ZHCAB45 June   2021 DRV3255-Q1 , DRV8300 , DRV8301 , DRV8302 , DRV8303 , DRV8304 , DRV8305 , DRV8305-Q1 , DRV8306 , DRV8307 , DRV8308 , DRV8320 , DRV8320R , DRV8323 , DRV8323R , DRV8340-Q1 , DRV8343-Q1 , DRV8350 , DRV8350F , DRV8350R , DRV8353 , DRV8353F , DRV8353R

 

  1. 大功率电机应用简介
    1. 1.1 设计不当的大功率电机驱动系统的影响
    2. 1.2 大功率设计流程的示例
  2. 简要研究大功率电机驱动系统
    1. 2.1 电机驱动功率级剖析及故障排除方法
    2. 2.2 大功率系统故障排除
  3. 通过 MOSFET 和 MOSFET 栅极电流实现大功率设计 (IDRIVE)
    1. 3.1 MOSFET 栅极电流
      1. 3.1.1 栅极电流为何会导致损坏
      2. 3.1.2 栅极电阻器和智能栅极驱动技术
        1. 3.1.2.1 栅极电阻器
        2. 3.1.2.2 智能栅极驱动和内部控制的栅极灌电流和拉电流
        3. 3.1.2.3 栅极电阻器和智能栅极驱动技术摘要
      3. 3.1.3 给定 FET 的栅极电流计算示例
  4. 通过外部元件实现大功率设计
    1. 4.1 大容量和去耦电容器
      1. 4.1.1 额定电容器电压说明
    2. 4.2 RC 缓冲器电路
    3. 4.3 高侧漏极到低侧源极电容器
    4. 4.4 栅极至 GND 二极管
  5. 通过并联 MOSFET 功率级实现大功率设计
  6. 通过保护实现大功率设计
    1. 6.1 VDS 和 VGS 监控
      1. 6.1.1 在过流、击穿或 FET 短路事件期间关闭 FET
    2. 6.2 无源栅极至源极下拉电阻
    3. 6.3 电源反极性或电源截断保护
  7. 通过电机控制方法实现大功率设计
    1. 7.1 制动与惯性滑行
      1. 7.1.1 基于算法的解决方案
      2. 7.1.2 外部电路解决方案
      3. 7.1.3 制动与惯性滑行摘要
  8. 通过布局实现大功率设计
    1. 8.1 什么是开尔文连接?
    2. 8.2 总体布局建议
  9. 结论
  10. 10鸣谢

大功率设计流程的示例

此示例涵盖了一个假设,并使用大功率设计原理来改进大功率电机驱动器应用。请注意,此示例用于说明如何利用该过程,应用手册的其余部分解释了选择最终实际使用的过程所依据的理论。

考虑以下示例:

  • 在使用 DRV835x 以 20A 运行的 48V 系统中,系统按预期工作
  • 将电流增加到 30A 的目标电流时,系统会持续受损
  • 所有电流电平超过 30A 的系统都会发生这种情况

检查给定内容,系统存在根本问题。在这种情况下,故障排除的下一步必须是验证栅极驱动电路的功能。

在完成故障排除步骤后,可以发现:

  • 仅在尝试切换低侧并查看标准后才施加 nFAULT 信号,低侧发生 VGS 故障,这意味着在切换输入低侧栅极信号后,栅极电压没有上升到预期电压
  • 使用 DMM,对低侧栅极到源极进行的阻抗测试结果显示为几个欧姆,这表明发生了短路和损坏
  • 损坏主要发生在单个相位上,但其他一些相位已受到损坏,具体取决于所测试的系统

栅极到源极之间的短路似乎表明问题出在电压电感尖峰上,因为可能已经超过绝对最大限值。在较低电流电平下没有发生损坏进一步支持了这一观点。此外,如果损坏主要发生在单个相位,这表明可能存在布局未优化,并且可能正是这一点导致了问题发生。

目标是降低电压尖峰:

  • 通过降低 IDRIVE 来限制尖峰,这降低了栅极驱动灌电流和拉电流。
    • 这使系统能够耐受 30A 电流,但由此产生的 VDS 信号和栅极的上升和下降时间对于应用来说太长了。如果上升和下降时间可以接受,那么问题到这里就解决了。
  • 通过在 20A 的低侧栅极和源极电压上使用示波器探头,波形显示低侧源上存在负电压尖峰,该尖峰接近但不超过 DRV835x 100-V 三相智能栅极驱动器 数据表中定义的绝对最大限值。

    • 这便产生了以下假设:这些尖峰会随着电流的增加而变得更糟,最终会超过绝对最大额定值

有一些指标表明低侧源极和栅极的负尖峰是问题所在,可以采用以下几种解决方案进行处理:

  • 将高侧源添加到低侧电容器
  • 添加栅极至 GND 二极管
  • 增加大容量电容
  • 分析受到损坏的相位周围的布局并对其进行改进,特别是 GND 和检测电阻路径

评估哪种解决方案能够解决问题。为避免重新设计电路板,最佳做法是查看物料清单的变化或填充先前已取消填充的元件。

  • 存在高侧漏极到低侧源极电容器的位置,但未填充,因此添加电容器即可解决问题,而无需重新设计,同时也不会降低栅极驱动电流。

本应用手册将此过程拆分为开发故障排除指南、外部电路库、TI 驱动器产品特性或布局技术,以应对更大功率系统的易失性。