ZHCSXO1 December   2024 LMX2624-SP

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 时序图
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1  基准振荡器输入
      2. 6.3.2  基准路径
        1. 6.3.2.1 OSCin 倍频器 (OSC_2X)
        2. 6.3.2.2 R 预分频器 (PLL_R_PRE)
        3. 6.3.2.3 R 后分频器 (PLL_R)
      3. 6.3.3  状态机时钟
      4. 6.3.4  PLL 相位检测器和电荷泵
      5. 6.3.5  N 分频器和分数分频电路
      6. 6.3.6  MUXout 引脚
        1. 6.3.6.1 用于回读的串行数据输出
        2. 6.3.6.2 锁定检测指示器设置为“VCOcal”或“VTUNE 和 VCOcal”类型
      7. 6.3.7  VCO(压控振荡器)
        1. 6.3.7.1 VCO 校准
          1. 6.3.7.1.1 双缓冲(影子寄存器)
        2. 6.3.7.2 看门狗特性
        3. 6.3.7.3 RECAL 特性
        4. 6.3.7.4 确定 VCO 增益
      8. 6.3.8  通道分频器
      9. 6.3.9  输出静音引脚和乒乓方法
      10. 6.3.10 输出频率倍频器
      11. 6.3.11 输出缓冲器
      12. 6.3.12 断电模式
      13. 6.3.13 引脚模式整数频率生成
      14. 6.3.14 处理未使用的引脚
      15. 6.3.15 相位同步
        1. 6.3.15.1 一般概念
        2. 6.3.15.2 SYNC 的应用类别
        3. 6.3.15.3 使用 SYNC 的过程
        4. 6.3.15.4 SYNC 输入引脚
      16. 6.3.16 相位调整
      17. 6.3.17 相位调整和相位同步的精细调整
      18. 6.3.18 SYSREF
        1. 6.3.18.1 可编程字段
        2. 6.3.18.2 输入和输出引脚格式
          1. 6.3.18.2.1 SYSREF 输出格式
        3. 6.3.18.3 示例
        4. 6.3.18.4 SYSREF 过程
    4. 6.4 器件功能模式
    5. 6.5 编程
      1. 6.5.1 建议的初始上电序列
      2. 6.5.2 更改频率的建议顺序
  8. 寄存器映射
    1. 7.1 器件寄存器
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 OSCin 配置
      2. 8.1.2 OSCin 压摆率
      3. 8.1.3 射频输出缓冲器功率控制
      4. 8.1.4 射频输出缓冲器上拉
      5. 8.1.5 互补侧的射频输出处理
        1. 8.1.5.1 未使用输出的单端端接
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
      3. 8.2.3 应用曲线
    3. 8.3 电源相关建议
    4. 8.4 布局
      1. 8.4.1 布局指南
      2. 8.4.2 布局示例
      3. 8.4.3 PCB 布局上的封装示例
      4. 8.4.4 辐射环境
        1. 8.4.4.1 电离总剂量
        2. 8.4.4.2 单粒子效应
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 开发支持
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 接收文档更新通知
    4. 9.4 支持资源
    5. 9.5 商标
    6. 9.6 静电放电警告
    7. 9.7 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息
    1. 11.1 工程样片
    2. 11.2 封装选项附录
    3. 11.3 卷带包装信息

VCO 校准

为了降低 VCO 调谐增益并因此提高 VCO 相位噪声性能,将 VCO 频率范围划分为几个不同的频带。7500MHz 至 15000MHz 的整个范围涵盖了一个倍频程,使得分频器可以处理低于下限的频率。这就需要进行频率校准以确定给定所需输出频率的正确频带。只要 R0 寄存器被编程为 FCAL_EN = 1,就会激活频率校准例程。在 VCO 校准开始之前必须存在有效的 OSCin 信号。

VCO 还具有一个内部幅度校准算法来优化相位噪声,该算法在 R0 寄存器被编程时也会被激活。

实现此目的的理想内部设置取决于温度。如果允许温漂过大而不重新校准,则可能会导致一些轻微的相位噪声下降。连续锁定的最大容许漂移 ΔTCL 在电气规格部分有说明。对于此器件,125°C 的温度表示如果器件在建议运行条件下运行,则不会失锁。

LMX2624-SP 允许用户辅助进行 VCO 校准。一般而言,共有四种辅助,如表 6-4 所示:

表 6-4 辅助实现 VCO 校准速度
辅助水平说明VCO_SELVCO_SEL_FORCE
VCO_CAPCTRL_FORCE
VCO_DACISET_FORCE
VCO_CAPCTRL
VCO_DACISET
无辅助用户不执行任何操作来提高 VCO 校准速度。70不用考虑
部分辅助每次频率变化时,在检查 FCAL_EN 位之前,用户提供初始的起始 VCO_SEL按表选择0不用考虑
完全辅助用户强制启用 VCO 内核 (VCO_SEL)、幅度设置 (VCO_DACISET) 和频带 (VCO_CAPCTRL),并手动设置相应的值。如果两个频点之间相差不超过 5MHz 并且在同一个 VCO 内核上,用户可以使用线性插值为这两个点之间的任何频率设置 VCO 幅度和 Capcode按回读选择1按回读选择