ZHCUB39A May   2023  – December 2023 DRV8328

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 关键系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
    3. 2.3 重点产品
      1. 2.3.1 DRV8328C
      2. 2.3.2 MSPM0G1507
      3. 2.3.3 CSD18510Q5B
      4. 2.3.4 TMP61
  9. 3系统设计原理
    1. 3.1 功率级设计:三相逆变器
      1. 3.1.1 选择感测电阻
    2. 3.2 功率级设计:DRV8328 栅极驱动器
      1. 3.2.1 DRV8328 特性
      2. 3.2.2 AVDD 线性稳压器 (LDO)
    3. 3.3 功率级设计:MSPM0 微控制器
      1. 3.3.1 使用 MSPM0G1507 进行低侧电流检测
      2. 3.3.2 温度感测
    4. 3.4 功率级设计:外部接口选项和指示
      1. 3.4.1 霍尔传感器接口
      2. 3.4.2 输入电源电压监控
      3. 3.4.3 电机转速控制
      4. 3.4.4 旋转方向:数字输入
      5. 3.4.5 MCU 的编程接口
      6. 3.4.6 数据传输
      7. 3.4.7 LED 指示灯
      8. 3.4.8 睡眠模式进入控制
  10. 4硬件、软件、测试要求和测试结果
    1. 4.1 硬件要求
      1. 4.1.1 硬件板概述
    2. 4.2 软件要求
    3. 4.3 测试设置
    4. 4.4 测试结果
      1. 4.4.1 DRV8328 栅极驱动器的功能评估
        1. 4.4.1.1 DRV8328 线性稳压器性能
        2. 4.4.1.2 由栅极驱动器生成的栅极驱动电压
      2. 4.4.2 MOSFET 开关波形
      3. 4.4.3 电流开环测试
      4. 4.4.4 电流开环负载测试
  11. 5设计和文档支持
    1. 5.1 设计文件
      1. 5.1.1 原理图
      2. 5.1.2 材料清单
    2. 5.2 工具与软件
    3. 5.3 文档支持
    4. 5.4 支持资源
    5. 5.5 商标
  12. 6关于作者
  13. 7修订历史记录

使用 MSPM0G1507 进行低侧电流检测

除了其他高性能模拟外设,MSPM0G1507 还集成了两个具有可编程增益的零漂移、零交叉运算放大器。通常会通过测量低侧电流来实施过流保护、外部扭矩控制或通过外部控制器进行无刷直流换向。MCU 上的其中一个集成运算放大器可用于检测半桥电流之和。电流检测测量的增益可通过软件进行配置,除了电流检测电阻和输入串联电阻外,无需额外的元件。

OPA 外设还支持以下用于电流检测的关键特性:

  • 软件可选的零漂移斩波稳定性提高了精度和漂移性能
  • 工厂修整以消除失调误差
  • 集成烧毁电流源以监测传感器运行状况
  • 高达 32 的可编程增益放大倍数

运算放大器的输出由 MCU 上集成的 12 位逐次逼近 (SAR) 型 ADC 的其中一个通道直接读取。OPA+ 和 OPA– 引脚上的电压会乘以所选的运算放大器编程增益 (PGA)。