ZHCSPK7F November   2004  – January 2022 TPS2384

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 PMM Faults
      2. 8.3.2 Watchdog Timer
    4. 8.4 Device Functional Modes
      1. 8.4.1  Auto Mode
      2. 8.4.2  Auto Mode Functional Description
        1. 8.4.2.1 AM Discovery
        2. 8.4.2.2 AM Classification
        3. 8.4.2.3 AM Power Delivery
      3. 8.4.3  AM Faults and INTB Output
      4. 8.4.4  Over and Undervoltage Fault
      5. 8.4.5  Over Current or Current Limit Faults
      6. 8.4.6  Undercurrent Fault (DC Modulated Disconnect)
      7. 8.4.7  Power Management Mode (PMM)
        1. 8.4.7.1 13 PMM Functions
      8. 8.4.8  PMM Discovery 1
      9. 8.4.9  PMM Discovery 2
      10. 8.4.10 PMM Classification
      11. 8.4.11 PMM Legacy
      12. 8.4.12 PMM Rup Pwr
      13. 8.4.13 PMM RDWN
    5. 8.5 Programming
      1. 8.5.1 I2C Interface Description
      2. 8.5.2 Start and Stop
      3. 8.5.3 Chip Address
      4. 8.5.4 Chip Addressing
      5. 8.5.5 Data Write Cycle
      6. 8.5.6 Port and Register Cycle
      7. 8.5.7 Data Read Cycle
    6. 8.6 Register Maps
      1. 8.6.1 Register/Port Addressing Map
      2. 8.6.2 Common Read, Register Select
      3. 8.6.3 Common Write, Register Select = 1111 (Test Register)
      4. 8.6.4 Common Control Write, Register Select = 0001
      5. 8.6.5 Port Control Write 1, Register Select = 0010 (One Per Port)
      6. 8.6.6 Port Control Write 2, Register Select = 0011 (One Per Port)
      7. 8.6.7 Port Status Read 1, Register Select = 0100 (One Per Port)
      8. 8.6.8 Port Status Read 2, Register Select = 0101 (One Per Port)
      9. 8.6.9 A/D Results Registers (Discovery Current, Voltage, Current and Temperature)
        1. 8.6.9.1 Discovery Current — Lower Bits, Register Select = 0110 (One Per Port)
        2. 8.6.9.2 Discovery Current — Upper Bits, Register Select = 0111 (One Per Port)
        3. 8.6.9.3 Voltage — Lower Bits, Register Select = 1000 (One Per Port)
        4. 8.6.9.4 Voltage — Upper Bits, Register Select = 1001 (One Per Port)
        5. 8.6.9.5 Current — Lower Bits, Register Select = 1010 (One Per Port)
        6. 8.6.9.6 Current — Upper Bits, Register Select = 1011 (One Per Port)
        7. 8.6.9.7 Temperature — Lower Bits, Register Select = 1100 (One Per Port)
        8. 8.6.9.8 Temperature — Upper Bits, Register Select = 1101 (One Per Port)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 AC Disconnect Drive Circuit Detail
      2. 9.1.2 Connection of Unused Ports and Pins
      3. 9.1.3 Opto-isolator Interface
      4. 9.1.4 Port Protection from Electrical Transients
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Power Pin Bypass Capacitors
        2. 9.2.2.2 Per Port Components
        3. 9.2.2.3 Bias and Timing
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Local Circuits
      2. 11.1.2 System Protection Circuits
    2. 11.2 Layout Example
    3. 11.3 Thermal Consideration
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Overview

The TPS2384 has three internal supply buses (10 V, 6.3 V and 3.3 V) generated from the 48-V input supply. These supplies are used to bias all internal digital and analog circuitry. Each supply has been brought out separately for proper bypassing to insure high performance. The digital supply (3.3 V) is available for powering external loads up to 2 mA. For more demanding loads TI highly recommends to use external buffers to prevent system degradation. When the TPS2384 is initially powered up an internal Power-on-Reset (POR) circuit resets all registers and sets all ports to the off state to ensure that the device is powered up in a known safe operating state.

The TPS2384 has three modes of operation: auto mode (AM), semi-auto mode (SAM), and power management mode (PMM).

  • In auto mode the TPS2384 performs discovery, classification and delivery of power autonomously to a compliant PD without the need of a micro-controller.
  • In semi-auto mode the TPS2384 operates in auto mode but users can access the contents of all read status registers and A/D registers through the I2C serial interface. All write control registers are active except for D0 through D3 of Port Control register 1 (Address 0010) for limited port control. The semi-auto mode allows the TPS2384 to detect valid PDs without micro-controller intervention but adds a flexibility to perform power management activities.
  • Power management mode (with a micro-controller) allows users additional capabilities of discovering non-compliant (legacy) PDs, performing AC Disconnect and advanced power management system control that are based on real time port voltages and currents. All functions in this mode are programmed and controlled through read and write registers over the I2C interface. This feature allows users complete freedom in detecting and powering devices. A comprehensive software package is available that mates the power of the TPS2384 with the MSP430 micro-controller.

TPS2384 integrated output stage provides port power and low-side control. The internal low-side circuitry is designed with internal current sensing so there are no external resistors required. The output design ensures the power switches operate in the fully enhanced mode for low power dissipation.

The I2C interface allows easy application of opto-coupler circuitry to maintain Ethernet port isolation when a ground based micro-controller is required. The TPS2384 five address pins (A1–A5) allow the device to be addressed at one of 31 possible I2C addresses. Per-port write registers separately control each port state (discovery, classification, legacy, power up, and so on) while the read registers contain status information of the entire process along with parametric values of discovery, classification, and real-time port operating current, voltage and die temperature.

The proprietary 15-bit integrating A/D converter is designed to meet the harsh environment where the PSEPM resides. The converter is set for maximum rejection of power line noise allowing it to make accurate measurements of line currents during discovery, classification and power delivery for reliable power management decisions.