ZHCSNF1 February   2021 BQ25960

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Charging System
      2. 9.3.2  Battery Charging Profile
      3. 9.3.3  Device Power Up
      4. 9.3.4  Device HIZ State
      5. 9.3.5  Dual Input Bi-Directional Power Path Management
        1. 9.3.5.1 ACDRV Turn-On Condition
        2. 9.3.5.2 Single Input from VAC to VBUS without ACFET-RBFET
        3. 9.3.5.3 Single Input with ACFET1
        4. 9.3.5.4 Dual Input with ACFET1-RBFET1
        5. 9.3.5.5 Dual Input with ACFET1-RBFET1 and ACFET2-RBFET2
        6. 9.3.5.6 OTG and Reverse TX Mode Operation
      6. 9.3.6  Bypass Mode Operation
      7. 9.3.7  Charging Start-Up
      8. 9.3.8  Adapter Removal
      9. 9.3.9  Integrated 16-Bit ADC for Monitoring and Smart Adapter Feedback
      10. 9.3.10 Device Modes and Protection Status
        1. 9.3.10.1 Input Overvoltage, Overcurrent, Undercurrent, Reverse-Current and Short-Circuit Protection
        2. 9.3.10.2 Battery Overvoltage and Overcurrent Protection
        3. 9.3.10.3 IC Internal Thermal Shutdown, TSBUS, and TSBAT Temperature Monitoring
      11. 9.3.11 INT Pin, STAT, FLAG, and MASK Registers
      12. 9.3.12 Dual Charger Operation Using Primary and Secondary Modes
      13. 9.3.13 CDRVH and CDRVL_ADDRMS Functions
    4. 9.4 Programming
      1. 9.4.1 F/S Mode Protocol
    5. 9.5 Register Maps
      1. 9.5.1 I2C Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Standalone Application Information (for use with main charger)
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 第三方产品免责声明
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 接收文档更新通知
    4. 13.4 支持资源
    5. 13.5 Trademarks
    6. 13.6 静电放电警告
    7. 13.7 术语表
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

F/S Mode Protocol

The master initiates data transfer by generating a start condition. The start condition is when a high-to-low transition occurs on the SDA line while SCL is high, as shown in the figure below. All I2C-compatible devices should recognize a start condition.

GUID-187AD10F-9F7B-423F-9554-275C5B584088-low.gifFigure 9-10 START and STOP Condition

The master then generates the SCL pulses, and transmits the 8-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 9-11). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates and acknowledge (see Figure 9-12) by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master knows that communication link with a slave has been established.

GUID-7338D85A-DAFF-4512-B2DD-F4D70AB13DF9-low.gifFigure 9-11 Bit Transfer on the Serial Interface
GUID-75CA7298-8281-475D-BBD4-05B9EE9A1B97-low.gifFigure 9-12 Acknowledge on the I2C BUS

The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from the slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on which on is the receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary. To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low to high while the SCL line is high (see Figure 9-13). This releases the BUS and stops the communication link with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a stop condition, all devices know that the BUS is released, and wait for a start condition followed by a matching address. If a transaction is terminated prematurely, the master needs to send a STOP condition to prevent the slave I2C logic from remaining in an incorrect state. Attempting to read data from register addresses not listed in this section will result in 0xFFh being read out.

GUID-EE356878-EAA5-4C14-B00E-438D6363D038-low.gifFigure 9-13 BUS Protocol