ZHCSKK3B December   2019  – February 2022 TPS6594-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
    1.     4
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
    1. 6.1 Digital Signal Descriptions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)
    6. 7.6  Low Noise Low Drop-Out Regulator (LDO4)
    7. 7.7  Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)
    8. 7.8  BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators
    9. 7.9  Reference Generator (BandGap)
    10. 7.10 Monitoring Functions
    11. 7.11 Clocks, Oscillators, and PLL
    12. 7.12 Thermal Monitoring and Shutdown
    13. 7.13 System Control Thresholds
    14. 7.14 Current Consumption
    15. 7.15 Backup Battery Charger
    16. 7.16 Digital Input Signal Parameters
    17. 7.17 Digital Output Signal Parameters
    18. 7.18 I/O Pullup and Pulldown Resistance
    19. 7.19 I2C Interface
    20. 7.20 Serial Peripheral Interface (SPI)
    21. 7.21 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  System Supply Voltage Monitor and Over-Voltage Protection
      2. 8.3.2  Power Resources (Bucks and LDOs)
        1. 8.3.2.1 Buck Regulators
          1. 8.3.2.1.1  BUCK Regulator Overview
          2. 8.3.2.1.2  Multi-Phase Operation and Phase-Adding or Shedding
          3. 8.3.2.1.3  Transition Between PWM and PFM Modes
          4. 8.3.2.1.4  Multi-Phase BUCK Regulator Configurations
          5. 8.3.2.1.5  Spread-Spectrum Mode
          6. 8.3.2.1.6  Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support
          7. 8.3.2.1.7  BUCK Output Voltage Setting
          8. 8.3.2.1.8  BUCK Regulator Current Limit
          9. 8.3.2.1.9  SW_Bx Short-to-Ground Detection
          10. 8.3.2.1.10 Sync Clock Functionality
          11.        48
        2. 8.3.2.2 Low Dropout Regulators (LDOs)
          1. 8.3.2.2.1 LDOVINT
          2. 8.3.2.2.2 LDOVRTC
          3. 8.3.2.2.3 LDO1, LDO2, and LDO3
          4. 8.3.2.2.4 Low-Noise LDO (LDO4)
      3. 8.3.3  Residual Voltage Checking
      4. 8.3.4  Output Voltage Monitor and PGOOD Generation
      5. 8.3.5  Thermal Monitoring
        1. 8.3.5.1 Thermal Warning Function
        2. 8.3.5.2 Thermal Shutdown
      6. 8.3.6  Backup Supply Power-Path
      7. 8.3.7  General-Purpose I/Os (GPIO Pins)
      8. 8.3.8  nINT, EN_DRV, and nRSTOUT Pins
      9. 8.3.9  Interrupts
      10. 8.3.10 RTC
        1. 8.3.10.1 General Description
        2. 8.3.10.2 Time Calendar Registers
          1. 8.3.10.2.1 TC Registers Read Access
          2. 8.3.10.2.2 TC Registers Write Access
        3. 8.3.10.3 RTC Alarm
        4. 8.3.10.4 RTC Interrupts
        5. 8.3.10.5 RTC 32-kHz Oscillator Drift Compensation
      11. 8.3.11 Watchdog (WDOG)
        1. 8.3.11.1 Watchdog Fail Counter and Status
        2. 8.3.11.2 Watchdog Start-Up and Configuration
        3. 8.3.11.3 MCU to Watchdog Synchronization
        4. 8.3.11.4 Watchdog Disable Function
        5. 8.3.11.5 Watchdog Sequence
        6. 8.3.11.6 Watchdog Trigger Mode
        7. 8.3.11.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode
        8.       79
        9. 8.3.11.8 Watchdog Question-Answer Mode
          1. 8.3.11.8.1 Watchdog Q&A Related Definitions
          2. 8.3.11.8.2 Question Generation
          3. 8.3.11.8.3 Answer Comparison
            1. 8.3.11.8.3.1 Sequence of the 2-bit Watchdog Answer Counter
            2. 8.3.11.8.3.2 Watchdog Sequence Events and Status Updates
            3. 8.3.11.8.3.3 Watchdog Q&A Sequence Scenarios
      12. 8.3.12 Error Signal Monitor (ESM)
        1. 8.3.12.1 ESM Error-Handling Procedure
          1. 8.3.12.1.1 Level Mode
          2.        90
          3. 8.3.12.1.2 PWM Mode
            1. 8.3.12.1.2.1 Good-Events and Bad-Events
            2. 8.3.12.1.2.2 ESM Error-Counter
            3. 8.3.12.1.2.3 ESM Start-Up in PWM Mode
            4. 8.3.12.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode
            5.         96
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device State Machine
        1. 8.4.1.1 Fixed Device Power FSM
          1. 8.4.1.1.1 Register Resets and NVM Read at INIT State
        2. 8.4.1.2 Pre-Configurable Mission States
          1. 8.4.1.2.1 PFSM Commands
            1. 8.4.1.2.1.1  REG_WRITE_IMM Command
            2. 8.4.1.2.1.2  REG_WRITE_MASK_IMM Command
            3. 8.4.1.2.1.3  REG_WRITE_MASK_PAGE0_IMM Command
            4. 8.4.1.2.1.4  REG_WRITE_BIT_PAGE0_IMM Command
            5. 8.4.1.2.1.5  REG_WRITE_WIN_PAGE0_IMM Command
            6. 8.4.1.2.1.6  REG_WRITE_VOUT_IMM Command
            7. 8.4.1.2.1.7  REG_WRITE_VCTRL_IMM Command
            8. 8.4.1.2.1.8  REG_WRITE_MASK_SREG Command
            9. 8.4.1.2.1.9  SREG_READ_REG Command
            10. 8.4.1.2.1.10 SREG_WRITE_IMM Command
            11. 8.4.1.2.1.11 WAIT Command
            12. 8.4.1.2.1.12 DELAY_IMM Command
            13. 8.4.1.2.1.13 DELAY_SREG Command
            14. 8.4.1.2.1.14 TRIG_SET Command
            15. 8.4.1.2.1.15 TRIG_MASK Command
            16. 8.4.1.2.1.16 END Command
          2. 8.4.1.2.2 Configuration Memory Organization and Sequence Execution
          3. 8.4.1.2.3 Mission State Configuration
          4. 8.4.1.2.4 Pre-Configured Hardware Transitions
            1. 8.4.1.2.4.1 ON Requests
            2. 8.4.1.2.4.2 OFF Requests
            3. 8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions
            4. 8.4.1.2.4.4 WKUP1 and WKUP2 Functions
            5. 8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY
        3. 8.4.1.3 Error Handling Operations
          1. 8.4.1.3.1 Power Rail Output Error
          2. 8.4.1.3.2 Boot BIST Error
          3. 8.4.1.3.3 Runtime BIST Error
          4. 8.4.1.3.4 Catastrophic Error
          5. 8.4.1.3.5 Watchdog (WDOG) Error
          6. 8.4.1.3.6 Error Signal Monitor (ESM) Error
          7. 8.4.1.3.7 Warnings
        4. 8.4.1.4 Device Start-up Timing
        5. 8.4.1.5 Power Sequences
        6. 8.4.1.6 First Supply Detection
        7. 8.4.1.7 Register Power Domains and Reset Levels
      2. 8.4.2 Multi-PMIC Synchronization
        1. 8.4.2.1 SPMI Interface System Setup
        2. 8.4.2.2 Transmission Protocol and CRC
          1. 8.4.2.2.1 Operation with Transmission Errors
          2. 8.4.2.2.2 Transmitted Information
        3. 8.4.2.3 SPMI Target Device Communication to SPMI Controller Device
          1. 8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device
        4. 8.4.2.4 SPMI-BIST Overview
          1. 8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST
          2. 8.4.2.4.2 Periodic Checking of the SPMI
          3. 8.4.2.4.3 SPMI Message Priorities
    5. 8.5 Control Interfaces
      1. 8.5.1 CRC Calculation for I2C and SPI Interface Protocols
      2. 8.5.2 I2C-Compatible Interface
        1. 8.5.2.1 Data Validity
        2. 8.5.2.2 Start and Stop Conditions
        3. 8.5.2.3 Transferring Data
        4. 8.5.2.4 Auto-Increment Feature
      3. 8.5.3 Serial Peripheral Interface (SPI)
    6. 8.6 Configurable Registers
      1. 8.6.1 Register Page Partitioning
      2. 8.6.2 CRC Protection for Configuration, Control, and Test Registers
      3. 8.6.3 CRC Protection for User Registers
      4. 8.6.4 Register Write Protection
        1. 8.6.4.1 ESM and WDOG Configuration Registers
        2. 8.6.4.2 User Registers
    7. 8.7 Register Maps
      1. 8.7.1 TPS6594-Q1 Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Powering a Processor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VCCA, VSYS_SENSE, and OVPGDRV
          2. 9.2.1.2.2 Internal LDOs
          3. 9.2.1.2.3 Crystal Oscillator
          4. 9.2.1.2.4 Buck Input Capacitors
          5. 9.2.1.2.5 Buck Output Capacitors
          6. 9.2.1.2.6 Buck Inductors
          7. 9.2.1.2.7 LDO Input Capacitors
          8. 9.2.1.2.8 LDO Output Capacitors
          9. 9.2.1.2.9 Digital Signal Connections
      2. 9.2.2 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 第三方产品免责声明
    2. 12.2 Device Nomenclature
    3. 12.3 Documentation Support
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 支持资源
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

RTC 32-kHz Oscillator Drift Compensation

The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers are used to compensate for any inaccuracy of the 32-kHz clock output from the 32-kHz crystal oscillator. To compensate for any inaccuracy, MCU must perform an external calibration of the oscillator frequency by calculating the needed drift compensation compared to one hour time-period, and load the compensation registers with the drift compensation value.

The compensation mechanism is enabled by the AUTO_COMP_EN bit in the RTC_CTRL_REG register. The process happens after the first second of each hour. The time between second 1 to second 2 (T_ADJ) is adjusted based on the settings of the two RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers. These two registers form a 16-bit, 2 s complement value COMP_REG (from –32767 to 32767) that is subtracted from the 32-kHz counter as per the following formula to adjust the length of T_ADJ: (32768 - COMP_REG) / 32768. It is therefore possible to adjust the compensation with a 1/32768-second time unit accuracy per hour and up to 1 second per hour.

Software must ensure that these registers are updated before each compensation process (there is no hardware protection). For example, software can load the compensation value into these registers after each hour event, during second 0 to second 1, just before the compensation period, happening from second 1 to second 2.

It is also possible to preload the internal 32-kHz counter with the content of the RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers by setting the SET_32_COUNTER bit in the RTC_CTRL_REG register. This preloading of the internal 32-kHz counter can only be done when the RTC is stopped.

Figure 8-17 shows the RTC compensation scheduling.

GUID-0ADD678F-E1B2-414E-AA05-6AFF3B765709-low.gifFigure 8-17 RTC Compensation Scheduling