ZHCAB45 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. 大功率电机应用简介
    1. 1.1 设计不当的大功率电机驱动系统的影响
    2. 1.2 大功率设计流程的示例
  2. 简要研究大功率电机驱动系统
    1. 2.1 电机驱动功率级剖析及故障排除方法
    2. 2.2 大功率系统故障排除
  3. 通过 MOSFET 和 MOSFET 栅极电流实现大功率设计 (IDRIVE)
    1. 3.1 MOSFET 栅极电流
      1. 3.1.1 栅极电流为何会导致损坏
      2. 3.1.2 栅极电阻器和智能栅极驱动技术
        1. 3.1.2.1 栅极电阻器
        2. 3.1.2.2 智能栅极驱动和内部控制的栅极灌电流和拉电流
        3. 3.1.2.3 栅极电阻器和智能栅极驱动技术摘要
      3. 3.1.3 给定 FET 的栅极电流计算示例
  4. 通过外部元件实现大功率设计
    1. 4.1 大容量和去耦电容器
      1. 4.1.1 额定电容器电压说明
    2. 4.2 RC 缓冲器电路
    3. 4.3 高侧漏极到低侧源极电容器
    4. 4.4 栅极至 GND 二极管
  5. 通过并联 MOSFET 功率级实现大功率设计
  6. 通过保护实现大功率设计
    1. 6.1 VDS 和 VGS 监控
      1. 6.1.1 在过流、击穿或 FET 短路事件期间关闭 FET
    2. 6.2 无源栅极至源极下拉电阻
    3. 6.3 电源反极性或电源截断保护
  7. 通过电机控制方法实现大功率设计
    1. 7.1 制动与惯性滑行
      1. 7.1.1 基于算法的解决方案
      2. 7.1.2 外部电路解决方案
      3. 7.1.3 制动与惯性滑行摘要
  8. 通过布局实现大功率设计
    1. 8.1 什么是开尔文连接?
    2. 8.2 总体布局建议
  9. 结论
  10. 10鸣谢

栅极至 GND 二极管

图 4-5 栅极至 GND 二极管示例

简而言之,二极管将节点钳位到电压,因此不会超出器件的绝对最大额定值。符合栅极驱动器和 MOSFET 的绝对最大额定值的电流额定值、钳位电压和时序信息对于选择有效的二极管很重要。常见的置位方法是将阴极连接到 FET 附近的 GLx 节点,将阳极连接到 GND,以帮助处理负瞬态尖峰,如图 4-5 所示。

这些方法不是主要推荐的缓解技术,不能取代其他方法,因为二极管只是简单地重新路由能量,而不是通过滤波或去耦来抑制能量。与电容器相比,二极管通常会引入更多的损耗和功耗,因为每个 PWM 周期都会发生电压尖峰。

总结:

  • TVS 二极管钳位电压低于器件的绝对额定值以防止损坏
  • 二极管应与其他缓解技术结合使用,不得仅仅依赖二极管
  • 与流入和流出电容器的电流相比,二极管会耗散更多功率