ZHCAB45 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. 大功率电机应用简介
    1. 1.1 设计不当的大功率电机驱动系统的影响
    2. 1.2 大功率设计流程的示例
  2. 简要研究大功率电机驱动系统
    1. 2.1 电机驱动功率级剖析及故障排除方法
    2. 2.2 大功率系统故障排除
  3. 通过 MOSFET 和 MOSFET 栅极电流实现大功率设计 (IDRIVE)
    1. 3.1 MOSFET 栅极电流
      1. 3.1.1 栅极电流为何会导致损坏
      2. 3.1.2 栅极电阻器和智能栅极驱动技术
        1. 3.1.2.1 栅极电阻器
        2. 3.1.2.2 智能栅极驱动和内部控制的栅极灌电流和拉电流
        3. 3.1.2.3 栅极电阻器和智能栅极驱动技术摘要
      3. 3.1.3 给定 FET 的栅极电流计算示例
  4. 通过外部元件实现大功率设计
    1. 4.1 大容量和去耦电容器
      1. 4.1.1 额定电容器电压说明
    2. 4.2 RC 缓冲器电路
    3. 4.3 高侧漏极到低侧源极电容器
    4. 4.4 栅极至 GND 二极管
  5. 通过并联 MOSFET 功率级实现大功率设计
  6. 通过保护实现大功率设计
    1. 6.1 VDS 和 VGS 监控
      1. 6.1.1 在过流、击穿或 FET 短路事件期间关闭 FET
    2. 6.2 无源栅极至源极下拉电阻
    3. 6.3 电源反极性或电源截断保护
  7. 通过电机控制方法实现大功率设计
    1. 7.1 制动与惯性滑行
      1. 7.1.1 基于算法的解决方案
      2. 7.1.2 外部电路解决方案
      3. 7.1.3 制动与惯性滑行摘要
  8. 通过布局实现大功率设计
    1. 8.1 什么是开尔文连接?
    2. 8.2 总体布局建议
  9. 结论
  10. 10鸣谢

电机驱动功率级剖析及故障排除方法

图 2-1 高级功率级

在开发故障排除指南、外部电路库、TI 驱动器产品特性或布局技术之前,必须了解典型的栅极驱动器系统及其子功能。

首先来看图 2-1 的右侧部分,可以看到电机驱动器功率级(也被称为逆变器、相位或半桥)的一项功能是向电机输送电流。分解为几个最简单的部分,假设低侧 FET 关闭,电流从 VDRAIN 流经高侧 FET 并进入电机。或者,如果低侧 FET 导通,而高侧 FET 关闭,则电流从电机流出并通过低侧 FET 到达 GND。在千瓦电机驱动应用中,会有高达数百安培的电流流经这些 FET。

再来看看图 2-1 的左侧部分,可以看到功率级的另一项功能是将数字逻辑 PWM 输入信号(例如 INHx 和 INLx)转换为更高模拟电压电平的信号,例如 24V 或 48V。这样,功率级的一部分就是为了实现从数字电平信号到模拟电平信号的电压转换。此外,通常情况下,从提供的电机驱动器电源电压产生电压轨以转换模拟电压电平是电机驱动器的一项功能。这些模拟电压可能高于 VDRAIN 或系统中的最高输入电压。因此,使用线性稳压器、电荷泵或自举架构来实现这些电压(例如,VCP 和 VGLS)。

然后来看图 2-1 的中间部分,可以看到功率级的另一个次要功能是调节或控制 FET 栅极上的信号。MOSFET 可以作为开关、电阻器或电流源(这取决于与漏极和源极电压相关的栅极电压),因此必须控制和监控 FET 的所有电压。保护、信号调节技术和专用电路都属于此功能。

综上所述,电机驱动功率级的三个功能是:

  • 向电机输送电流
  • 从数字电压电平到电机电压电平的电压转换
  • 栅极信号调节或保护