SLLSFZ8 November   2025 MCF8329HS-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Three Phase BLDC Gate Drivers
      2. 7.3.2  Gate Drive Architecture
        1. 7.3.2.1 Dead time and Cross Conduction Prevention
      3. 7.3.3  AVDD Linear Voltage Regulator
      4. 7.3.4  Low-Side Current Sense Amplifier
      5. 7.3.5  Device Interface Modes
        1. 7.3.5.1 Interface - Control and Monitoring
        2. 7.3.5.2 I2C Interface
      6. 7.3.6  Motor Control Input Options
        1. 7.3.6.1 Analog-Mode Motor Control
        2. 7.3.6.2 PWM-Mode Motor Control
        3. 7.3.6.3 Frequency-Mode Motor Control
        4. 7.3.6.4 I2C based Motor Control
        5. 7.3.6.5 Input Control Signal Profiles
          1. 7.3.6.5.1 Linear Control Profiles
          2. 7.3.6.5.2 Staircase Control Profiles
          3. 7.3.6.5.3 Forward-Reverse Profiles
          4. 7.3.6.5.4 Multi-Reference Mode Operation
          5. 7.3.6.5.5 Input Reference Transfer Function without Profiler
      7. 7.3.7  Bootstrap Capacitor Initial Charging
      8. 7.3.8  Starting the Motor Under Different Initial Conditions
        1. 7.3.8.1 Case 1 – Motor is Stationary
        2. 7.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 7.3.9  Motor Start Sequence (MSS)
        1. 7.3.9.1 Initial Speed Detect (ISD)
        2. 7.3.9.2 Motor Resynchronization
        3. 7.3.9.3 Reverse Drive
          1. 7.3.9.3.1 Reverse Drive Tuning
        4. 7.3.9.4 Motor Start-up
          1. 7.3.9.4.1 Align
          2. 7.3.9.4.2 Double Align
          3. 7.3.9.4.3 Initial Position Detection (IPD)
            1. 7.3.9.4.3.1 IPD Operation
            2. 7.3.9.4.3.2 IPD Release
            3. 7.3.9.4.3.3 IPD Advance Angle
          4. 7.3.9.4.4 Slow First Cycle Startup
          5. 7.3.9.4.5 Open Loop
          6. 7.3.9.4.6 Transition from Open to Closed Loop
      10. 7.3.10 Closed Loop Operation
        1. 7.3.10.1 Closed loop accelerate
        2. 7.3.10.2 Speed PI Control
        3. 7.3.10.3 Current PI Control
        4. 7.3.10.4 Overmodulation
        5. 7.3.10.5 Power Loop
        6. 7.3.10.6 Modulation Index Control
        7. 7.3.10.7 Motor Speed Limit
        8. 7.3.10.8 Input DC Power Limit
      11. 7.3.11 Maximum Torque Per Ampere (MTPA) Control
      12. 7.3.12 Flux Weakening Control
      13. 7.3.13 Motor Parameters
        1. 7.3.13.1 Motor Resistance
        2. 7.3.13.2 Motor Inductance
        3. 7.3.13.3 Motor Back-EMF constant
      14. 7.3.14 Motor Parameter Extraction Tool (MPET)
      15. 7.3.15 Single Hall Sensor Operation
      16. 7.3.16 Anti-Voltage Surge (AVS)
      17. 7.3.17 Active Braking
      18. 7.3.18 Output PWM Switching Frequency
      19. 7.3.19 Dead Time Compensation
      20. 7.3.20 Voltage Sense Scaling
      21. 7.3.21 Motor Stop Options
        1. 7.3.21.1 Coast (Hi-Z) Mode
        2. 7.3.21.2 Recirculation Mode
        3. 7.3.21.3 Low-Side Braking
        4. 7.3.21.4 Active Spin-Down
      22. 7.3.22 FG Configuration
        1. 7.3.22.1 FG Output Frequency
        2. 7.3.22.2 FG in Open-Loop
        3. 7.3.22.3 FG During Motor Stop
        4. 7.3.22.4 FG Behavior During Fault
      23. 7.3.23 Protections
        1. 7.3.23.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.23.2  AVDD Power on Reset (AVDD_POR)
        3. 7.3.23.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.23.4  BST Undervoltage Lockout (BST_UV)
        5. 7.3.23.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.23.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.23.7  Thermal Shutdown (OTSD)
        8. 7.3.23.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 7.3.23.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xb or 010b)
          2. 7.3.23.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 011b or 10xb)
          3. 7.3.23.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 110b)
          4. 7.3.23.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE = 111b)
        9. 7.3.23.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.23.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xb or 010b)
          2. 7.3.23.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 011b or 10xb)
          3. 7.3.23.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 110b)
          4. 7.3.23.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 111b)
        10. 7.3.23.10 Motor Lock (MTR_LCK)
          1. 7.3.23.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xb or 010b)
          2. 7.3.23.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE = 011b or 10xb)
          3. 7.3.23.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 110b)
          4. 7.3.23.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 111b)
        11. 7.3.23.11 Motor Lock Detection
          1. 7.3.23.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.23.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 7.3.23.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 7.3.23.12 MPET Faults
        13. 7.3.23.13 IPD Faults
        14. 7.3.23.14 Dry Run Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 7.5.2 Oscillator Source
      3. 7.5.3 External Watchdog with MCU Reset
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
        3. 7.6.1.3 EEPROM Security
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Operation
        3. 7.6.2.3 I2C Read Operation
        4. 7.6.2.4 Examples of I2C Communication Protocol Packets
        5. 7.6.2.5 Internal Buffers
        6. 7.6.2.6 CRC Byte Calculation
  9. EEPROM (Non-Volatile) Register Map
    1. 8.1 Algorithm_Configuration Registers
    2. 8.2 Fault_Configuration Registers
    3. 8.3 Hardware_Configuration Registers
    4. 8.4 Internal_Algorithm_Configuration Registers
  10. RAM (Volatile) Register Map
    1. 9.1 Fault_Status Registers
    2. 9.2 System_Status Registers
    3. 9.3 Algorithm_Control Registers
    4. 9.4 Device_Control Registers
    5. 9.5 Algorithm_Variables Registers
  11. 10Typical Applications
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3.      Gate Drive Current
      4.      Gate Resistor Selection
      5.      System Considerations in High Power Designs
      6.      Capacitor Voltage Ratings
      7.      External Power Stage Components
    3. 10.3 Power Supply Recommendations
      1. 10.3.1 Bulk Capacitance
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
      3. 10.4.3 Thermal Considerations
        1. 10.4.3.1 Power Dissipation
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

I2C Read Operation

MCF8329HS-Q1 read operation over I2C involves the following sequence.

  1. I2C start condition.
  2. The sequence starts with I2C target Start Byte.
  3. The Start Byte is followed by 24-bit Control Word. Bit 23 in the control word has to be 1 as it is a read operation.
  4. The control word is followed by a repeated start or normal start.
  5. MCF8329HS-Q1 sends the data bytes on SDA. The number of bytes sent by MCF8329HS-Q1 depends on the DLEN field value in the control word.
    1. While sending data bytes, the LSB byte is sent first. Refer the examples below for more details.
    2. 16-bit/32-bit Read – The data from the address mentioned in Control Word is sent back.
    3. 64-bit Read – 64-bit is treated as two 32-bit read. The address mentioned in Control Word is taken as Addr 0. Addr 1 is calculating internally by MCF8329HS-Q1 by incrementing Addr 0 by 2. A total of 8 data bytes are sent by MCF8329HS-Q1. The first 4 bytes (sent in LSB first way) are read from Addr 0 and the next 4 bytes are read from Addr 1.
    4. MCF8329HS-Q1 takes some time to process the control word and read data from the given address. This involves some delay. It is quite possible that the repeated start with Target ID will be NACK’d. If the I2C read request has been NACK’d by MCF8329HS-Q1, retry after few cycles. During this retry, it is not necessary to send the entire packet along with the control word. It is sufficient to send only the start condition with target ID and read bit.
  6. If CRC is enabled, then MCF8329HS-Q1 sends an additional CRC byte at the end. If CRC is enabled, external MCU I2C controller has to read this additional byte before sending the stop bit. CRC is calculated for the entire packet (Target ID + W bit, Control Word, Target ID + R bit, Data Bytes).
  7. I2C stop condition.

MCF8329HS-Q1 I2C Read Operation SequenceFigure 7-54 I2C Read Operation Sequence