ZHCSNF1 February   2021 BQ25960

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Charging System
      2. 9.3.2  Battery Charging Profile
      3. 9.3.3  Device Power Up
      4. 9.3.4  Device HIZ State
      5. 9.3.5  Dual Input Bi-Directional Power Path Management
        1. 9.3.5.1 ACDRV Turn-On Condition
        2. 9.3.5.2 Single Input from VAC to VBUS without ACFET-RBFET
        3. 9.3.5.3 Single Input with ACFET1
        4. 9.3.5.4 Dual Input with ACFET1-RBFET1
        5. 9.3.5.5 Dual Input with ACFET1-RBFET1 and ACFET2-RBFET2
        6. 9.3.5.6 OTG and Reverse TX Mode Operation
      6. 9.3.6  Bypass Mode Operation
      7. 9.3.7  Charging Start-Up
      8. 9.3.8  Adapter Removal
      9. 9.3.9  Integrated 16-Bit ADC for Monitoring and Smart Adapter Feedback
      10. 9.3.10 Device Modes and Protection Status
        1. 9.3.10.1 Input Overvoltage, Overcurrent, Undercurrent, Reverse-Current and Short-Circuit Protection
        2. 9.3.10.2 Battery Overvoltage and Overcurrent Protection
        3. 9.3.10.3 IC Internal Thermal Shutdown, TSBUS, and TSBAT Temperature Monitoring
      11. 9.3.11 INT Pin, STAT, FLAG, and MASK Registers
      12. 9.3.12 Dual Charger Operation Using Primary and Secondary Modes
      13. 9.3.13 CDRVH and CDRVL_ADDRMS Functions
    4. 9.4 Programming
      1. 9.4.1 F/S Mode Protocol
    5. 9.5 Register Maps
      1. 9.5.1 I2C Registers
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Standalone Application Information (for use with main charger)
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 第三方产品免责声明
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 接收文档更新通知
    4. 13.4 支持资源
    5. 13.5 Trademarks
    6. 13.6 静电放电警告
    7. 13.7 术语表
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Programming

The device uses an I2C compatible interface to program and read many parameters. I2C is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor, see I2C BUS Specification, Version 5, October 2012). The BUS consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the BUS is idle, both SDA and SCL lines are pulled high. All the I2C compatible devices connect to the I2C BUS through open drain I/O terminals, SDA and SCL. A master device, usually a microcontroller or digital signal processor, controls the BUS. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on the BUS under control of the master device.

The device works as a slave and supports the following data transfer modes, as defined in the I2C BUS™ Specification: standard mode (100 kbps) and fast mode (400 kbps). The interface adds flexibility to the battery management solution, enabling most functions to be programmed to new values depending on the instantaneous application requirements. The I2C circuitry is powered from the battery in active battery mode. The battery voltage must stay above VBATUVLO when no VIN is present to maintain proper operation.

The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as the F/S-mode in this document. The device only supports 7-bit addressing. The device 7-bit address is determined by the ADDR pin on the device.