ZHCUCH3A November   2024  – March 2025 F29H850TU , F29H859TU-Q1

 

  1.   1
  2.   使用前必读
    1.     关于本手册
    2.     德州仪器 (TI) 相关文档
    3.     术语表
    4.     支持资源
    5.     商标
  3. 1架构概述
    1. 1.1 CPU 简介
    2. 1.2 数据类型
    3. 1.3 C29x CPU 系统架构
      1. 1.3.1 仿真逻辑
      2. 1.3.2 CPU 接口总线
    4. 1.4 存储器映射
  4. 2中央处理单元 (CPU)
    1. 2.1 C29x CPU 架构
      1. 2.1.1 特性
      2. 2.1.2 方框图
    2. 2.2 CPU 寄存器
      1. 2.2.1 寻址寄存器 (Ax/XAx)
      2. 2.2.2 定点寄存器 (Dx/XDx)
      3. 2.2.3 浮点寄存器 (Mx/XMx)
      4. 2.2.4 程序计数器 (PC)
      5. 2.2.5 返回程序计数器 (RPC)
      6. 2.2.6 状态寄存器
        1. 2.2.6.1 中断状态寄存器 (ISTS)
        2. 2.2.6.2 解码阶段状态寄存器 (DSTS)
        3. 2.2.6.3 执行阶段状态寄存器 (ESTS)
    3. 2.3 指令打包
      1. 2.3.1 独立指令和限制
      2. 2.3.2 指令超时
    4. 2.4
      1. 2.4.1 软件栈
      2. 2.4.2 受保护的调用栈
      3. 2.4.3 实时中断/NMI 栈
  5. 3中断
    1. 3.1 CPU 中断架构方框图
    2. 3.2 RESET、NMI、RTINT 和 INT
      1. 3.2.1 RESET(CPU 复位)
        1. 3.2.1.1 所需指令 (RESET)
      2. 3.2.2 NMI(不可屏蔽中断)
        1. 3.2.2.1 阻止和屏蔽 (NMI)
        2. 3.2.2.2 信号传播 (NMI)
        3. 3.2.2.3 栈 (NMI)
        4. 3.2.2.4 所需指令(NMI)
      3. 3.2.3 RTINT(实时中断)
        1. 3.2.3.1 阻止和屏蔽 (RTINT)
        2. 3.2.3.2 信号传播 (RTINT)
        3. 3.2.3.3 栈 (RTINT)
        4. 3.2.3.4 所需指令 (RTINT)
      4. 3.2.4 INT(低优先级中断)
        1. 3.2.4.1 阻止和屏蔽 (INT)
        2. 3.2.4.2 信号传播 (INT)
        3. 3.2.4.3 堆栈 (INT)
    3. 3.3 阻止中断的条件
      1. 3.3.1 ATOMIC 计数器
    4. 3.4 CPU 中断控制寄存器
      1. 3.4.1 中断状态寄存器 (ISTS)
      2. 3.4.2 解码阶段状态寄存器 (DSTS)
      3. 3.4.3 与中断相关的栈寄存器
    5. 3.5 中断嵌套
      1. 3.5.1 中断嵌套示例图
    6. 3.6 安全性
      1. 3.6.1 概述
      2. 3.6.2 链接
      3. 3.6.3
      4. 3.6.4 区域
  6. 4寻址模式
    1. 4.1 寻址模式概述
      1. 4.1.1 文档和实施
      2. 4.1.2 寻址模式类型列表
        1. 4.1.2.1 其他寻址类型
      3. 4.1.3 寻址模式汇总
    2. 4.2 寻址模式字段
      1. 4.2.1 ADDR1 字段
      2. 4.2.2 ADDR2 字段
      3. 4.2.3 ADDR3 字段
      4. 4.2.4 DIRM 字段
      5. 4.2.5 其他字段
    3. 4.3 对齐和流水线注意事项
      1. 4.3.1 对齐
      2. 4.3.2 流水线注意事项
    4. 4.4 寻址模式类型
      1. 4.4.1 直接寻址
      2. 4.4.2 指针寻址
        1. 4.4.2.1 具有 #Immediate 偏移的指针寻址
        2. 4.4.2.2 具有指针偏移的指针寻址
        3. 4.4.2.3 具有 #Immediate 递增/递减的指针寻址
        4. 4.4.2.4 具有指针递增/递减的指针寻址
      3. 4.4.3 栈寻址
        1. 4.4.3.1 分配和取消分配栈空间
      4. 4.4.4 循环寻址指令
      5. 4.4.5 位反向寻址指令
  7. 5功能安全和信息安全单元 (SSU)
    1. 5.1 SSU 概述
    2. 5.2 链接和任务隔离
    3. 5.3 在任务隔离边界之外共享数据
    4. 5.4 受保护的调用和返回
  8. 6仿真
    1. 6.1 仿真功能概述
    2. 6.2 调试术语
    3. 6.3 调试接口
    4. 6.4 执行控制模式
    5. 6.5 断点、观察点和计数器
      1. 6.5.1 软件断点
      2. 6.5.2 硬件调试资源
        1. 6.5.2.1 硬件断点
        2. 6.5.2.2 硬件观察点
        3. 6.5.2.3 基准计数器
      3. 6.5.3 PC 跟踪
  9. 7修订历史记录

中断嵌套

C29x CPU 的硬件级别支持嵌套。在 CPU 中断级别,三个非复位中断线路(NMIn、RTINTn、INTn)中有可能嵌套。中断线路可以嵌套在较低优先级中断线路的 ISR 内。因此 NMI 可以嵌套在 RTINT 或 INT 内。RTINT 可以嵌套在 INT 内。INT 不能嵌套其他中断线路中。但是,中断类型 RTINT 和 INT 内的额外嵌套可以使用 PIPE 模块。

下面详细介绍了 C29x CPU 上可用的嵌套(以及 PIPE 模块提供的扩展功能)。

NMI:当前运行的 NMI 内不能嵌套任何中断(包括其他 NMI)。只要设置了 ISTS.NMIF 标志(指示 NMI 事件已注册),就会读取 NMI 并复位 ATOMIC 计数器。

RTINT:NMIS 始终嵌套在 RTINT 内。这个嵌套不能使用 ATOMIC 指令停止。通过使用 PIPE 模块,优先级较高的 RTINT 可以嵌套在较低优先级的 RTINT 中。ATOMIC 指令可能会延迟嵌套 RTINT 的进入,直到 ATOMIC 计数器到期。

INT:NMIS 始终嵌套在 INT 内。这个嵌套不能使用 ATOMIC 指令停止。RTINT 始终嵌套在 INT 中,但 ATOMIC 指令可能会延迟嵌套 RTINT 的进入,直到 ATOMIC 计数器到期。使用 PIPE 模块,较高优先级的 INT 可以嵌套在较低优先级 INT 内。ATOMIC 指令可以延迟嵌套 INT(或 RTINT)的进入,直到 ATOMIC 计数器到期。