初级到次级功率流,开环检查 PWM 驱动器和 ADC,具有保护功能,次级连接阻性负载
          1. 5.2.2.2.1 设置实验 2 的软件选项
          2. 5.2.2.2.2 生成和加载工程以及设置调试环境
          3. 5.2.2.2.3 使用实时仿真
          4. 5.2.2.2.4 运行代码
          5. 5.2.2.2.5 测量电压环路的 SFRA 装置
          6. 5.2.2.2.6 验证有源同步整流
          7. 5.2.2.2.7 测量电流环路的 SFRA 装置
        3. 5.2.2.3 实验 3.初级到次级功率流,闭合电压环路检查,次级连接阻性负载
          1. 5.2.2.3.1 设置实验 3 的软件选项
          2. 5.2.2.3.2 生成和加载工程以及设置调试环境
          3. 5.2.2.3.3 运行代码
          4. 5.2.2.3.4 测量闭合电压环路的 SFRA
        4. 5.2.2.4 实验 4.初级到次级功率流,闭合电流环路检查,次级连接阻性负载
          1. 5.2.2.4.1 设置实验 4 的软件选项
          2. 5.2.2.4.2 生成和加载项目以及设置调试
          3. 5.2.2.4.3 运行代码
          4. 5.2.2.4.4 测量闭合电流环路的 SFRA
        5. 5.2.2.5 实验 5.初级到次级功率流,闭合电流环路检查,次级连接与电压源并联的阻性负载,以模拟次级侧的电池连接
          1. 5.2.2.5.1 设置实验 5 的软件选项
          2. 5.2.2.5.2 设计电流环路补偿器
          3. 5.2.2.5.3 生成和加载项目以及设置调试
          4. 5.2.2.5.4 运行代码
          5. 5.2.2.5.5 在电池仿真模式下测量闭合电流环路的 SFRA
      3. 5.2.3 TTPLPFC 测试程序
        1. 5.2.3.1 实验 1:开环,直流
          1. 5.2.3.1.1 设置 BUILD 1 的软件选项
          2. 5.2.3.1.2 构建和加载工程
          3. 5.2.3.1.3 设置调试环境窗口
          4. 5.2.3.1.4 使用实时仿真
          5. 5.2.3.1.5 运行代码
        2. 5.2.3.2 实验 2:闭合电流环路,直流
          1. 5.2.3.2.1 设置 BUILD 2 的软件选项
          2. 5.2.3.2.2 设计电流环路补偿器
          3. 5.2.3.2.3 构建和加载工程以及设置调试
          4. 5.2.3.2.4 运行代码
        3. 5.2.3.3 实验 3:闭合电流环路,交流
          1. 5.2.3.3.1 设置实验 3 的软件选项
          2. 5.2.3.3.2 构建和加载工程以及设置调试
          3. 5.2.3.3.3 运行代码
        4. 5.2.3.4 实验 4:闭合电压和电流环路
          1. 5.2.3.4.1 设置 BUILD 4 的软件选项
          2. 5.2.3.4.2 构建和加载工程以及设置调试
          3. 5.2.3.4.3 运行代码
      4. 5.2.4 测试结果
        1. 5.2.4.1 效率
        2. 5.2.4.2 系统性能
        3. 5.2.4.3 波特图
        4. 5.2.4.4 效率和调节数据
        5. 5.2.4.5 散热数据
        6. 5.2.4.6 PFC 波形
        7. 5.2.4.7 CLLLC 波形
  12. 设计文件
    1. 6.1 原理图
    2. 6.2 物料清单
    3. 6.3 Altium 工程
    4. 6.4 Gerber 文件
  13. 软件文件
  14. 相关文档
    1. 8.1 商标
  15. 术语
  16. 10作者简介
  17. 11修订历史记录
运行代码
  1. 点击 GUID-1422141C-F20E-4C7C-9710-E92D611A82B4-low.png 以运行工程
  2. 现在,通过向 CLLLC_clearTrip 变量写入 1 来清除跳闸。由于 CLLLC_closeGvLoop 变量尚未被设置为 0,因此转换器将在开环模式下运行。由于固件中未实现软启动,因此首先手动软启动初级侧和次级侧的电压。
  3. 在监视视图中,检查 CLLLC_vPrimSensed_Volts、CLLLC_iPrimSensed_Amps、CLLLC_vSecSensed_Volts 和 CLLLC_iSecSensed_Amps 变量是否定期更新。(注意:由于现在未通电,因此这些变量将接近于零。)
  4. 现在,缓慢地将输入 PRIM 直流电压从 0V 增加至 400V,以软启动转换器。确保 CLLLC_vPrimSensed_Volts 显示正确的 VPRIM 值(即接近 400V)。
  5. 默认情况下,CLLLC_pwmPeriodRef_pu 变量被设置为 0.599,即 500.8kHz。这接近转换器的串联谐振频率;然而,由于实际硬件上的元件变化,该值可能低于或高于串联谐振频率。
  6. 对于 400V 初级输入,匝数比为 1.33,CLLLC_vSecSensed_Volts 变量将接近 300V。将 CLLLC_vSecRef_Volts 变量设置为 300V。
  7. 现在,将 CLLLC_closeGvLoop 变量设置为 1。这将使电压环路闭合,控制器现在将尝试调节电压。
  8. 通过将 CLLC_vSecRef_Volts 从 295V 改变为 320V 来测试闭环运行。用户将观察到 CLLLC_vSecSensed_Volts 会跟踪此命令基准。转换器将在低于串联谐振时、谐振时和高于谐振时运行。现在,将电压更改回至 300V 以运行 SFRA。