ZHCUCN4 December   2024

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 术语
    2. 1.2 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
      1. 2.2.1 控制系统设计原理
        1. 2.2.1.1 PWM 调制
        2. 2.2.1.2 电流环路模型
        3. 2.2.1.3 直流母线调节环路
        4. 2.2.1.4 直流电压平衡控制器
    3. 2.3 主要产品
      1. 2.3.1 TMS320F280013x
      2. 2.3.2 UCC5350
      3. 2.3.3 AMC1350
      4. 2.3.4 TMCS1123
      5. 2.3.5 UCC28750
      6. 2.3.6 LM25180
      7. 2.3.7 ISOTMP35
      8. 2.3.8 TLV76133
      9. 2.3.9 TLV9062
    4. 2.4 硬件设计
      1. 2.4.1  电感器设计
      2. 2.4.2  总线电容器选择
      3. 2.4.3  输入交流电压感测
      4. 2.4.4  输出直流母线电压检测
      5. 2.4.5  辅助电源
      6. 2.4.6  隔离式电源
      7. 2.4.7  电感器电流感应
      8. 2.4.8  栅极驱动器
      9. 2.4.9  隔离式温度感测
      10. 2.4.10 过流和过压保护 (CMPSS)
  9. 3硬件、软件、测试要求和测试结果
    1. 3.1 硬件要求
      1. 3.1.1 入门硬件
        1. 3.1.1.1 电路板概述
        2. 3.1.1.2 测试设备
    2. 3.2 软件要求
      1. 3.2.1 入门 GUI
        1. 3.2.1.1 测试设置
        2. 3.2.1.2 GUI 软件概述
        3. 3.2.1.3 使用 GUI 进行测试的过程
      2. 3.2.2 固件入门
        1. 3.2.2.1 在 Code Composer Studio™ 中打开项目
        2. 3.2.2.2 工程结构
        3. 3.2.2.3 测试设置
        4. 3.2.2.4 运行项目
          1. 3.2.2.4.1 INCR_BUILD 1:开环
            1. 3.2.2.4.1.1 设置、编译和加载项目
            2. 3.2.2.4.1.2 设置调试环境窗口
            3. 3.2.2.4.1.3 使用实时仿真
            4. 3.2.2.4.1.4 运行代码(版本 1)
          2. 3.2.2.4.2 INCR_BUILD 2:闭合电流环路
            1. 3.2.2.4.2.1 运行代码(版本 2)
            2. 3.2.2.4.2.2 编译和加载项目以及设置调试
          3. 3.2.2.4.3 INCR_BUILD 3:闭合电压和电流环路
            1. 3.2.2.4.3.1 编译和加载项目以及设置调试
            2. 3.2.2.4.3.2 运行代码(版本 3)
          4. 3.2.2.4.4 INCR_BUILD 4:闭合平衡、电压和电流环路
            1. 3.2.2.4.4.1 编译和加载项目以及设置调试
            2. 3.2.2.4.4.2 运行代码(版本 4)
    3. 3.3 测试结果
      1. 3.3.1  IGBT 栅极上升和下降时间
      2. 3.3.2  上电序列
      3. 3.3.3  通过 GUI 启动的 PFC
      4. 3.3.4  380VAC、9kW 下的过零
      5. 3.3.5  380VAC、10kW 下的电流纹波
      6. 3.3.6  使用电网电源进行 10kW 负载测试
      7. 3.3.7  使用交流电源进行 9kW 负载测试
      8. 3.3.8  功率分析仪结果
      9. 3.3.9  热性能
      10. 3.3.10 电压短路中断测试
      11. 3.3.11 效率、iTHD 和功率因数结果
  10. 4设计和文档支持
    1. 4.1 设计文件
      1. 4.1.1 原理图
      2. 4.1.2 物料清单 (BOM)
    2. 4.2 工具与软件
    3. 4.3 文档支持
    4. 4.4 支持资源
    5. 4.5 商标
  11. 5作者简介

直流母线调节环路

假设直流母线调节环路提供基准电源。该环路除以线电压 RMS 的平方,可得出电导率,然后再乘以线电压,以提供瞬时电流命令。

通过围绕运行点对方程式 3 进行线性化来形成直流母线调节环路的小信号模型:

方程式 3. i D C v b u s = 3 n v N r m s i N r m s i ^ D C = 3 n V - N r m s V - b u s i L i

对于电阻负载,总线电压与电流相关,如方程式 4 中所示。

方程式 4. V ^ b u s = R L 1 + s R L C o i ^ D C

可以画出直流电压调节环路模型,如图 2-5 中所示。施加了额外的 Vbus 前馈,以使控制环路独立于总线电压,因此总线控制的受控体模型可表达为方程式 5 所示。

方程式 5. H p _ b u s = H l o a d × N × K i _ g a i n × K v _ g a i n × K v _ f l t

其中

  • Hp_bus 是数字控制器 Gv 控制的电压环路受控体。
  • Gv 的输出是功率基准 Po*
  • vbus* 是电压命令和电压基准,vbus 是实际总线电压。
  • Co 是输出电容器,RL 是负载电阻。

借助图 2-5,为该电压环路设计了一个比例积分器 (PI) 补偿器。由于该环路的带宽在稳态下与 THD 相冲突,因此该环路保持在较低水平。

TIDA-010257 直流电压环路控制模型图 2-5 直流电压环路控制模型

此外,还使用了非线性 PI 环路来降低阶跃负载变化时产生的瞬态。图 2-6 显示了在该设计中实现的非线性 PI 环路的结构。

TIDA-010257 电压控制器的非线性 PI 环路图 2-6 电压控制器的非线性 PI 环路