ZHCACF9A august   2021  – march 2023 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   摘要
  2.   商标
  3. 1引言
    1. 1.1 资源
      1. 1.1.1 TINA-TI 基于 SPICE 的模拟仿真程序
      2. 1.1.2 PSpice for TI 设计和仿真工具
      3. 1.1.3 应用报告:C2000 MCU 的 ADC 输入电路评估
      4. 1.1.4 TI 高精度实验室 - SAR ADC 输入驱动器设计系列
      5. 1.1.5 模拟工程师计算器
      6. 1.1.6 TI 高精度实验室 - 运算放大器:稳定性系列
      7. 1.1.7 相关应用报告
      8. 1.1.8 原理图捕捉和仿真工具的比较
      9. 1.1.9 PSpice for TI ADC 输入模型
  4. 2电荷共享概念
    1. 2.1 传统高速 ADC 驱动电路
    2. 2.2 高速 ADC 驱动电路中更大的 Cs
    3. 2.3 ADC 驱动电路中非常大的 Cs
    4. 2.4 电荷共享工作原理
    5. 2.5 采样率和源阻抗与跟踪误差之间的关系
    6. 2.6 跟踪误差的分析解决方案
    7. 2.7 多路复用 ADC 中的电荷共享
    8. 2.8 电荷共享电路的优点
    9. 2.9 电荷共享电路的缺点
  5. 3电荷共享设计流程
    1. 3.1 收集所需的信息
    2. 3.2 确定 Cs 容值
    3. 3.3 验证采样率、源阻抗和带宽
    4. 3.4 对电路建立性能进行仿真
    5. 3.5 输入设计工作表
  6. 4电荷共享电路仿真方法
    1. 4.1 仿真元件
      1. 4.1.1 Vin
      2. 4.1.2 Voa、Voa_SS 和 Verror
      3. 4.1.3 Rs、Cs 和 Vcont
      4. 4.1.4 Ch、Ron 和 Cp
      5. 4.1.5 S+H 开关、放电开关、tacq 和 tdis
    2. 4.2 配置仿真参数
    3. 4.3 用于确定 Voa_ss 的偏置点分析
    4. 4.4 确定 Voa_ss 的瞬态分析
    5. 4.5 测量建立误差
    6. 4.6 扫描源电阻
  7. 5电路设计示例
    1. 5.1 示例 1:确定最大采样率
      1. 5.1.1 示例 1:分析
      2. 5.1.2 示例 1:仿真
      3. 5.1.3 示例 1:工作表
    2. 5.2 示例 2:添加运算放大器
      1. 5.2.1 示例 2:分析
      2. 5.2.2 示例 2:仿真
      3. 5.2.3 示例 2:工作表
    3. 5.3 示例 3:更低的建立目标
      1. 5.3.1 示例 3:分析
      2. 5.3.2 示例 3:仿真
      3. 5.3.3 示例 3:工作表
    4. 5.4 示例 4:分压器
      1. 5.4.1 示例 4:分析
      2. 5.4.2 示例 4:仿真
      3. 5.4.3 示例 4:工作表
  8. 6总结
  9.   A 附录:ADC 输入建立动因
    1.     A.1 ADC 输入建立的机制
    2.     A.2 建立不适当的症状
      1.      A.2.1 失真
      2.      A.2.2 存储器串扰
      3.      A.2.3 精度
      4.      A.2.4 C2000 ADC 架构
  10.   参考文献
  11.   修订历史记录

收集所需的信息

需要以下信息才能继续设计和验证电荷共享输入电路。收集这些值后,可以将其填入节 3.5中提供的工作表。

  • N:目标建立分辨率(位)。通常与 ADC 的分辨率相同。可以采用较低的目标分辨率来降低输入设计要求。
  • Vfs:满量程电压范围。在外部基准模式下,这是向 VREFHI 引脚提供的电压(通常为 3.0V 或 2.5V)。
    在内部基准模式下,这是基于所选基准模式的有效输入范围(通常为 3.3V 或 2.5V)。
  • CH:ADC S+H 电容。在数据手册表“输入模型参数”中提供。
  • Cp:ADC 引脚寄生电容。在数据手册表“每通道寄生电容”中提供。
  • Rs:源电阻。驱动 ADC 的源的输出电阻。也可以有意选择。
  • Fs:目标通道上的采样率。通常是应用的一项要求。
  • BWs:源信号所需的带宽。