ZHCSPK7F November   2004  – January 2022 TPS2384

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 PMM Faults
      2. 8.3.2 Watchdog Timer
    4. 8.4 Device Functional Modes
      1. 8.4.1  Auto Mode
      2. 8.4.2  Auto Mode Functional Description
        1. 8.4.2.1 AM Discovery
        2. 8.4.2.2 AM Classification
        3. 8.4.2.3 AM Power Delivery
      3. 8.4.3  AM Faults and INTB Output
      4. 8.4.4  Over and Undervoltage Fault
      5. 8.4.5  Over Current or Current Limit Faults
      6. 8.4.6  Undercurrent Fault (DC Modulated Disconnect)
      7. 8.4.7  Power Management Mode (PMM)
        1. 8.4.7.1 13 PMM Functions
      8. 8.4.8  PMM Discovery 1
      9. 8.4.9  PMM Discovery 2
      10. 8.4.10 PMM Classification
      11. 8.4.11 PMM Legacy
      12. 8.4.12 PMM Rup Pwr
      13. 8.4.13 PMM RDWN
    5. 8.5 Programming
      1. 8.5.1 I2C Interface Description
      2. 8.5.2 Start and Stop
      3. 8.5.3 Chip Address
      4. 8.5.4 Chip Addressing
      5. 8.5.5 Data Write Cycle
      6. 8.5.6 Port and Register Cycle
      7. 8.5.7 Data Read Cycle
    6. 8.6 Register Maps
      1. 8.6.1 Register/Port Addressing Map
      2. 8.6.2 Common Read, Register Select
      3. 8.6.3 Common Write, Register Select = 1111 (Test Register)
      4. 8.6.4 Common Control Write, Register Select = 0001
      5. 8.6.5 Port Control Write 1, Register Select = 0010 (One Per Port)
      6. 8.6.6 Port Control Write 2, Register Select = 0011 (One Per Port)
      7. 8.6.7 Port Status Read 1, Register Select = 0100 (One Per Port)
      8. 8.6.8 Port Status Read 2, Register Select = 0101 (One Per Port)
      9. 8.6.9 A/D Results Registers (Discovery Current, Voltage, Current and Temperature)
        1. 8.6.9.1 Discovery Current — Lower Bits, Register Select = 0110 (One Per Port)
        2. 8.6.9.2 Discovery Current — Upper Bits, Register Select = 0111 (One Per Port)
        3. 8.6.9.3 Voltage — Lower Bits, Register Select = 1000 (One Per Port)
        4. 8.6.9.4 Voltage — Upper Bits, Register Select = 1001 (One Per Port)
        5. 8.6.9.5 Current — Lower Bits, Register Select = 1010 (One Per Port)
        6. 8.6.9.6 Current — Upper Bits, Register Select = 1011 (One Per Port)
        7. 8.6.9.7 Temperature — Lower Bits, Register Select = 1100 (One Per Port)
        8. 8.6.9.8 Temperature — Upper Bits, Register Select = 1101 (One Per Port)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 AC Disconnect Drive Circuit Detail
      2. 9.1.2 Connection of Unused Ports and Pins
      3. 9.1.3 Opto-isolator Interface
      4. 9.1.4 Port Protection from Electrical Transients
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Power Pin Bypass Capacitors
        2. 9.2.2.2 Per Port Components
        3. 9.2.2.3 Bias and Timing
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Local Circuits
      2. 11.1.2 System Protection Circuits
    2. 11.2 Layout Example
    3. 11.3 Thermal Consideration
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Interface Description

The serial interface used in the TPS2384 is a standard 2-wire I2C target architecture. The standard SDA line of the I2C architecture is broken out into independent input and output data paths. This feature simplifies earth grounded controller applications that require opto-isolators to keep the 48-V return of the Ethernet power system floating. For applications where opto-isolation is not required, the bidirectional property of the SDA line can be restored by connecting SDA_I to SDA_O. The SCL line is a unidirectional input only line as the TPS2384 is always accessed as a target device and it never controls the bus.

Data transfers that require a data-flow reversal on the SDA line are 4-byte operations. This occurs during a TPS2384 port read cycle where a target address byte is sent, followed by a port/register address byte write. A second target address byte is sent followed by the data byte read using the port/register setup from the second byte in the sequence.

The I2C interface and the port read write registers are held in active reset until all input voltages are within specifications (V10, V6.3, V3.3 and V2.5) and the internal POR timer has timed out (see electrical specifications).

The I2C read cycle consists of the following steps 1 through 14 and is shown in Figure 8-18:

  1. Start Sequence (S)
  2. Device address field
  3. Write
  4. Acknowledge
  5. Register/Port address
  6. Acknowledge
  7. Stop
  8. Start
  9. Device address field
  10. Read
  11. Acknowledge
  12. Data Transfer
  13. Acknowledge
  14. Stop

Data write transfers to the TPS2384 do not require a data-flow reversal and as such only a 3-byte operation is required. The sequence in this case is to send a target device address byte, followed by a write of the port/register address followed by a write of the data byte for the addressed port.

The I2C write cycle consists of the following steps 1 through 9 and is also shown in Figure 8-18:

  1. Start Sequence (S)
  2. Device address field
  3. Write
  4. Acknowledge
  5. Register/Port address
  6. Acknowledge
  7. Data for TPS2384
  8. Acknowledge
  9. Stop