ZHCAB45 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. 大功率电机应用简介
    1. 1.1 设计不当的大功率电机驱动系统的影响
    2. 1.2 大功率设计流程的示例
  2. 简要研究大功率电机驱动系统
    1. 2.1 电机驱动功率级剖析及故障排除方法
    2. 2.2 大功率系统故障排除
  3. 通过 MOSFET 和 MOSFET 栅极电流实现大功率设计 (IDRIVE)
    1. 3.1 MOSFET 栅极电流
      1. 3.1.1 栅极电流为何会导致损坏
      2. 3.1.2 栅极电阻器和智能栅极驱动技术
        1. 3.1.2.1 栅极电阻器
        2. 3.1.2.2 智能栅极驱动和内部控制的栅极灌电流和拉电流
        3. 3.1.2.3 栅极电阻器和智能栅极驱动技术摘要
      3. 3.1.3 给定 FET 的栅极电流计算示例
  4. 通过外部元件实现大功率设计
    1. 4.1 大容量和去耦电容器
      1. 4.1.1 额定电容器电压说明
    2. 4.2 RC 缓冲器电路
    3. 4.3 高侧漏极到低侧源极电容器
    4. 4.4 栅极至 GND 二极管
  5. 通过并联 MOSFET 功率级实现大功率设计
  6. 通过保护实现大功率设计
    1. 6.1 VDS 和 VGS 监控
      1. 6.1.1 在过流、击穿或 FET 短路事件期间关闭 FET
    2. 6.2 无源栅极至源极下拉电阻
    3. 6.3 电源反极性或电源截断保护
  7. 通过电机控制方法实现大功率设计
    1. 7.1 制动与惯性滑行
      1. 7.1.1 基于算法的解决方案
      2. 7.1.2 外部电路解决方案
      3. 7.1.3 制动与惯性滑行摘要
  8. 通过布局实现大功率设计
    1. 8.1 什么是开尔文连接?
    2. 8.2 总体布局建议
  9. 结论
  10. 10鸣谢

栅极电阻器

图 3-2 栅极电流固定时的灌入和拉出电阻器

在大多数栅极驱动器器件中,栅极驱动拉电流和灌电流(即上拉和下拉)值可在数据表中找到。在某些器件中,该值在内部是固定的,对于给定的 FET,输出电流能力远大于计算出的 IDRIVE。

添加外部串联栅极电阻以控制施加的栅极电压的压摆率并降低施加到 FET 栅极的峰值电流。这类似于 RC 滤波器:R 是栅极电阻器,C 是 MOSFET 的固有电容。为了加强控制,可以并联另一个栅极电阻器和二极管(如果设计人员想要分别控制灌电流和拉电流),如图 3-2 中所示。

MOSFET 参数、系统电压和电路板寄生参数都会影响最终的压摆率,因此选择理想栅极电阻值是一个迭代过程。适用于栅极驱动器的外部栅极电阻器设计指南 技术手册中介绍了此过程。

下面这个原则有助于确定用于栅极电阻器的理想电阻:电阻越小,压摆率越高,电流越大;电阻越大,压摆率越低,电流越小。