SLLA651 April   2025 TCAN2845-Q1 , TCAN2847-Q1 , TCAN2855-Q1 , TCAN2857-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Device States
    1. 2.1 Init Mode
    2. 2.2 Restart Mode
    3. 2.3 Standby Mode
    4. 2.4 Normal Mode
    5. 2.5 Sleep Mode
    6. 2.6 Fail-Safe Mode
  6. 3Power Electronics
    1. 3.1 VSUP
    2. 3.2 VHSS
    3. 3.3 VCAN
    4. 3.4 VCC1
    5. 3.5 VCC2
    6. 3.6 VEXMON, VEXCTRL, and VEXCC
    7. 3.7 HSSx
  7. 4Communication Capabilities
    1. 4.1 CAN-FD and Classical CAN
    2. 4.2 CAN-SIC
    3. 4.3 LIN
  8. 5Protection Features
    1. 5.1 Undervoltage (UV) Monitors
      1. 5.1.1 VSUP
      2. 5.1.2 VHSS
      3. 5.1.3 VCAN
      4. 5.1.4 VEXCC
      5. 5.1.5 VCC1
      6. 5.1.6 VCC2
    2. 5.2 Overvoltage (OV) Monitors
      1. 5.2.1 HSSx
      2. 5.2.2 VCC1
      3. 5.2.3 VCC2
      4. 5.2.4 VEXCC
    3. 5.3 Short Circuit (SC) Monitors
      1. 5.3.1 VCC1
      2. 5.3.2 VCC2
      3. 5.3.3 VEXCC
    4. 5.4 Electrical Faults and Impact on SBC Mode
    5. 5.5 Temperature Sensors
    6. 5.6 Watchdog
      1. 5.6.1 Watchdog Error Counter
      2. 5.6.2 Timeout
      3. 5.6.3 Window
      4. 5.6.4 Initial Long Window
      5. 5.6.5 Q&A
    7. 5.7 Communication Fault Monitoring
      1. 5.7.1 CAN
      2. 5.7.2 LIN
    8. 5.8 LIMP
  9. 6Programming, Memory, and Control
    1. 6.1 SPI
    2. 6.2 EEPROM
    3. 6.3 Interrupts
    4. 6.4 Control
  10. 7Miscellaneous Features
    1. 7.1 Local Wake Ups
    2. 7.2 CAN Bus Wake Up (BWRR)
    3. 7.3 Partial Networking
    4. 7.4 GFO, nRST, and SW
  11. 8Summary
  12. 9References

CAN Bus Wake Up (BWRR)

The device can also be woken up through a bus wake receive request (BWRR). When the can bus receives a wake up pattern (WUP) on the can bus while in sleep mode the device can transition to restart mode then to standby mode (assuming VCC1 is off during sleep). This can be indicated through the CRXD pin which can either latch or toggle depending on configuration chosen. This allows other devices on the bus to wake the SBC and CAN transceiver when the devices are sleeping.

A wake up pattern is defined from ISO 11898-2: 2024 and is comprised of three different parts.

  1. A filtered dominant bus of least t_WK_FILTER followed by
  2. A filtered recessive bus time of least t_WK_FILTER followed by
  3. A second filtered dominant bus time of least t_WK_FILTER.

The sleeping device can ignore any other bus traffic that doesn't meet the conditions of a proper wake-up pattern.

 Wake-Up Pattern (WUP) on CAN
                    Bus Figure 7-4 Wake-Up Pattern (WUP) on CAN Bus