ZHCAB45 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. 大功率电机应用简介
    1. 1.1 设计不当的大功率电机驱动系统的影响
    2. 1.2 大功率设计流程的示例
  2. 简要研究大功率电机驱动系统
    1. 2.1 电机驱动功率级剖析及故障排除方法
    2. 2.2 大功率系统故障排除
  3. 通过 MOSFET 和 MOSFET 栅极电流实现大功率设计 (IDRIVE)
    1. 3.1 MOSFET 栅极电流
      1. 3.1.1 栅极电流为何会导致损坏
      2. 3.1.2 栅极电阻器和智能栅极驱动技术
        1. 3.1.2.1 栅极电阻器
        2. 3.1.2.2 智能栅极驱动和内部控制的栅极灌电流和拉电流
        3. 3.1.2.3 栅极电阻器和智能栅极驱动技术摘要
      3. 3.1.3 给定 FET 的栅极电流计算示例
  4. 通过外部元件实现大功率设计
    1. 4.1 大容量和去耦电容器
      1. 4.1.1 额定电容器电压说明
    2. 4.2 RC 缓冲器电路
    3. 4.3 高侧漏极到低侧源极电容器
    4. 4.4 栅极至 GND 二极管
  5. 通过并联 MOSFET 功率级实现大功率设计
  6. 通过保护实现大功率设计
    1. 6.1 VDS 和 VGS 监控
      1. 6.1.1 在过流、击穿或 FET 短路事件期间关闭 FET
    2. 6.2 无源栅极至源极下拉电阻
    3. 6.3 电源反极性或电源截断保护
  7. 通过电机控制方法实现大功率设计
    1. 7.1 制动与惯性滑行
      1. 7.1.1 基于算法的解决方案
      2. 7.1.2 外部电路解决方案
      3. 7.1.3 制动与惯性滑行摘要
  8. 通过布局实现大功率设计
    1. 8.1 什么是开尔文连接?
    2. 8.2 总体布局建议
  9. 结论
  10. 10鸣谢

高侧漏极到低侧源极电容器

图 4-4 高侧漏极到低侧源极电容器位置示例

乍一看,图 4-4 中的高侧漏极到低侧源极电容器似乎不言自明,并且经常与去耦电容器或大容量电容器相混淆。但是,大多数电机驱动器应用没有将低侧源极连接到 GND。相反,低侧源极通常连接到用于电流感测的分流电阻器,然后连接到 GND。

这很重要,因为去耦电容器需要稳定基准才能可靠地提供电荷。由于感测电阻布局引入的电感、流过低侧 FET 的电机电流或接地技术不良,系统中可能会出现 GND 不稳定情况。如果 GND 与开关节点一起弹动,则去耦电容器无法完成从稳定基准和低电感路径提供电荷的工作。作为参考,0.2512 元件封装尺寸(感测电阻的常见封装)会引入 1–5nH 的寄生电感。

HS 漏极到低侧源极电容器可以避免这些问题,因为它连接到 VDRAIN(假定该 VDRAIN 是稳定的),并且可以将电荷直接倾倒到节点上,而不是通过感测电阻的路径。这是 AC GND 的概念,也是 RC 缓冲器也可以连接到 HS 漏极和 LS 源极的原因。

因此:

  • 这种方法可以很好地抑制低侧源极和 GND 上的负反弹。
  • 选择大约 0.01µF–1µF 的值并将它们放置在尽可能靠近 FET 的位置,以确保它们正常工作
    • 具体来说,该值应足够低,以免影响电流感测波形的非寄生纹波,从而反映电机的真实行为

许多工程师低估了这种缓解技术并且没有充分利用空间,因为此时他们已经优先考虑了 RC 缓冲器和大容量电容器。如果 GND 或感测电阻产生负振铃,或低于 GND,则 HS 漏极至 LS 源极电容器可在低阻抗路径中提供电荷。显示 GND 和 LS 源极电压的波形有助于确定是否发生负振铃以及是否更新设计以将 HS 漏极到 LS 源极电容器添加到半桥。