TIDUE59A May   2018  – September 2020

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5. 1System Description
    1. 1.1 Key System Specifications
  6. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 CC3220
      2. 2.3.2 CC2640R2F
      3. 2.3.3 DRV8837
    4. 2.4 System Design Theory
      1. 2.4.1 CC3220S to CC2640R2F Interface
      2. 2.4.2 CC3220S to DRV8837 Interface
      3. 2.4.3 Software Architecture
      4. 2.4.4 Network Connection Management
      5. 2.4.5 Provisioning
        1. 2.4.5.1 AP Provisioning and SmartConfig™
        2. 2.4.5.2 Wi-Fi Provisioning Over BLE
      6. 2.4.6 Sending and Receiving Messages Through Cloud
        1. 2.4.6.1 Message Queue Telemetry Transport Protocol
        2. 2.4.6.2 MQTT Client Implementation
      7. 2.4.7 Over-the-Air Updates
        1. 2.4.7.1 HyperText Transfer Protocol
      8. 2.4.8 Security Enablers
        1. 2.4.8.1 Secure Boot
        2. 2.4.8.2 Secure Sockets
          1. 2.4.8.2.1 Hardware Accelerators
          2. 2.4.8.2.2 Simple Network Time Protocol
        3. 2.4.8.3 File System Security
          1. 2.4.8.3.1 Failsafe Files and Bundle Protection
      9. 2.4.9 Low-Power Consumption
  7. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 CC3220S LaunchPad™ Development Kit
        2. 3.1.1.2 CC2640R2F LaunchPad™ Development Kit
        3. 3.1.1.3 Sensor BoosterPack™ Connections (BMI160)
        4. 3.1.1.4 DRV8837EVM Modifications and Connections
        5. 3.1.1.5 Assembling EVMs
      2. 3.1.2 Software
        1. 3.1.2.1 Getting Started With Software
          1. 3.1.2.1.1 Build simple_np Application and Flash CC2640R2F
          2. 3.1.2.1.2 Use Premade UniFlash ImageCreator Project
          3. 3.1.2.1.3 Importing Project Source Files Into CCS
        2. 3.1.2.2 User Files
        3. 3.1.2.3 Run Wi-Fi® Doorlock Demo
          1. 3.1.2.3.1 Connect CC3220 to Network
          2. 3.1.2.3.2 Networking Functions
            1. 3.1.2.3.2.1 Get Current Date and Time (SNTP)
            2. 3.1.2.3.2.2 Send and Receive Messages (MQTT)
            3. 3.1.2.3.2.3 Perform Software Update Using Dropbox (OTA Update)
    2. 3.2 Testing and Results
      1. 3.2.1 Pass or Fail Tests
      2. 3.2.2 Power Measurements
      3. 3.2.3 Test Setup
        1. 3.2.3.1 CC3220S
        2. 3.2.3.2 CC2640R2F
        3. 3.2.3.3 DRV8837
      4. 3.2.4 Test Results
      5. 3.2.5 Battery Life Estimate
  8. 4Design Files
  9. 5Software Files
  10. 6Related Documentation
    1. 6.1 Trademarks
  11. 7Terminology
  12. 8About the Author
  13. 9Revision History

CC2640R2F

The CC2640R2F device is a wireless MCU targeting Bluetooth 4.2 and Bluetooth 5 low-energy applications. The device is a member of the SimpleLink ultra-low power CC26xx family of cost-effective, 2.4-GHz RF devices. Ultra-low active RF and MCU current and low-power mode current consumption provide excellent battery lifetime and allow for operation on small, coin-cell batteries and in energy-harvesting applications. The SimpleLink BLE CC2640R2F device contains a 32-bit Arm Cortex-M3 core, which runs at 48 MHz, as the main processor and a rich peripheral feature set that includes a unique ultra-low power sensor controller. This sensor controller is ideal for interfacing external sensors and for collecting analog and digital data autonomously, while the rest of the system is in sleep mode. Thus, the CC2640R2F device is great for a wide range of applications where long battery lifetime, small form factor, and ease of use are important. The power and clock management and radio systems of the CC2640R2F wireless MCU require specific configuration and handling by the software to operate correctly, which has been implemented in the TI-RTOS. TI recommends using this software framework for all application development on the device. The complete TI-RTOS and device drivers are offered in the source code, free of charge from www.ti.com. Bluetooth low energy controller and host libraries are embedded in the ROM and run partly on an Arm Cortex-M0 processor. This architecture improves overall system performance and power consumption and frees up significant amounts of flash memory for the application. The Bluetooth stack is available, free of charge from www.ti.com.