ZHCAAB9E February   2021  – March 2021 TPS1H000-Q1 , TPS1H100-Q1 , TPS1H200A-Q1 , TPS1HA08-Q1 , TPS25200-Q1 , TPS27S100 , TPS2H000-Q1 , TPS2H160-Q1 , TPS2HB16-Q1 , TPS2HB35-Q1 , TPS2HB50-Q1 , TPS4H000-Q1 , TPS4H160-Q1

 

  1.   商标
  2. 1引言
  3. 2驱动电阻性负载
    1. 2.1 背景
    2. 2.2 应用示例
    3. 2.3 为何使用智能高侧开关?
      1. 2.3.1 精确的电流检测
      2. 2.3.2 可调电流限制
    4. 2.4 选择合适的智能高侧开关
      1. 2.4.1 功率耗散计算
      2. 2.4.2 PWM 和开关损耗
  4. 3驱动电容性负载
    1. 3.1 背景
    2. 3.2 应用示例
    3. 3.3 为何使用智能高侧开关?
      1. 3.3.1 电容性负载充电
      2. 3.3.2 减小浪涌电流
        1. 3.3.2.1 电容器充电时间
      3. 3.3.3 热耗散
      4. 3.3.4 电容性浪涌期间的结温
      5. 3.3.5 过热关断
      6. 3.3.6 选择正确的智能高侧开关
  5. 4驱动电感性负载
    1. 4.1 背景
    2. 4.2 应用示例
    3. 4.3 为何使用智能高侧开关?
    4. 4.4 导通阶段
    5. 4.5 关断阶段
      1. 4.5.1 退磁时间
      2. 4.5.2 退磁期间的瞬时功率损耗
      3. 4.5.3 退磁期间耗散的总能量
      4. 4.5.4 测量精度
      5. 4.5.5 应用示例
      6. 4.5.6 计算
      7. 4.5.7 测量
    6. 4.6 选择正确的智能高侧开关
  6. 5驱动 LED 负载
    1. 5.1 背景
    2. 5.2 应用示例
    3. 5.3 LED 直接驱动
    4. 5.4 LED 模块
    5. 5.5 为何使用智能高侧开关?
    6. 5.6 开路负载检测
    7. 5.7 负载电流感测
    8. 5.8 恒流源
      1. 5.8.1 选择正确的智能高侧开关
  7. 6附录
    1. 6.1 瞬态热阻抗数据
    2. 6.2 退磁能量特性数据
  8. 7参考文献
  9. 8修订历史记录

可调电流限制

TI 智能高侧开关的另一个独特特性是对可调电流的限制。此特性在热应用中尤其重要,因为在这类应用中,即使只在短时间内产生大量电流也不仅会损害系统而且还会损害最终用户。大多数情况下,在电阻性负载应用中会对使能引脚进行 PWM 处理,仅允许全部电流中的一部分流向负载。这意味着,即使是高侧开关可以应对的标称电流量也会造成故障,并可能损害系统或最终用户。

竞争对手提供的高侧开关通常具有固定的电流限值,相对于标称工作电流而言,该限值通常过高。这意味着开关在达到设置得异常高的电流电平或造成热关断之前不会关断。在上面的加热器示例中,理论上一个微不足道的电阻短路可能就会消耗两倍的 PWM 电流。