ZHCSY91 May   2025 LMK5C23208A

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序图
    7. 6.7 典型特性
  8. 参数测量信息
    1. 7.1 差分电压测量术语
    2. 7.2 输出时钟测试配置
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
      1. 8.2.1 PLL 架构概述
      2. 8.2.2 DPLL
        1. 8.2.2.1 独立 DPLL 运行模式
        2. 8.2.2.2 级联 DPLL 运行模式
        3. 8.2.2.3 APLL 与 DPLL 级联
      3. 8.2.3 仅 APLL 模式
    3. 8.3 特性说明
      1. 8.3.1  振荡器输入 (XO)
      2. 8.3.2  基准输入
      3. 8.3.3  时钟输入连接和端接
      4. 8.3.4  基准输入多路复用器选择
        1. 8.3.4.1 自动输入选择
        2. 8.3.4.2 手动输入选择
      5. 8.3.5  无中断切换
        1. 8.3.5.1 涉及相位抵消的无中断切换
        2. 8.3.5.2 涉及相位转换控制的无中断切换
        3. 8.3.5.3 涉及 1PPS 输入的无中断切换
      6. 8.3.6  基准输入上的间隙时钟支持
      7. 8.3.7  输入时钟和 PLL 监控、状态和中断
        1. 8.3.7.1 XO 输入监控
        2. 8.3.7.2 基准输入监控
          1. 8.3.7.2.1 基准验证计时器
          2. 8.3.7.2.2 频率监控
          3. 8.3.7.2.3 漏脉冲监控器(后期检测)
          4. 8.3.7.2.4 矮脉冲监控器(早期检测)
          5. 8.3.7.2.5 1PPS 输入的相位有效监控器
        3. 8.3.7.3 PLL 锁定检测器
        4. 8.3.7.4 调优字历史记录
        5. 8.3.7.5 状态输出
        6. 8.3.7.6 中断
      8. 8.3.8  PLL 关系
        1. 8.3.8.1  PLL 频率关系
          1. 8.3.8.1.1 APLL 相位频率检测器 (PFD) 和电荷泵
          2. 8.3.8.1.2 APLL VCO 频率
          3. 8.3.8.1.3 DPLL TDC 频率
          4. 8.3.8.1.4 DPLL VCO 频率
          5. 8.3.8.1.5 时钟输出频率
        2. 8.3.8.2  模拟 PLL(APLL1、APLL2)
        3. 8.3.8.3  APLL 参考路径
          1. 8.3.8.3.1 APLL XO 倍频器
          2. 8.3.8.3.2 APLL XO 基准 (R) 分频器
        4. 8.3.8.4  APLL 反馈分频器路径
          1. 8.3.8.4.1 具有 Σ-Δ 调制器 (SDM) 的 APLL N 分频器
        5. 8.3.8.5  APLL 环路滤波器(LF1、LF2)
        6. 8.3.8.6  APLL 压控振荡器(VCO1、VCO2)
          1. 8.3.8.6.1 VCO 校准
        7. 8.3.8.7  APLL VCO 时钟分配路径
        8. 8.3.8.8  DPLL 基准 (R) 分频器路径
        9. 8.3.8.9  DPLL 时间数字转换器 (TDC)
        10. 8.3.8.10 DPLL 环路滤波器 (DLF)
        11. 8.3.8.11 DPLL 反馈 (FB) 分频器路径
      9. 8.3.9  输出时钟分配
      10. 8.3.10 输出源多路复用器
      11. 8.3.11 输出通道多路复用器
      12. 8.3.12 输出分频器 (OD)
      13. 8.3.13 SYSREF/1PPS 输出
      14. 8.3.14 输出延迟
      15. 8.3.15 时钟输出驱动器
        1. 8.3.15.1 差分输出
        2. 8.3.15.2 LVCMOS 输出
      16. 8.3.16 时钟输出连接和端接
      17. 8.3.17 无毛刺输出时钟启动
      18. 8.3.18 LOL 期间输出自动静音
      19. 8.3.19 输出同步 (SYNC)
      20. 8.3.20 零延迟模式 (ZDM)
      21. 8.3.21 DPLL 可编程相位延迟
      22. 8.3.22 历时计数器 (TEC)
        1. 8.3.22.1 配置 TEC 功能
        2. 8.3.22.2 SPI 作为触发源
        3. 8.3.22.3 GPIO 引脚作为 TEC 触发源
          1. 8.3.22.3.1 示例:使用 TEC 和 GPIO1 作为触发器进行历时测量
        4. 8.3.22.4 TEC 时序
        5. 8.3.22.5 其他 TEC 行为
    4. 8.4 器件功能模式
      1. 8.4.1 DPLL 运行状态
        1. 8.4.1.1 自由运行
        2. 8.4.1.2 锁定获取
        3. 8.4.1.3 DPLL 被锁定
        4. 8.4.1.4 保持
      2. 8.4.2 数控振荡器 (DCO) 频率和相位调整
        1. 8.4.2.1 DPLL DCO 控制
        2. 8.4.2.2 DPLL DCO 相对调整频率步长
        3. 8.4.2.3 APLL DCO 频率步长
      3. 8.4.3 APLL 频率控制
      4. 8.4.4 器件启动
        1. 8.4.4.1 器件上电复位 (POR)
        2. 8.4.4.2 PLL 启动序列
        3. 8.4.4.3 寄存器配置的启动选项
        4. 8.4.4.4 GPIO1 和 SCS_ADD 功能
        5. 8.4.4.5 ROM 页选择
        6. 8.4.4.6 ROM 详细说明
        7. 8.4.4.7 EEPROM 覆盖层
    5. 8.5 编程
      1. 8.5.1 存储器概述
      2. 8.5.2 接口和控制
        1. 8.5.2.1 通过 TICS Pro 进行编程
        2. 8.5.2.2 SPI 串行接口
        3. 8.5.2.3 I2C 串行接口
      3. 8.5.3 通用寄存器编程序列
      4. 8.5.4 EEPROM 编程步骤
        1. 8.5.4.1 SRAM 编程方法概述
        2. 8.5.4.2 使用寄存器提交方法进行 EEPROM 编程
        3. 8.5.4.3 使用直接写入方法或混合方法进行 EEPROM 编程
        4. 8.5.4.4 I2C 地址和 EEPROM 修订版本号的五个 MSB
  10. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 器件启动序列
      2. 9.1.2 断电 (PD#) 引脚
      3. 9.1.3 通过自举引脚进行启动
      4. 9.1.4 引脚状态
      5. 9.1.5 ROM 和 EEPROM
      6. 9.1.6 电源轨时序、电源斜升速率和混合电源域
        1. 9.1.6.1 上电复位 (POR) 电路
        2. 9.1.6.2 从单电源轨上电
        3. 9.1.6.3 从双电源轨上电
        4. 9.1.6.4 非单调或缓慢上电电源斜坡
      7. 9.1.7 XO 启动缓慢或延迟
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
      3. 9.2.3 应用曲线
    3. 9.3 最佳设计实践
    4. 9.4 电源相关建议
      1. 9.4.1 电源旁路
    5. 9.5 布局
      1. 9.5.1 布局指南
      2. 9.5.2 布局示例
      3. 9.5.3 热可靠性
  11. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 开发支持
        1. 10.1.1.1 时钟树架构编程软件
        2. 10.1.1.2 德州仪器 (TI) 时钟和合成器 (TICS) Pro 软件
        3. 10.1.1.3 PLLatinum™ 仿真工具
    2. 10.2 文档支持
      1. 10.2.1 相关文档
    3. 10.3 接收文档更新通知
    4. 10.4 支持资源
    5. 10.5 商标
    6. 10.6 静电放电警告
    7. 10.7 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息
    1. 12.1 机械数据
    2.     封装信息
    3. 12.2 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

APLL 与 DPLL 级联

图 8-6 展示了从 BAW APLL 级联的 APLL1 和 APLL2。当 APLL1 和 APLL2 获取锁时,会将 VCBO 保持在标称中心频率 2457.6MHz 附近。随后,BAW APLL 将 VCBO 频率锁定至外部 XO 输入并以自由运行模式运行,直到检测到有效的基准输入。

级联的 PLL 锁定到源 VCO 的分频频率。如果检测到有效 DPLL 基准输入的时间超过最短有效时间,DPLL 开始锁定获取基准输入。每个 DPLL TDC 将所选基准输入时钟的相位与来自相应 VCO 的 FB 分频器时钟进行比较,并生成一个与相位误差对应的数字校正字。开始时,DPLL TDC 直接使用无滤波校正字来消除相位误差。然后,后续的校正字由 DLF 进行滤波,而 DLF 输出将控制 APLL N 分频器 SDM 以使 VCO 频率锁定到基准输入。

使用 VCBO 作为 APLL1 或 APLL2 的级联源可为 APLL 提供高频、超低抖动的基准时钟。如果 XO/TCXO/OCXO 频率较低或相位噪声性能较差,这种独特的级联功能可以提供改进的近端相位噪声性能。请注意,在级联 DPLL 运行模式下,锁定 DPLL3 后将实现最佳抖动性能和频率稳定性。

当 DPLL3 级联到另一个 DPLLx 或 APLLx 时,DPLL3 锁定状态会影响另一个 DPLLx 锁定状态。如果 BAW APLL 处于自由运行模式或保持模式,即使级联的 DPLLx 可以保持在锁定状态,VCBO 频率偏移 ppm 值也可能会向 APLLx 输出引入类似的频率偏移。在此配置示例中,妥善做法是监控 BAW APLL 和另一个 APLLx 的锁定状态。或者,在启动时,首先验证 DPLL3 和 BAW APLL 是否已锁定;接下来,切换另一个 APLLx 启用(APLLx_EN 位 = 0 → 1)以校准 VCOx;然后,仔细检查 APLLx 锁定状态。

在上面的示例中,BAW APLL 是上游 APLL,而 APLL1 和 APLL2 是下游 APLL。如果有系统启动时钟时序要求,APLL1 或 APLL2 也可以配置为上游 APLL。

当级联 APLL 时,下游 APLL 可以使用 DPLL 或者旁路掉并关断 DPLL(根据性能要求而定)。如果在上述 APLL 级联模式下禁用了另一个 DPLLx,则可以使用仅 DPLL3 级联模式。在这种情况下,VCO1 或 VCO2 可以在 DPLL3 锁定获取期间和锁定模式中跟随 VCBO 域,从而允许用户将 APLL1 或 APLL2 的时钟域同步到 DPLL3 基准输入。

禁用 DPLL 后,妥善做法是使用 24 位分子和可编程的 24 位分母(而不是固定的 40 位分母),从而消除从 APLL 基准到输出的频率误差。

不要将一个 VCO 输出级联到同一个 DPLL+APLL 对的 DPLL 基准和 APLL 基准。

LMK5C23208A 启用 DPLL 的 APLL 级联示例图 8-5 启用 DPLL 的 APLL 级联示例
LMK5C23208A 禁用 DPLL 的 APLL 级联示例图 8-6 禁用 DPLL 的 APLL 级联示例