TIDUE59A May   2018  – September 2020

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5. 1System Description
    1. 1.1 Key System Specifications
  6. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 CC3220
      2. 2.3.2 CC2640R2F
      3. 2.3.3 DRV8837
    4. 2.4 System Design Theory
      1. 2.4.1 CC3220S to CC2640R2F Interface
      2. 2.4.2 CC3220S to DRV8837 Interface
      3. 2.4.3 Software Architecture
      4. 2.4.4 Network Connection Management
      5. 2.4.5 Provisioning
        1. 2.4.5.1 AP Provisioning and SmartConfig™
        2. 2.4.5.2 Wi-Fi Provisioning Over BLE
      6. 2.4.6 Sending and Receiving Messages Through Cloud
        1. 2.4.6.1 Message Queue Telemetry Transport Protocol
        2. 2.4.6.2 MQTT Client Implementation
      7. 2.4.7 Over-the-Air Updates
        1. 2.4.7.1 HyperText Transfer Protocol
      8. 2.4.8 Security Enablers
        1. 2.4.8.1 Secure Boot
        2. 2.4.8.2 Secure Sockets
          1. 2.4.8.2.1 Hardware Accelerators
          2. 2.4.8.2.2 Simple Network Time Protocol
        3. 2.4.8.3 File System Security
          1. 2.4.8.3.1 Failsafe Files and Bundle Protection
      9. 2.4.9 Low-Power Consumption
  7. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
      1. 3.1.1 Hardware
        1. 3.1.1.1 CC3220S LaunchPad™ Development Kit
        2. 3.1.1.2 CC2640R2F LaunchPad™ Development Kit
        3. 3.1.1.3 Sensor BoosterPack™ Connections (BMI160)
        4. 3.1.1.4 DRV8837EVM Modifications and Connections
        5. 3.1.1.5 Assembling EVMs
      2. 3.1.2 Software
        1. 3.1.2.1 Getting Started With Software
          1. 3.1.2.1.1 Build simple_np Application and Flash CC2640R2F
          2. 3.1.2.1.2 Use Premade UniFlash ImageCreator Project
          3. 3.1.2.1.3 Importing Project Source Files Into CCS
        2. 3.1.2.2 User Files
        3. 3.1.2.3 Run Wi-Fi® Doorlock Demo
          1. 3.1.2.3.1 Connect CC3220 to Network
          2. 3.1.2.3.2 Networking Functions
            1. 3.1.2.3.2.1 Get Current Date and Time (SNTP)
            2. 3.1.2.3.2.2 Send and Receive Messages (MQTT)
            3. 3.1.2.3.2.3 Perform Software Update Using Dropbox (OTA Update)
    2. 3.2 Testing and Results
      1. 3.2.1 Pass or Fail Tests
      2. 3.2.2 Power Measurements
      3. 3.2.3 Test Setup
        1. 3.2.3.1 CC3220S
        2. 3.2.3.2 CC2640R2F
        3. 3.2.3.3 DRV8837
      4. 3.2.4 Test Results
      5. 3.2.5 Battery Life Estimate
  8. 4Design Files
  9. 5Software Files
  10. 6Related Documentation
    1. 6.1 Trademarks
  11. 7Terminology
  12. 8About the Author
  13. 9Revision History
Get Current Date and Time (SNTP)

The CC3220S acquires the current date and time using SNTP. Connecting to the NTP server, requesting the date and time, and interpreting the timestamp is handled by the Net Utils and SNTP libraries included in the CC3220 SDK. These libraries are built to use a predefined set of NTP servers to request the date and time. The application code used to make the request and update the RTC value can be found in the setTime() function defined at the top of wifi_doorlock_app.c.

Note:

The RTC must be set for the device to verify peer certificates are being used during their stated validity period. Without setting the RTC to the current network time, the connection to the server could fail or the device could be exposed to an insecure connection.