ZHCAEZ5 February   2025 CC1310

 

  1.   1
  2.   摘要
  3.   商标
  4. 1引言
    1. 1.1 楼宇自动化中的传感器控制器
    2. 1.2 TI 器件
      1. 1.2.1 CC13x4 无线 MCU
      2. 1.2.2 CC26xx 无线 MCU
  5. 2传感器控制器
    1. 2.1 特性
    2. 2.2 传感器控制器电源模式
      1. 2.2.1 工作模式
      2. 2.2.2 低功耗模式
      3. 2.2.3 待机模式
      4. 2.2.4 在电源模式之间切换
        1. 2.2.4.1 24MHz — 从待机状态启动并恢复待机状态的能量
        2. 2.2.4.2 2MHz — 从待机状态启动并恢复待机状态的能量
    3. 2.3 功率测量设置
      1. 2.3.1 EnergyTrace™ 软件
      2. 2.3.2 软件
      3. 2.3.3 电流消耗测量
      4. 2.3.4 硬件
  6. 3使用传感器控制器的楼宇自动化用例与技术
    1. 3.1 PIR 运动检测
      1. 3.1.1 PIR 传统信号链
      2. 3.1.2 无电容器运动检测方框图
      3. 3.1.3 数字信号处理
        1. 3.1.3.1 硬件
        2. 3.1.3.2 数字信号处理
    2. 3.2 玻璃破裂检测
      1. 3.2.1 低功耗与低成本玻璃破裂方框图
    3. 3.3 门窗传感器
    4. 3.4 低功耗 ADC
      1. 3.4.1 Sensor Controller Studio 中的代码实现
      2. 3.4.2 测量
    5. 3.5 使用 BOOSTXL-ULPSENSE 的不同传感器读数
      1. 3.5.1 电容式触控
      2. 3.5.2 模拟光传感器
      3. 3.5.3 电位器(0 至 200kΩ 范围)
      4. 3.5.4 超低功耗 SPI 加速度计
      5. 3.5.5 簧片开关
  7. 4总结
  8. 5参考资料

EnergyTrace™ 软件

对于电流测量,传统上使用功率分析仪进行功率/电流消耗测量,这种方法可提供详细的见解,但通常需要昂贵、笨重且并非始终可用的设备。采用 CC13x2/CC26x2 的超低功耗传感应用中展示了如何使用 LAUNCHXL-CC1312R1 上的功率分析仪进行测量的示例。

另一种设计是 EnergyTrace™ 软件,该软件是 Code Composer Studio™ (CSS) IDE 6.0 及更高版本中包含的、基于能量的代码分析工具。EnergyTrace™ 显著简化了该过程,允许开发人员在开发过程中直接从电路板测量和分析实时能耗。EnergyTrace™ 可实时跟踪能量和电流信号,并提供程序运行期间的功率、电压和电流平均值以及电池寿命估算。