SWCU195A December   2024  – May 2025 CC2744R7-Q1 , CC2745P10-Q1 , CC2745R10-Q1 , CC2745R7-Q1 , CC2755P10 , CC2755R10

 

  1.   1
  2.   Read This First
    1.     About This Manual
    2.     Devices
    3.     Register, Field, and Bit Calls
    4.     Related Documentation
    5.     Trademarks
  3. Architectural Overview
    1. 1.1  Target Applications
    2. 1.2  Introduction
    3. 1.3  Arm Cortex M33
      1. 1.3.1 Processor Core
      2. 1.3.2 SysTick Timer
      3. 1.3.3 Nested Vectored Interrupt Controller
      4. 1.3.4 System Control Block (SCB)
      5. 1.3.5 TI Machine Learning Instruction Extensions
    4. 1.4  On-Chip Memory
      1. 1.4.1 SRAM
      2. 1.4.2 FLASH
      3. 1.4.3 ROM
    5. 1.5  Power Supply System
      1. 1.5.1 VDDS
      2. 1.5.2 VDDIO
      3. 1.5.3 VDDR
      4. 1.5.4 VDDD Digital Core Supply
      5. 1.5.5 DC/DC Converter
    6. 1.6  Radio
    7. 1.7  Hardware Security Module
    8. 1.8  AES 128-Bit Cryptographic Accelerator
    9. 1.9  System Timer (SYSTIM)
    10. 1.10 General Purpose Timers (LGPT)
    11. 1.11 Always-ON (AON) or Ultra-Low Leakage (ULL) Domain
      1. 1.11.1 Watchdog Timer
      2. 1.11.2 Battery and Temperature Monitor
      3. 1.11.3 Voltage Glitch Monitor (VGM)
      4. 1.11.4 Real-Time Clock (RTC)
      5. 1.11.5 Low Power Comparator
    12. 1.12 Direct Memory Access
    13. 1.13 System Control and Clock
    14. 1.14 Communication Peripherals
      1. 1.14.1 UART
      2. 1.14.2 I2C
      3. 1.14.3 SPI
      4. 1.14.4 CAN-FD
      5. 1.14.5 I2S
    15. 1.15 Programmable I/Os
    16. 1.16 Algorithm Processing Unit (APU)
    17. 1.17 Serial Wire Debug (SWD)
  4. Arm® Cortex®-M33 Processor
    1. 2.1 Arm® Cortex®-M33 Processor Introduction
    2. 2.2 M33 Instantiation Parameters
    3. 2.3 Arm® Cortex®-M33 System Peripheral Details
      1. 2.3.1 Floating Point Unit (FPU)
      2. 2.3.2 Memory Protection Unit (MPU)
      3. 2.3.3 Digital Signal Processing (DSP)
      4. 2.3.4 Security Attribution Unit (SAU)
      5. 2.3.5 System Timer (SysTick)
      6. 2.3.6 Nested Vectored Interrupt Controller (NVIC)
      7. 2.3.7 System Control Block (SCB)
      8. 2.3.8 System Control Space (SCS)
    4. 2.4 CPU Sub-System Peripheral Details
      1. 2.4.1 Trace Port Interface Unit (TPIU)
      2. 2.4.2 DAP Bridge and Debug Authentication
      3. 2.4.3 Implementation Defined Attribution Unit (IDAU)
      4. 2.4.4 Custom Datapath Extension (CDE)
    5. 2.5 Programming Model
      1. 2.5.1 Modes of Operation and Execution
        1. 2.5.1.1 Security States
        2. 2.5.1.2 Operating Modes
        3. 2.5.1.3 Operating States
        4. 2.5.1.4 Privileged Access and Unprivileged User Access
      2. 2.5.2 Instruction Set Summary
      3. 2.5.3 Memory Model
        1. 2.5.3.1 Private Peripheral Bus
        2. 2.5.3.2 Unaligned Accesses
      4. 2.5.4 Processor Core Registers Summary
      5. 2.5.5 Exceptions
        1. 2.5.5.1 Exception Handling and Prioritization
    6. 2.6 TrustZone-M
      1. 2.6.1 Overview
      2. 2.6.2 M33 Configuration
      3. 2.6.3 Description of Elements
        1. 2.6.3.1 IDAU (Implementation Defined Attribution Unit)
          1. 2.6.3.1.1 Expected Use
        2. 2.6.3.2 Gaskets
          1. 2.6.3.2.1 Periphery Gasket
          2. 2.6.3.2.2 Controller Gasket
        3. 2.6.3.3 Memories
        4. 2.6.3.4 TCM
      4. 2.6.4 TCM Registers
    7. 2.7 Arm® Cortex®-M33 Registers
      1. 2.7.1  CPU_ROM_TABLE Registers
      2. 2.7.2  TPIU Registers
      3. 2.7.3  DCB Registers
      4. 2.7.4  DIB Registers
      5. 2.7.5  DWT Registers
      6. 2.7.6  FPB Registers
      7. 2.7.7  FPE Registers
      8. 2.7.8  ICB Registers
      9. 2.7.9  ITM Registers
      10. 2.7.10 MPU Registers
      11. 2.7.11 NVIC Registers
      12. 2.7.12 SAU Registers
      13. 2.7.13 SCB Registers
      14. 2.7.14 SYSTIMER Registers
      15. 2.7.15 SYSTICK Registers
      16. 2.7.16 Clock Control
      17. 2.7.17 Protocol Descriptions
      18. 2.7.18 Reset Considerations
        1. 2.7.18.1 Hardware Reset Considerations
      19. 2.7.19 Initialization
      20. 2.7.20 Interrupt and Event Support
        1. 2.7.20.1 Connection to Event Fabric
      21. 2.7.21 Power Management
  5. Memory Map
    1. 3.1 Memory Map
  6. Interrupts and Events
    1. 4.1 Exception Model
      1. 4.1.1 Exception States
      2. 4.1.2 Exception Types
      3. 4.1.3 Exception Handlers
      4. 4.1.4 Vector Table
      5. 4.1.5 Exception Priorities
      6. 4.1.6 Interrupt Priority Grouping
      7. 4.1.7 Exception Entry and Return
        1. 4.1.7.1 Exception Entry
        2. 4.1.7.2 Exception Return
    2. 4.2 Fault Handling
      1. 4.2.1 Fault Types
      2. 4.2.2 Fault Escalation to HardFault
      3. 4.2.3 Fault Status Registers and Fault Address Registers
      4. 4.2.4 Lockup
    3. 4.3 Security State Switches
    4. 4.4 Event Fabric
      1. 4.4.1 Introduction
      2. 4.4.2 Overview
      3. 4.4.3 Registers
      4. 4.4.4 AON Event Fabric
        1. 4.4.4.1 AON Common Input Events List
        2. 4.4.4.2 AON Event Subscribers
        3. 4.4.4.3 Power Management Controller (PMCTL)
        4. 4.4.4.4 Real Time Clock (RTC)
        5. 4.4.4.5 AON to MCU Event Fabric
      5. 4.4.5 MCU Event Fabric
        1. 4.4.5.1 Common Input Event List
        2. 4.4.5.2 MCU Event Subscribers
          1. 4.4.5.2.1 System CPU
          2. 4.4.5.2.2 Non-Maskable Interrupt (NMI)
    5. 4.5 Digital Test Bus (DTB)
    6. 4.6 EVTSVT Registers
    7. 4.7 EVTULL Registers
  7. Debug Subsystem
    1. 5.1  Introduction
    2. 5.2  Block Diagram
    3. 5.3  Overview
      1. 5.3.1 Physical Interface
      2. 5.3.2 Debug Access Ports
    4. 5.4  Debug Features
      1. 5.4.1 Processor Debug
      2. 5.4.2 Breakpoint Unit (BPU)
      3. 5.4.3 Peripheral Debug
    5. 5.5  Behavior in Low Power Modes
    6. 5.6  Restricting Debug Access
    7. 5.7  Mailbox (DSSM)
    8. 5.8  Mailbox Events
      1. 5.8.1 CPU Interrupt Event (AON_DBG_COMB)
    9. 5.9  Software Considerations
    10. 5.10 DBGSS Registers
  8. Power, Reset, and Clocking
    1. 6.1 Introduction
    2. 6.2 System CPU Modes
    3. 6.3 Supply System
      1. 6.3.1 Internal DC/DC Converter and Global LDO
    4. 6.4 Power States
      1. 6.4.1 RESET
      2. 6.4.2 SHUTDOWN
      3. 6.4.3 ACTIVE
      4. 6.4.4 IDLE
      5. 6.4.5 STANDBY
      6. 6.4.6 PMCTL Registers
    5. 6.5 Digital Power Partitioning
    6. 6.6 Clocks
      1. 6.6.1 Block Diagram
      2. 6.6.2 LF clock
        1. 6.6.2.1 LFINC Measurement Mechanism
        2. 6.6.2.2 LFINC Filtering
      3. 6.6.3 HFOSC
        1. 6.6.3.1 HFOSC Control and Qualification
        2. 6.6.3.2 HFOSC Tracking Loop
      4. 6.6.4 AFOSC
        1. 6.6.4.1 AFOSC Control and Qualification
        2. 6.6.4.2 AFOSC Tracking Loop
        3. 6.6.4.3 AFOSC Ratio
      5. 6.6.5 CLKSVT
      6. 6.6.6 CLKULL
      7. 6.6.7 CKM Registers
      8. 6.6.8 CKMD Registers
      9. 6.6.9 CLKCTL Registers
    7. 6.7 Resets
      1. 6.7.1 Watchdog Timer (WDT)
      2. 6.7.2 RTC Reset
      3. 6.7.3 LF Loss Detection
    8. 6.8 AON (REG3V3) Register Bank
  9. Internal Memory
    1. 7.1 SRAM
      1. 7.1.1 Overview
        1. 7.1.1.1 Purpose of the Peripheral
        2. 7.1.1.2 Features
        3. 7.1.1.3 Functional Block Diagram
      2. 7.1.2 Peripheral Functional Description
        1. 7.1.2.1 Parity Error Detection
          1. 7.1.2.1.1 Parity Error Debug Register
        2. 7.1.2.2 Extension Mode
        3. 7.1.2.3 Initialization
        4. 7.1.2.4 TrustZone Watermarking
      3. 7.1.3 SRAM Registers
      4. 7.1.4 SRAMCTRL Registers
    2. 7.2 VIMS
      1. 7.2.1 Overview
        1. 7.2.1.1 Purpose of the Peripheral
        2. 7.2.1.2 Features
        3. 7.2.1.3 Functional Block Diagram
      2. 7.2.2 Peripheral Functional Description
        1. 7.2.2.1 Dedicated 8KB CPU Cache
        2. 7.2.2.2 Dedicated 2KB HSM Cache
        3. 7.2.2.3 Dedicated 128-Bit Line Buffer
        4. 7.2.2.4 ROM
        5. 7.2.2.5 Flash
        6. 7.2.2.6 Auxiliary Regions
        7. 7.2.2.7 Flash Partition and Protection
          1. 7.2.2.7.1 Main Region
          2. 7.2.2.7.2 Read Protection
          3. 7.2.2.7.3 Sticky Write/Erase Protection
        8. 7.2.2.8 TrustZoneTM Watermark
        9. 7.2.2.9 Debug Access
      3. 7.2.3 VIMS Registers
    3. 7.3 FLASH
      1. 7.3.1 FLASH Registers
  10. Hardware Security Module (HSM)
    1. 8.1 Introduction
    2. 8.2 Overview
    3. 8.3 One-Time-Programmable (OTP) Controller
      1. 8.3.1 High-Level Sequence to Handle OTP Requests
    4. 8.4 Mailbox and Register Access Firewall
    5. 8.5 DMA Firewall
    6. 8.6 Coprocessor
    7. 8.7 HSM FW
      1. 8.7.1 Acquiring the Latest HSM FW
      2. 8.7.2 Programming HSM FW
      3. 8.7.3 Optional Customer Signing of HSM FW
    8. 8.8 HSM Registers
    9. 8.9 HSMCRYPTO Registers
  11. Device Boot and Bootloader
    1. 9.1 Device Boot and Programming
      1. 9.1.1 Boot Flow
      2. 9.1.2 Boot Status
      3. 9.1.3 Boot Protection/Locking Mechanisms
      4. 9.1.4 Debug and Active SWD Connections at Boot
        1. 9.1.4.1 Secure Debug and Persistent Debug
      5. 9.1.5 Flashless Test Mode and Tools Client Mode
        1. 9.1.5.1 Flashless Test Mode
        2. 9.1.5.2 Tools Client Mode
      6. 9.1.6 Retest Mode and Return-to-Factory Procedure
      7. 9.1.7 Disabling SWD Debug Port
    2. 9.2 Flash Programming
      1. 9.2.1 CCFG
      2. 9.2.2 CCFG Permissions/Restrictions that Affect Flash Programming
      3. 9.2.3 SACI Flash Programming Commands
      4. 9.2.4 Flash Programming Flows
        1. 9.2.4.1 Initial Programming of a New Device
        2. 9.2.4.2 Reprogramming of Previously Programmed Device
        3. 9.2.4.3 Add User Record on Already Programmed Device as Part of Commissioning Step
        4. 9.2.4.4 Incrementally Program Ancillary Data to MAIN Flash Sectors of a Previously Programmed Device
        5. 9.2.4.5 Reprogramming of Only the Main Flash Application of a Previously Programmed Device
    3. 9.3 Device Management Command Interface
      1. 9.3.1 SACI Communication Protocol
        1. 9.3.1.1 Host Side Protocol
        2. 9.3.1.2 Command Format
        3. 9.3.1.3 Response Format
        4. 9.3.1.4 Response Result Field
        5. 9.3.1.5 Command Sequence Tag
        6. 9.3.1.6 Host Side Timeout
      2. 9.3.2 SACI Commands
        1. 9.3.2.1 Miscellaneous Commands
          1. 9.3.2.1.1 SACI_CMD_MISC_NO_OPERATION
          2. 9.3.2.1.2 SACI_CMD_MISC_GET_DIE_ID
          3. 9.3.2.1.3 SACI_CMD_MISC_GET_CCFG_USER_REC
          4. 9.3.2.1.4 SACI_CMD_GET_SECBOOT_HSMFW_UPDATE_STATUS
          5. 9.3.2.1.5 SACI_CMD_HSM_GET_SYS_INFO
        2. 9.3.2.2 Debug Commands
          1. 9.3.2.2.1 SACI_CMD_DEBUG_EXIT_SACI_HALT
          2. 9.3.2.2.2 SACI_CMD_DEBUG_EXIT_SACI_SHUTDOWN
          3. 9.3.2.2.3 SACI_CMD_DEBUG_REQ_KEY_ID
          4. 9.3.2.2.4 SACI_CMD_DEBUG_REQ_CHALLENGE
          5. 9.3.2.2.5 SACI_CMD_DEBUG_SUBMIT_CHALLENGE_RESP
          6. 9.3.2.2.6 SACI_CMD_DEBUG_CLOSE_SESSION
          7. 9.3.2.2.7 SACI_CMD_BLDR_APP_RESET_DEVICE
          8. 9.3.2.2.8 SACI_CMD_BLDR_APP_EXIT_SACI_RUN
        3. 9.3.2.3 Flash Programming Commands
          1. 9.3.2.3.1  SACI_CMD_FLASH_ERASE_CHIP
          2. 9.3.2.3.2  SACI_CMD_FLASH_ERASE_MAIN_APP
          3. 9.3.2.3.3  SACI_CMD_FLASH_PROG_CCFG_SECTOR
          4. 9.3.2.3.4  SACI_CMD_FLASH_PROG_CCFG_USER_REC
          5. 9.3.2.3.5  SACI_CMD_FLASH_PROG_SCFG_SECTOR
          6. 9.3.2.3.6  SACI_CMD_FLASH_PROG_MAIN_SECTOR
          7. 9.3.2.3.7  SACI_CMD_FLASH_PROG_MAIN_PIPELINED
          8. 9.3.2.3.8  SACI_CMD_FLASH_VERIFY_MAIN_SECTORS
          9. 9.3.2.3.9  SACI_CMD_FLASH_VERIFY_CCFG_SECTOR
          10. 9.3.2.3.10 SACI_CMD_FLASH_VERIFY_SCFG_SECTOR
    4. 9.4 Bootloader Support
      1. 9.4.1 Bootloader v.s Secure Boot
    5. 9.5 ROM Serial Bootloader
      1. 9.5.1 ROM Serial Bootloader Interfaces
        1. 9.5.1.1 Packet Handling
          1. 9.5.1.1.1 Packet Acknowledge and Not-Acknowledge Bytes
        2. 9.5.1.2 Transport Layer
          1. 9.5.1.2.1 UART Transport
            1. 9.5.1.2.1.1 UART Baud Rate Automatic Detection
          2. 9.5.1.2.2 SPI Transport
      2. 9.5.2 ROM Serial Bootloader Parameters
      3. 9.5.3 ROM Serial Bootloader Commands
        1. 9.5.3.1 BLDR_CMD_PING
        2. 9.5.3.2 BLDR_CMD_GET_STATUS
        3. 9.5.3.3 BLDR_CMD_GET_PART_ID
        4. 9.5.3.4 BLDR_CMD_RESET
        5. 9.5.3.5 BLDR_CMD_CHIP_ERASE
        6. 9.5.3.6 BLDR_CMD_CRC32
        7. 9.5.3.7 BLDR_CMD_DOWNLOAD
        8. 9.5.3.8 BLDR_CMD_DOWNLOAD_CRC
        9. 9.5.3.9 BLDR_CMD_SEND_DATA
      4. 9.5.4 Bootloader Firmware Update Example
  12. 10Device Configuration
    1. 10.1 Guidelines for Securely Configuring Your Device
      1. 10.1.1 Enabling and Configuring Secure Boot
      2. 10.1.2 Configure Debug Access
      3. 10.1.3 Configure Flash Protections
      4. 10.1.4 Configure Device Permissions
      5. 10.1.5 Configure HSM FW Update Keys
      6. 10.1.6 Configure emSensor
    2. 10.2 Factory Configuration (FCFG)
    3. 10.3 Customer Configuration (CCFG)
    4. 10.4 Security Configuration (SCFG)
  13. 11Secure Boot
    1. 11.1  Secure Boot
    2. 11.2  Execution Flow
    3. 11.3  ROM API
      1. 11.3.1 HAPI (Hardware API)
      2. 11.3.2 Registers
    4. 11.4  Configuration
      1. 11.4.1 Slot Configuration
      2. 11.4.2 Policy
        1. 11.4.2.1 Authentication Method
        2. 11.4.2.2 Authentication Algorithm
        3. 11.4.2.3 Update Mode
          1. 11.4.2.3.1 Overwrite
          2. 11.4.2.3.2 XIP Revert Enabled/Disabled
      3. 11.4.3 Key Update Key Hash
      4. 11.4.4 Key Ring
      5. 11.4.5 Boot Seed
    5. 11.5  Generic Image Format
    6. 11.6  Application Update
      1. 11.6.1 Image Format
    7. 11.7  Secondary Secure Bootloader Update
      1. 11.7.1 Image Format
      2. 11.7.2 Update Pattern
    8. 11.8  Key Update
      1. 11.8.1 Image Format
    9. 11.9  Antirollback
    10. 11.10 Version Log (VLOG)
      1. 11.10.1 Record structure
    11. 11.11 Fallback
    12. 11.12 ROM Panic
  14. 12General Purpose Timers (LGPT)
    1. 12.1 Overview
    2. 12.2 Block Diagram
    3. 12.3 Functional Description
      1. 12.3.1  Prescaler
      2. 12.3.2  Counter
      3. 12.3.3  Target
      4. 12.3.4  Channel Input Logic
      5. 12.3.5  Channel Output Logic
      6. 12.3.6  Channel Actions
        1. 12.3.6.1 Period and Pulse Width Measurement
        2. 12.3.6.2 Clear on Zero, Toggle on Compare Repeatedly
        3. 12.3.6.3 Set on Zero, Toggle on Compare Repeatedly
      7. 12.3.7  Channel Capture Configuration
      8. 12.3.8  Channel Filters
        1. 12.3.8.1 Setting up the Channel Filters
      9. 12.3.9  Synchronize Multiple LGPT Timers
      10. 12.3.10 Interrupts, ADC Trigger, and DMA Request
    4. 12.4 Timer Modes
      1. 12.4.1 Quadrature Decoder
      2. 12.4.2 DMA
      3. 12.4.3 IR Generation
      4. 12.4.4 Fault and Park
      5. 12.4.5 Deadband
      6. 12.4.6 Deadband, Fault, and Park
      7. 12.4.7 Example Application: Brushless DC (BLDC) Motor
    5. 12.5 LGPT0 Registers
    6. 12.6 LGPT1 Registers
    7. 12.7 LGPT2 Registers
    8. 12.8 LGPT3 Registers
  15. 13Algorithm Processing Unit (APU)
    1. 13.1 Introduction
    2. 13.2 APU Related Collateral
    3. 13.3 Functional Description
    4. 13.4 APU Operation
    5. 13.5 Interrupts and Events
    6. 13.6 Data Representation
    7. 13.7 Data Memory
    8. 13.8 Software
    9. 13.9 APU Registers
  16. 14Voltage Glitch Monitor (VGM)
    1. 14.1 Overview
    2. 14.2 Features and Operation
  17. 15System Timer (SYSTIM)
    1. 15.1 Overview
    2. 15.2 Block Diagram
    3. 15.3 Functional Description
      1. 15.3.1 Common Channel Features
        1. 15.3.1.1 Compare Mode
        2. 15.3.1.2 Capture Mode
        3. 15.3.1.3 Additional Channel Arming Methods
      2. 15.3.2 Interrupts and Events
    4. 15.4 SYSTIM Registers
  18. 16Real Time Clock (RTC)
    1. 16.1 Introduction
    2. 16.2 Block Diagram
    3. 16.3 Interrupts and Events
      1. 16.3.1 Input Event
      2. 16.3.2 Output Event
      3. 16.3.3 Arming and Disarming Channels
    4. 16.4 CAPTURE and COMPARE Configurations
      1. 16.4.1 CHANNEL 0 - COMPARE CHANNEL
      2. 16.4.2 CHANNEL 1—CAPTURE CHANNEL
    5. 16.5 RTC Registers
  19. 17Low Power Comparator (SYS0)
    1. 17.1 Introduction
    2. 17.2 Block Diagram
    3. 17.3 Functional Description
      1. 17.3.1 Input Selection
      2. 17.3.2 Voltage Divider
      3. 17.3.3 Hysteresis
      4. 17.3.4 Wake-Up
    4. 17.4 SYS0 Registers
  20. 18Battery Monitor, Temperature Sensor, and DCDC Controller (PMUD)
    1. 18.1 Introduction
    2. 18.2 Functional Description
      1. 18.2.1 BATMON
      2. 18.2.2 DCDC
    3. 18.3 PMUD Registers
  21. 19Micro Direct Memory Access (µDMA)
    1. 19.1 Introduction
    2. 19.2 Block Diagram
    3. 19.3 Functional Description
      1. 19.3.1  Channel Assignments
      2. 19.3.2  Priority
      3. 19.3.3  Arbitration Size
      4. 19.3.4  Request Types
        1. 19.3.4.1 Single Request
        2. 19.3.4.2 Burst Request
      5. 19.3.5  Channel Configuration
      6. 19.3.6  Transfer Modes
        1. 19.3.6.1 Stop Mode
        2. 19.3.6.2 Basic Mode
        3. 19.3.6.3 Auto Mode
        4. 19.3.6.4 Ping-Pong Mode
        5. 19.3.6.5 Memory Scatter-Gather Mode
        6. 19.3.6.6 Peripheral Scatter-Gather Mode
      7. 19.3.7  Transfer Size and Increments
      8. 19.3.8  Peripheral Interface
      9. 19.3.9  Software Request
      10. 19.3.10 Interrupts and Errors
      11. 19.3.11 Initialization and Configuration
        1. 19.3.11.1 Module Initialization
        2. 19.3.11.2 Configuring a Memory-to-Memory Transfer
        3. 19.3.11.3 Configure the Channel Attributes
        4. 19.3.11.4 Configure the Channel Control Structure
        5. 19.3.11.5 Start the Transfer
        6. 19.3.11.6 Software Considerations
    4. 19.4 DMA Registers
  22. 20Advanced Encryption Standard (AES)
    1. 20.1 Introduction
      1. 20.1.1 AES Performance
    2. 20.2 Functional Description
      1. 20.2.1 Reset Considerations
      2. 20.2.2 Interrupt and Event Support
        1. 20.2.2.1 Interrupt Events and Requests
        2. 20.2.2.2 Connection to Event Fabric
      3. 20.2.3 µDMA
        1. 20.2.3.1 µDMA Example
    3. 20.3 Encryption and Decryption Configuration
      1. 20.3.1  CBC-MAC (Cipher Block Chaining-Message Authentication Code)
      2. 20.3.2  CBC (Cipher Block Chaining) Encryption
      3. 20.3.3  CBC Decryption
      4. 20.3.4  CTR (Counter) Encryption/Decryption
      5. 20.3.5  ECB (Electronic Code Book) Encryption
      6. 20.3.6  ECB Decryption
      7. 20.3.7  CFB (Cipher Feedback) Encryption
      8. 20.3.8  CFB Decryption
      9. 20.3.9  OFB (Open Feedback) Encryption
      10. 20.3.10 OFB Decryption
      11. 20.3.11 PCBC (Propagating Cipher Block Chaining) Encryption
      12. 20.3.12 PCBC Decryption
      13. 20.3.13 CTR-DRBG (Counter-Deterministic Random Bit Generator)
      14. 20.3.14 CCM
    4. 20.4 AES Registers
    5. 20.5 CRYPTO Registers
  23. 21Analog to Digital Converter (ADC)
    1. 21.1 Overview
    2. 21.2 Block Diagram
    3. 21.3 Functional Description
      1. 21.3.1  ADC Core
      2. 21.3.2  Voltage Reference Options
      3. 21.3.3  Resolution Modes
      4. 21.3.4  ADC Clocking
      5. 21.3.5  Power Down Behavior
      6. 21.3.6  Sampling Trigger Sources and Sampling Modes
        1. 21.3.6.1 AUTO Sampling Mode
        2. 21.3.6.2 MANUAL Sampling Mode
      7. 21.3.7  Sampling Period
      8. 21.3.8  Conversion Modes
      9. 21.3.9  ADC Data Format
      10. 21.3.10 Status Register
      11. 21.3.11 ADC Events
        1. 21.3.11.1 CPU Interrupt Event Publisher (INT_EVENT0)
        2. 21.3.11.2 Generic Event Publisher (INT_EVENT1)
        3. 21.3.11.3 DMA Trigger Event Publisher (INT_EVENT2)
        4. 21.3.11.4 Generic Event Subscriber
    4. 21.4 Advanced Features
      1. 21.4.1 Window Comparator
      2. 21.4.2 DMA & FIFO Operation
        1. 21.4.2.1 DMA/CPU Operation in Non-FIFO Mode (FIFOEN=0)
        2. 21.4.2.2 DMA/CPU Operation in FIFO Mode (FIFOEN=1)
        3. 21.4.2.3 DMA/CPU Operation Summary Matrix
      3. 21.4.3 Ad-hoc Single Conversion
    5. 21.5 ADC Registers
  24. 22I/O Controller (IOC)
    1. 22.1  Introduction
    2. 22.2  Block Diagram
    3. 22.3  I/O Mapping and Configuration
      1. 22.3.1 Basic I/O Mapping
      2. 22.3.2 Radio GPO
      3. 22.3.3 Pin Mapping
      4. 22.3.4 DTB Muxing
    4. 22.4  Edge Detection
    5. 22.5  GPIO
    6. 22.6  I/O Pins
    7. 22.7  Unused Pins
    8. 22.8  Debug Configuration
    9. 22.9  IOC Registers
    10. 22.10 GPIO Registers
  25. 23Universal Asynchronous Receiver/Transmitter (UART-LIN)
    1. 23.1 Introduction
    2. 23.2 Block Diagram
    3. 23.3 UART Functional Description
      1. 23.3.1 Transmit and Receive Logic
      2. 23.3.2 Baud Rate Generation
      3. 23.3.3 FIFO Operation
        1. 23.3.3.1 FIFO Remapping
      4. 23.3.4 Data Transmission
      5. 23.3.5 Flow Control
      6. 23.3.6 IrDA Encoding and Decoding
      7. 23.3.7 Interrupts
      8. 23.3.8 Loopback Operation
    4. 23.4 UART-LIN Specification
      1. 23.4.1 Break transmission in UART mode
      2. 23.4.2 Break reception in UART mode
      3. 23.4.3 Break/Synch transmission in LIN mode
      4. 23.4.4 Break/Synch reception in LIN mode
      5. 23.4.5 Dormant mode operation
      6. 23.4.6 Wakeup signal generation
      7. 23.4.7 Wakeup signal detection when device is in active/idle modes
      8. 23.4.8 Wakeup signal detection when device is in standby mode
    5. 23.5 Interface to µDMA
    6. 23.6 Initialization and Configuration
    7. 23.7 UART Registers
  26. 24Serial Peripheral Interface (SPI)
    1. 24.1 Overview
      1. 24.1.1 Features
      2. 24.1.2 Block Diagram
    2. 24.2 Signal Description
    3. 24.3 Functional Description
      1. 24.3.1  Clock Control
      2. 24.3.2  FIFO Operation
        1. 24.3.2.1 Transmit FIFO
        2. 24.3.2.2 Repeated Transmit Operation
        3. 24.3.2.3 Receive FIFO
        4. 24.3.2.4 FIFO Flush
      3. 24.3.3  Interrupts
      4. 24.3.4  Data Format
      5. 24.3.5  Delayed Data Sampling
      6. 24.3.6  Chip Select Control
      7. 24.3.7  Command Data Control
      8. 24.3.8  Protocol Descriptions
        1. 24.3.8.1 Motorola SPI Frame Format
        2. 24.3.8.2 Texas Instruments Synchronous Serial Frame Format
        3. 24.3.8.3 MICROWIRE Frame Format
      9. 24.3.9  CRC Configuration
      10. 24.3.10 Auto CRC Functionality
      11. 24.3.11 Auto Header Functionality
      12. 24.3.12 SPI Status
      13. 24.3.13 Debug Halt
    4. 24.4 µDMA Operation
    5. 24.5 Initialization and Configuration
    6. 24.6 SPI Registers
  27. 25Inter-Integrated Circuit (I2C)
    1. 25.1 Introduction
    2. 25.2 Block Diagram
    3. 25.3 Functional Description
      1. 25.3.1 Functional Overview
        1. 25.3.1.1 Start and Stop Conditions
        2. 25.3.1.2 Data Format with 7-Bit Address
        3. 25.3.1.3 Data Validity
        4. 25.3.1.4 Acknowledge
        5. 25.3.1.5 Arbitration
      2. 25.3.2 Available Speed Modes
      3. 25.3.3 Interrupts
        1. 25.3.3.1 I2C Controller Interrupts
        2. 25.3.3.2 I2C Target Interrupts
      4. 25.3.4 Loopback Operation
      5. 25.3.5 Command Sequence Flowcharts
        1. 25.3.5.1 I2C Controller Command Sequences
        2. 25.3.5.2 I2C Target Command Sequences
    4. 25.4 Initialization and Configuration
    5. 25.5 I2C Registers
  28. 26Inter-IC Sound (I2S)
    1. 26.1  Introduction
    2. 26.2  Block Diagram
    3. 26.3  Clock Architecture
    4. 26.4  Signal Descriptions
    5. 26.5  Functional Description
      1. 26.5.1 Pin Configuration
      2. 26.5.2 Serial Format Configuration
      3. 26.5.3 I2S Format Schematic
        1. 26.5.3.1 Register Configuration
      4. 26.5.4 Left-Justified (LJF)
        1. 26.5.4.1 Register Configuration
      5. 26.5.5 Right-Justified (RJF)
        1. 26.5.5.1 Register Configuration
      6. 26.5.6 DSP
        1. 26.5.6.1 Register Configuration
      7. 26.5.7 Clock Configuration
    6. 26.6  Memory Interface
      1. 26.6.1 Sample Word Length
      2. 26.6.2 Padding Mechanism
      3. 26.6.3 Channel Mapping
      4. 26.6.4 Sample Storage in Memory
      5. 26.6.5 DMA Operation
        1. 26.6.5.1 Start-Up
        2. 26.6.5.2 Operation
        3. 26.6.5.3 Shutdown
    7. 26.7  Samplestamp Generator
      1. 26.7.1 Samplestamp Counters
      2. 26.7.2 Start-Up Triggers
      3. 26.7.3 Samplestamp Capture
      4. 26.7.4 Achieving Constant Audio Latency
    8. 26.8  Error Detection
    9. 26.9  Usage
      1. 26.9.1 Start-Up Sequence
      2. 26.9.2 Shutdown Sequence
    10. 26.10 I2S Configuration Guideline
    11. 26.11 I2S Registers
  29. 27CAN-FD
    1. 27.1 Introduction
    2. 27.2 Functions
    3. 27.3 MCAN Subsystem
    4. 27.4 MCAN Functional Description
      1. 27.4.1 Operating Modes
        1. 27.4.1.1 Software Initialization
        2. 27.4.1.2 Normal Operation
        3. 27.4.1.3 CAN FD Operation
        4. 27.4.1.4 Transmitter Delay Compensation
          1. 27.4.1.4.1 Description
          2. 27.4.1.4.2 Transmitter Delay Compensation Measurement
        5. 27.4.1.5 Restricted Operation Mode
        6. 27.4.1.6 Bus Monitoring Mode
        7. 27.4.1.7 Disabled Automatic Retransmission
          1. 27.4.1.7.1 Frame Transmission in DAR Mode
        8. 27.4.1.8 Power Down (Sleep Mode)
          1. 27.4.1.8.1 MCAN Clock Stop and Wake Operations
          2. 27.4.1.8.2 MCAN Debug Suspend Operation
        9. 27.4.1.9 Test Modes
          1. 27.4.1.9.1 External Loop Back Mode
          2. 27.4.1.9.2 Internal Loop Back Mode
      2. 27.4.2 Timestamp Generation
        1. 27.4.2.1 External Timestamp Counter
        2. 27.4.2.2 Block Diagram
      3. 27.4.3 Timeout Counter
      4. 27.4.4 Rx Handling
        1. 27.4.4.1 Acceptance Filtering
          1. 27.4.4.1.1 Range Filter
          2. 27.4.4.1.2 Filter for specific IDs
          3. 27.4.4.1.3 Classic Bit Mask Filter
          4. 27.4.4.1.4 Standard Message ID Filtering
          5. 27.4.4.1.5 Extended Message ID Filtering
        2. 27.4.4.2 Rx FIFOs
          1. 27.4.4.2.1 Rx FIFO Blocking Mode
          2. 27.4.4.2.2 Rx FIFO Overwrite Mode
        3. 27.4.4.3 Dedicated Rx Buffers
          1. 27.4.4.3.1 Rx Buffer Handling
        4. 27.4.4.4 Debug on CAN Support
          1. 27.4.4.4.1 Filtering for Debug Messages
          2. 27.4.4.4.2 Debug Message Handling
      5. 27.4.5 Tx Handling
        1. 27.4.5.1 Transmit Pause
        2. 27.4.5.2 Dedicated Tx Buffers
        3. 27.4.5.3 Tx FIFO
        4. 27.4.5.4 Tx Queue
        5. 27.4.5.5 Mixed Dedicated Tx Buffers / Tx FIFO
        6. 27.4.5.6 Mixed Dedicated Tx Buffers / Tx Queue
        7. 27.4.5.7 Transmit Cancellation
        8. 27.4.5.8 Tx Event Handling
      6. 27.4.6 FIFO Acknowledge Handling
      7. 27.4.7 MCAN Message RAM
        1. 27.4.7.1 Message RAM Configuration
        2. 27.4.7.2 Rx Buffer and FIFO Element
        3. 27.4.7.3 Tx Buffer Element
        4. 27.4.7.4 Tx Event FIFO Element
        5. 27.4.7.5 Standard Message ID Filter Element
        6. 27.4.7.6 Extended Message ID Filter Element
      8. 27.4.8 Interrupt Requests
    5. 27.5 CC27xx MCAN Wrapper
    6. 27.6 MCAN Clock Enable
    7. 27.7 Additional Notes
    8. 27.8 CANFD Registers
  30. 28Radio
    1. 28.1  Introduction
    2. 28.2  Block Diagram
    3. 28.3  Overview
      1. 28.3.1 Radio Sub-Domains
      2. 28.3.2 Radio RAMs
      3. 28.3.3 Doorbell (DBELL)
        1. 28.3.3.1 Interrupts
        2. 28.3.3.2 GPIO Control
        3. 28.3.3.3 SYSTIM Interface
    4. 28.4  Radio Usage Model
      1. 28.4.1 CRC and Whitening
    5. 28.5  LRFDDBELL Registers
    6. 28.6  LRFDMDM32 Registers
    7. 28.7  LRFDPBE Registers
    8. 28.8  LRFDPBE32 Registers
    9. 28.9  LRFDRFE Registers
    10. 28.10 LRFDRFE32 Registers
    11. 28.11 LRFDRXF Registers
    12. 28.12 LRFDS2R Registers
    13. 28.13 LRFDTRC Registers
    14. 28.14 LRFDTXF Registers
  31. 29Revision History

RTC Registers

Table 16-1 lists the memory-mapped registers for the RTC registers. All register offset addresses not listed in Table 16-1 should be considered as reserved locations and the register contents should not be modified.

Table 16-1 RTC Registers
OffsetAcronymRegister NameSection
0hDESCModule DescriptionSection 16.5.1
4hCTLRTC control RegisterSection 16.5.2
8hARMSETChannel Arming SetSection 16.5.3
ChARMCLRChannel Arming ClearSection 16.5.4
10hTIME250NRTC Lower Time SliceSection 16.5.5
14hTIME1URTC Lower Time SliceSection 16.5.6
18hTIME8URTC Lower Time SliceSection 16.5.7
1ChTIME524MRTC Upper Time SliceSection 16.5.8
20hCH0CC250NChannel0 compare valueSection 16.5.9
24hCH0CC1UChannel0 compare valueSection 16.5.10
28hCH0CC8UChannel0 compare valueSection 16.5.11
38hCH1CC8UChannel1 capture ValueSection 16.5.12
3ChCH1CFGChannel 1 Input ConfigurationSection 16.5.13
44hIMASKInterrupt maskSection 16.5.14
48hRISRaw interrupt statusSection 16.5.15
4ChMISMasked interrupt statusSection 16.5.16
50hISETInterrupt setSection 16.5.17
54hICLRInterrupt clearSection 16.5.18
58hIMSETInterrupt mask setSection 16.5.19
5ChIMCLRInterrupt clearSection 16.5.20
60hEMUEmulationSection 16.5.21
68hDTIMEDelta TimeSection 16.5.22

Complex bit access types are encoded to fit into small table cells. Table 16-2 shows the codes that are used for access types in this section.

Table 16-2 RTC Access Type Codes
Access TypeCodeDescription
Read Type
RRRead
Write Type
WWWrite
Reset or Default Value
-nValue after reset or the default value

16.5.1 DESC Register (Offset = 0h) [Reset = 00000000h]

DESC is shown in Table 16-3.

Return to the Summary Table.

Description Register. This register provides IP module ID, revision information, instance index and standard MMR registers offset.

Table 16-3 DESC Register Field Descriptions
BitFieldTypeResetDescription
31-16MODIDR6442hModule identifier used to uniquely identify this IP.
15-12STDIPOFFR1hStandard IP MMR block offset. Standard IP MMRs are the set of from aggregated IRQ registers till DTB.
0: Standard IP MMRs do not exist
0x1-0xF: Standard IP MMRs begin at offset of (64*STDIPOFF from the base IP address)
11-8INSTIDXR0hIP Instance ID number. If multiple instances of IP exist in the device, this field can identify the instance number (0-15).
7-4MAJREVR1hMajor revision of IP (0-15).
3-0MINREVR0hMinor revision of IP (0-15).

16.5.2 CTL Register (Offset = 4h) [Reset = 00000000h]

CTL is shown in Table 16-4.

Return to the Summary Table.

RTC Control register. This register controls resetting the of RTC counter

Table 16-4 CTL Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0hReserved
0RSTW0hRTC counter reset. Writing 1 to this bit will reset the RTC counter, and cause it to resume counting from 0x0
  • 0h = No effect
  • 1h = Reset the timer.

16.5.3 ARMSET Register (Offset = 8h) [Reset = 00000000h]

ARMSET is shown in Table 16-5.

Return to the Summary Table.

RTC channel mode set register. Read to each bit field of this register provides the current channel mode.
- Read of 1'b0 indicates the channel is unarmed.
- Read of 1'b1 indicates the channel is either in capture or compare mode.
A write to each bitfield of this register the following effect:
- Write of 1'b0 has no effect on channel mode.
- Write of 1'b1 has no effect on the compare channel. While write of 1'b1 for capture channel will arm it in capture mode if it is disabled.

Table 16-5 ARMSET Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1CH1R/W0hArming Channel 1 for capture operation.
  • 0h = No effect on the channel
  • 1h = Enable the Channel 1 for capture operation
0CH0R/W0hNo effect on arming the channel. Read will give the status of the Channel 0.
  • 0h = No effect on the channel
  • 1h = No effect on the compare channel

16.5.4 ARMCLR Register (Offset = Ch) [Reset = 00000000h]

ARMCLR is shown in Table 16-6.

Return to the Summary Table.

RTC channel mode clear register. Read to each bit field of this register provides the current channel mode.
- Read of 1'b0 indicates the channel is unarmed.
- Read of 1'b1 indicates the channel is either in capture or compare mode.
A write to each bitfield of this register the following effect:
- Write of 1'b0 has no effect on channel mode.
- Write of 1'b1 for capture/compare channel will disarm it without triggering event unless a compare/capture event happens in the same cycle.

Table 16-6 ARMCLR Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1CH1R/W0hDisarming Channel 1
  • 0h = No effect on the channel
  • 1h = Set channel in UNARMED state without triggering event unless a capture event happens in the same cycle
0CH0R/W0hDisarming Channel 0
  • 0h = No effect on the channel
  • 1h = Set channel in UNARMED state without triggering event unless a compare event happens in the same cycle

16.5.5 TIME250N Register (Offset = 10h) [Reset = 00000000h]

TIME250N is shown in Table 16-7.

Return to the Summary Table.

RTC Time value register. 32-bit unsigned integer representing [29:-2] time slice of the real time clock counter. The counter runs on LFCLK. This field has a resolution of 250ns, and range of about 17.8 minutes.

Table 16-7 TIME250N Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR0h[29:-2] slice of RTC TIME[50:-2]. Slice has an LSB weight of 250 ns and modular range 17m 53.74182002 s. RTC.TIME is updated every LF clock modulo by a fixed or measured LFINC value and will thus on average update only every ~30.5 us.

SYSTIM.TIME is synchronized to RTC TIME[31:-2] and is updated every 250 ns if better resolution is needed (in addition to having a much shorter access time of 1-2 cycles instead of 22-26 cycles for RTC.TIMEx).

16.5.6 TIME1U Register (Offset = 14h) [Reset = 00000000h]

TIME1U is shown in Table 16-8.

Return to the Summary Table.

RTC Time value register. 32-bit unsigned integer representing [31:0] time slice of the real time clock counter. The counter runs on LFCLK. This field has a resolution of 1us, and range of about 1.19 hours.

Table 16-8 TIME1U Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR0h[31:0] slice of RTC TIME[50:-2]. Slice has an LSB weight of 1 us and modular range 1h 11m 34.967296s. RTC.TIME is updated every LF clock modulo by a fixed or measured LFINC value and will thus on average update only every ~30.5 us.

SYSTIM.TIME is synchronized to RTC TIME[31:-2] and is updated every 250 ns if better resolution is needed (in addition to having a much shorter access time of 1-2 cycles instead of 22-26 cycles for RTC.TIMEx).

16.5.7 TIME8U Register (Offset = 18h) [Reset = 00000000h]

TIME8U is shown in Table 16-9.

Return to the Summary Table.

RTC Time value register. 32-bit unsigned integer representing [34:3] time slice of the real time clock counter. The counter runs on LFCLK. This field has a resolution of 8us, and range of about 9.5 hours.

Table 16-9 TIME8U Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR0h[34:3] slice of RTC TIME[50:-2]. Slice has an LSB weight of 8 us and modular range 9h 32m 39.73836s. RTC.TIME is updated every LF clock modulo by a fixed or measured LFINC value and will thus on average update only every ~30.5 us.

SYSTIM.TIME is synchronized to RTC TIME[31:-2] and is updated every 250 ns if better resolution is needed (in addition to having a much shorter access time of 1-2 cycles instead of 22-26 cycles for RTC.TIMEx).

16.5.8 TIME524M Register (Offset = 1Ch) [Reset = 00000000h]

TIME524M is shown in Table 16-10.

Return to the Summary Table.

RTC time value register. 32-bit unsigned integer representing [50:19] time slice of the real time clock counter. This field has a resolution of about 0.5s and a range of about 71.4 years.

Table 16-10 TIME524M Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR0h[50:19] slice of RTC TIME[50:-2]. Slice has an LSB weight of 0.524288s and modular range of approximately 71 years 147 days 11h 56m 53s. RTC.TIME is updated every LF clock modulo by a fixed or measured LFINC value and will thus on average update only every ~30.5 us.

SYSTIM.TIME is synchronized to RTC TIME[31:-2] and is updated every 250 ns if better resolution is needed (in addition to having a much shorter access time of 1-2 cycles instead of 22-26 cycles for RTC.TIMEx).

16.5.9 CH0CC250N Register (Offset = 20h) [Reset = 00000000h]

CH0CC250N is shown in Table 16-11.

Return to the Summary Table.

Channel 0 compare value with 250ns resolution. A read to this register returns the value {CH0CC8U[29:3], 5b’0}
A write to this register arms the channel in compare mode. Event would occur at the same time +/ Tlfclk/2 on the RTC as if it was written to SYSTIM.

Table 16-11 CH0CC250N Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR/W0hRTC Channel 0 compare value. This value is compared against TIME8U.VAL. A Channel 0 event is generated when TIME8U.VAL value reaches or exceeds this compare value.

16.5.10 CH0CC1U Register (Offset = 24h) [Reset = 00000000h]

CH0CC1U is shown in Table 16-12.

Return to the Summary Table.

Channel 0 compare value with 1us resolution. A read to this register returns the value {CH0CC8U[31:3], 3b’0}
A write to this register arms the channel in compare mode. Event would occur at the same time +/ Tlfclk/2 on the RTC as if it was written to SYSTIM.

Table 16-12 CH0CC1U Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR/W0hRTC Channel 0 compare value. This value is compared against TIME8U.VAL. A Channel 0 event is generated when TIME8U.VAL value reaches or exceeds this compare value.

16.5.11 CH0CC8U Register (Offset = 28h) [Reset = 00000000h]

CH0CC8U is shown in Table 16-13.

Return to the Summary Table.

Channel 0 compare value. A write to this register automatically enables the channel to trigger an event when RTC timer reaches the programmed value or if the programmed value is 1 sec in the past.

Table 16-13 CH0CC8U Register Field Descriptions
BitFieldTypeResetDescription
31-0VALR/W0hRTC Channel 0 compare value. This value is compared against TIME8U.VAL. A Channel 0 event is generated when TIME8U.VAL value reaches or exceeds this compare value.

16.5.12 CH1CC8U Register (Offset = 38h) [Reset = 00000000h]

CH1CC8U is shown in Table 16-14.

Return to the Summary Table.

Channel 1 capture value. This register captures the RTC time slice [34:3] on each selected edge of the capture event when the ARMSET.CH1 = 1.

Table 16-14 CH1CC8U Register Field Descriptions
BitFieldTypeResetDescription
31-21RESERVEDR0hReserved
20-0VALRXhTIME8U.VAL captured value at the last selected edge of capture event.

16.5.13 CH1CFG Register (Offset = 3Ch) [Reset = 00000000h]

CH1CFG is shown in Table 16-15.

Return to the Summary Table.

Channel 1 configuration register. This register can be used to select the capture edge for generating the capture event.

Table 16-15 CH1CFG Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0hReserved
0EDGER/W0hEdge detect configuration for capture source
  • 0h = Rising Edge.
  • 1h = Falling Edge.

16.5.14 IMASK Register (Offset = 44h) [Reset = 00000000h]

IMASK is shown in Table 16-16.

Return to the Summary Table.

Interrupt Mask. If a bit is set, then corresponding interrupt is un-masked. Un-masking the interrupt causes the raw interrupt to be visible in IIDX, as well as MIS.

Table 16-16 IMASK Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1R/W0hChannel 1 Event Interrupt Mask.
  • 0h = Clear Interrupt Mask
  • 1h = Enable Interrrupt Mask
0EV0R/W0hChannel 0 Event Interrupt Mask.
  • 0h = Disable Interrupt Mask
  • 1h = Enable Interrrupt Mask

16.5.15 RIS Register (Offset = 48h) [Reset = 00000000h]

RIS is shown in Table 16-17.

Return to the Summary Table.

Interrupt mask. This register selects interrupt sources which are allowed to pass from RIS to MIS when the corresponding bit-fields are set to 1.

Table 16-17 RIS Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1R0hRaw interrupt status for Channel 1 event.
This bit is set to 1 when a capture event is received on Channel 1.
This bit will be cleared when the bit in ICLR.EV1 is set to 1 or when the captured time value is read from the CH1CC8U register.
  • 0h = Interrupt did not occur
  • 1h = Interrupt occured
0EV0R0hRaw interrupt status for Channel 0 event.
This bit is set to 1 when a compare event occurs on Channel 0.
This bit will be cleared. When the corresponding bit in ICLR.EV0 is set to 1. Or when a new compare value is written in CH0CC8U register
  • 0h = Interrupt did not occur
  • 1h = Interrupt occured

16.5.16 MIS Register (Offset = 4Ch) [Reset = 00000000h]

MIS is shown in Table 16-18.

Return to the Summary Table.

Masked interrupt status. This register is simply a bitwise AND of the contents of IMASK and RIS.*] registers. A flag set in this register can be cleared by writing 1 to the corresponding ICLR register bit.

Table 16-18 MIS Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1R0hMasked interrupt status for channel 1 event.
  • 0h = Interrupt did not occur
  • 1h = Interrupt occured
0EV0R0hMasked interrupt status for channel 0 event.
  • 0h = Interrupt did not occur
  • 1h = Interrupt occured

16.5.17 ISET Register (Offset = 50h) [Reset = 00000000h]

ISET is shown in Table 16-19.

Return to the Summary Table.

Interrupt set register. This register can used by software for diagnostics and safety checking purposes. Writing a 1 to a bit in this register will set the event and the corresponding RIS bit also gets set. If the corresponding IMASK bit is set, then the corresponding MIS register bit also gets set.

Table 16-19 ISET Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1W0hSet Channel 1 event Interrupt.
  • 0h = Writing 0 has no effect
  • 1h = Set interrupt
0EV0W0hSet Channel 0 event Interrupt.
  • 0h = Writing 0 has no effect
  • 1h = Set interrupt

16.5.18 ICLR Register (Offset = 54h) [Reset = 00000000h]

ICLR is shown in Table 16-20.

Return to the Summary Table.

Interrupt clear register. This register allows software to clear interrupts. Writing a 1 to a bit in this register will clear the event and the corresponding RIS bit also gets cleared. If the corresponding IMASK bit is set, then the corresponding MIS register bit also gets cleared.

Table 16-20 ICLR Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1W0hClears channel 1 event interrupt.
  • 0h = Writing 0 has no effect
  • 1h = Clear Interrupt
0EV0W0hClears channel 0 event interrupt.
  • 0h = Writing 0 has no effect
  • 1h = Clear Interrupt.

16.5.19 IMSET Register (Offset = 58h) [Reset = 00000000h]

IMSET is shown in Table 16-21.

Return to the Summary Table.

Interrupt mask set register. Writing a 1 to a bit in this register will set the corresponding IMASK bit.

Table 16-21 IMSET Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1W0hSet channel 1 event interrupt mask.
  • 0h = Writing 0 has no effect
  • 1h = Set interrupt mask
0EV0W0hSet channel 0 event interrupt mask.
  • 0h = Writing 0 has no effect
  • 1h = Set interrupt mask

16.5.20 IMCLR Register (Offset = 5Ch) [Reset = 00000000h]

IMCLR is shown in Table 16-22.

Return to the Summary Table.

Interrupt mask clear register. Writing a 1 to a bit in this register will clear the corresponding IMASK bit.

Table 16-22 IMCLR Register Field Descriptions
BitFieldTypeResetDescription
31-2RESERVEDR0hReserved
1EV1W0hClears Channel 1 event interrupt mask.
  • 0h = Writing 0 has no effect
  • 1h = Clear Interrupt Mask
0EV0W0hClears Channel 0 event interrupt mask.
  • 0h = Writing 0 has no effect
  • 1h = Clear Interrupt Mask

16.5.21 EMU Register (Offset = 60h) [Reset = 00000000h]

EMU is shown in Table 16-23.

Return to the Summary Table.

Emulation control register. This register controls the behavior of the IP related to core halted input.

Table 16-23 EMU Register Field Descriptions
BitFieldTypeResetDescription
31-1RESERVEDR0hReserved
0HALTR/W0hHalt control.
  • 0h = Free run option. The IP ignores the state of the core halted input.
  • 1h = Freeze option. The IP freezes functionality when the core halted input is asserted, and resumes when it is deasserted. The freeze can either be immediate or after the IP has reached a boundary from where it can resume without corruption.

16.5.22 DTIME Register (Offset = 68h) [Reset = 00000000h]

DTIME is shown in Table 16-24.

Return to the Summary Table.

A delta time mechanism is implemented for RTC that allows the TIME value to be adjusted under software control. This is used by boot code to perform the compensation for reset duration (accomplished by adding MMR write to FCFG.generalTrims copylist to avoid ROM changes)
TIME[50:-2] is adjusted by TIME += sxt(MANT[30:0], 53) * 222*EXP.
In other words:
(EXP==0): TIME is adjusted by MANT * 250 ns (range +/-134 s)
(EXP==1): TIME is adjusted by MANT * 1.049 s (range +/- 35.7 yr)
If used by an application to adjust RTC TIME value, the write to DTIME must occur as quickly as possible after an lftick event. It should also be followed by a write of 1 to SYSTIM.STATUS.SYNCUP to ensure that SYSTIM resynchronizes to the new RTC TIME value at the next lftick event.

Table 16-24 DTIME Register Field Descriptions
BitFieldTypeResetDescription
31EXPW0hExponent
30-0MANTW0hMantissa