ZHCSKK3B December   2019  – February 2022 TPS6594-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
    1.     4
  4. Revision History
  5. 说明(续)
  6. Pin Configuration and Functions
    1. 6.1 Digital Signal Descriptions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)
    6. 7.6  Low Noise Low Drop-Out Regulator (LDO4)
    7. 7.7  Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)
    8. 7.8  BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators
    9. 7.9  Reference Generator (BandGap)
    10. 7.10 Monitoring Functions
    11. 7.11 Clocks, Oscillators, and PLL
    12. 7.12 Thermal Monitoring and Shutdown
    13. 7.13 System Control Thresholds
    14. 7.14 Current Consumption
    15. 7.15 Backup Battery Charger
    16. 7.16 Digital Input Signal Parameters
    17. 7.17 Digital Output Signal Parameters
    18. 7.18 I/O Pullup and Pulldown Resistance
    19. 7.19 I2C Interface
    20. 7.20 Serial Peripheral Interface (SPI)
    21. 7.21 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  System Supply Voltage Monitor and Over-Voltage Protection
      2. 8.3.2  Power Resources (Bucks and LDOs)
        1. 8.3.2.1 Buck Regulators
          1. 8.3.2.1.1  BUCK Regulator Overview
          2. 8.3.2.1.2  Multi-Phase Operation and Phase-Adding or Shedding
          3. 8.3.2.1.3  Transition Between PWM and PFM Modes
          4. 8.3.2.1.4  Multi-Phase BUCK Regulator Configurations
          5. 8.3.2.1.5  Spread-Spectrum Mode
          6. 8.3.2.1.6  Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support
          7. 8.3.2.1.7  BUCK Output Voltage Setting
          8. 8.3.2.1.8  BUCK Regulator Current Limit
          9. 8.3.2.1.9  SW_Bx Short-to-Ground Detection
          10. 8.3.2.1.10 Sync Clock Functionality
          11.        48
        2. 8.3.2.2 Low Dropout Regulators (LDOs)
          1. 8.3.2.2.1 LDOVINT
          2. 8.3.2.2.2 LDOVRTC
          3. 8.3.2.2.3 LDO1, LDO2, and LDO3
          4. 8.3.2.2.4 Low-Noise LDO (LDO4)
      3. 8.3.3  Residual Voltage Checking
      4. 8.3.4  Output Voltage Monitor and PGOOD Generation
      5. 8.3.5  Thermal Monitoring
        1. 8.3.5.1 Thermal Warning Function
        2. 8.3.5.2 Thermal Shutdown
      6. 8.3.6  Backup Supply Power-Path
      7. 8.3.7  General-Purpose I/Os (GPIO Pins)
      8. 8.3.8  nINT, EN_DRV, and nRSTOUT Pins
      9. 8.3.9  Interrupts
      10. 8.3.10 RTC
        1. 8.3.10.1 General Description
        2. 8.3.10.2 Time Calendar Registers
          1. 8.3.10.2.1 TC Registers Read Access
          2. 8.3.10.2.2 TC Registers Write Access
        3. 8.3.10.3 RTC Alarm
        4. 8.3.10.4 RTC Interrupts
        5. 8.3.10.5 RTC 32-kHz Oscillator Drift Compensation
      11. 8.3.11 Watchdog (WDOG)
        1. 8.3.11.1 Watchdog Fail Counter and Status
        2. 8.3.11.2 Watchdog Start-Up and Configuration
        3. 8.3.11.3 MCU to Watchdog Synchronization
        4. 8.3.11.4 Watchdog Disable Function
        5. 8.3.11.5 Watchdog Sequence
        6. 8.3.11.6 Watchdog Trigger Mode
        7. 8.3.11.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode
        8.       79
        9. 8.3.11.8 Watchdog Question-Answer Mode
          1. 8.3.11.8.1 Watchdog Q&A Related Definitions
          2. 8.3.11.8.2 Question Generation
          3. 8.3.11.8.3 Answer Comparison
            1. 8.3.11.8.3.1 Sequence of the 2-bit Watchdog Answer Counter
            2. 8.3.11.8.3.2 Watchdog Sequence Events and Status Updates
            3. 8.3.11.8.3.3 Watchdog Q&A Sequence Scenarios
      12. 8.3.12 Error Signal Monitor (ESM)
        1. 8.3.12.1 ESM Error-Handling Procedure
          1. 8.3.12.1.1 Level Mode
          2.        90
          3. 8.3.12.1.2 PWM Mode
            1. 8.3.12.1.2.1 Good-Events and Bad-Events
            2. 8.3.12.1.2.2 ESM Error-Counter
            3. 8.3.12.1.2.3 ESM Start-Up in PWM Mode
            4. 8.3.12.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode
            5.         96
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device State Machine
        1. 8.4.1.1 Fixed Device Power FSM
          1. 8.4.1.1.1 Register Resets and NVM Read at INIT State
        2. 8.4.1.2 Pre-Configurable Mission States
          1. 8.4.1.2.1 PFSM Commands
            1. 8.4.1.2.1.1  REG_WRITE_IMM Command
            2. 8.4.1.2.1.2  REG_WRITE_MASK_IMM Command
            3. 8.4.1.2.1.3  REG_WRITE_MASK_PAGE0_IMM Command
            4. 8.4.1.2.1.4  REG_WRITE_BIT_PAGE0_IMM Command
            5. 8.4.1.2.1.5  REG_WRITE_WIN_PAGE0_IMM Command
            6. 8.4.1.2.1.6  REG_WRITE_VOUT_IMM Command
            7. 8.4.1.2.1.7  REG_WRITE_VCTRL_IMM Command
            8. 8.4.1.2.1.8  REG_WRITE_MASK_SREG Command
            9. 8.4.1.2.1.9  SREG_READ_REG Command
            10. 8.4.1.2.1.10 SREG_WRITE_IMM Command
            11. 8.4.1.2.1.11 WAIT Command
            12. 8.4.1.2.1.12 DELAY_IMM Command
            13. 8.4.1.2.1.13 DELAY_SREG Command
            14. 8.4.1.2.1.14 TRIG_SET Command
            15. 8.4.1.2.1.15 TRIG_MASK Command
            16. 8.4.1.2.1.16 END Command
          2. 8.4.1.2.2 Configuration Memory Organization and Sequence Execution
          3. 8.4.1.2.3 Mission State Configuration
          4. 8.4.1.2.4 Pre-Configured Hardware Transitions
            1. 8.4.1.2.4.1 ON Requests
            2. 8.4.1.2.4.2 OFF Requests
            3. 8.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions
            4. 8.4.1.2.4.4 WKUP1 and WKUP2 Functions
            5. 8.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY
        3. 8.4.1.3 Error Handling Operations
          1. 8.4.1.3.1 Power Rail Output Error
          2. 8.4.1.3.2 Boot BIST Error
          3. 8.4.1.3.3 Runtime BIST Error
          4. 8.4.1.3.4 Catastrophic Error
          5. 8.4.1.3.5 Watchdog (WDOG) Error
          6. 8.4.1.3.6 Error Signal Monitor (ESM) Error
          7. 8.4.1.3.7 Warnings
        4. 8.4.1.4 Device Start-up Timing
        5. 8.4.1.5 Power Sequences
        6. 8.4.1.6 First Supply Detection
        7. 8.4.1.7 Register Power Domains and Reset Levels
      2. 8.4.2 Multi-PMIC Synchronization
        1. 8.4.2.1 SPMI Interface System Setup
        2. 8.4.2.2 Transmission Protocol and CRC
          1. 8.4.2.2.1 Operation with Transmission Errors
          2. 8.4.2.2.2 Transmitted Information
        3. 8.4.2.3 SPMI Target Device Communication to SPMI Controller Device
          1. 8.4.2.3.1 Incomplete Communication from SPMI Target Device to SPMI Controller Device
        4. 8.4.2.4 SPMI-BIST Overview
          1. 8.4.2.4.1 SPMI Bus during Boot BIST and RUNTIME BIST
          2. 8.4.2.4.2 Periodic Checking of the SPMI
          3. 8.4.2.4.3 SPMI Message Priorities
    5. 8.5 Control Interfaces
      1. 8.5.1 CRC Calculation for I2C and SPI Interface Protocols
      2. 8.5.2 I2C-Compatible Interface
        1. 8.5.2.1 Data Validity
        2. 8.5.2.2 Start and Stop Conditions
        3. 8.5.2.3 Transferring Data
        4. 8.5.2.4 Auto-Increment Feature
      3. 8.5.3 Serial Peripheral Interface (SPI)
    6. 8.6 Configurable Registers
      1. 8.6.1 Register Page Partitioning
      2. 8.6.2 CRC Protection for Configuration, Control, and Test Registers
      3. 8.6.3 CRC Protection for User Registers
      4. 8.6.4 Register Write Protection
        1. 8.6.4.1 ESM and WDOG Configuration Registers
        2. 8.6.4.2 User Registers
    7. 8.7 Register Maps
      1. 8.7.1 TPS6594-Q1 Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Powering a Processor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 VCCA, VSYS_SENSE, and OVPGDRV
          2. 9.2.1.2.2 Internal LDOs
          3. 9.2.1.2.3 Crystal Oscillator
          4. 9.2.1.2.4 Buck Input Capacitors
          5. 9.2.1.2.5 Buck Output Capacitors
          6. 9.2.1.2.6 Buck Inductors
          7. 9.2.1.2.7 LDO Input Capacitors
          8. 9.2.1.2.8 LDO Output Capacitors
          9. 9.2.1.2.9 Digital Signal Connections
      2. 9.2.2 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 第三方产品免责声明
    2. 12.2 Device Nomenclature
    3. 12.3 Documentation Support
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 支持资源
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 术语表
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
VCCA, VSYS_SENSE, and OVPGDRV

The VCCA pin provides power to the LDOVINT regulator and other internal functions. It is always connected in parallel with the buck input pins (PVIN_Bx pins). The VSYS_SENSE pin and OVPGDRV pin protect the device from being damaged by an overvoltage event from the pre-regulator by disconnecting the low voltage VCCA-powered pins from VSYS. The VCCA pin can be connected to an optional 0.47-µF bypass capacitor close to the pin. For cases where the pre-regulator is not located near the device, place some additional bulk capacitance before the protection FET to stabilize the VSYS supply near the device.

For the input protection, the total amount of capacitance on the VSYS and VCCA node must be large enough to ensure that the voltage at the VCCA pin does not rise above 8 V before the PMIC disables the protection FET in case of pre-regulator high side FET short failure. For a system with 5 V input supply, the specified rise-time in the 6 V to 8 V range is equal or greater than 7-µs. For a system with 3.3 V input supply, the specified rise-time in the 4 V to 8 V range is equal or greater than 7-µs. The capacitance varies based on the pre-regulator inductor and the pre-regulator input filter and it is recommended to simulate this circuit to get an initial estimate on the required capacitance.

Choose a zener diode with a breakdown voltage less than the recommended maximum of the VSYS_SENSE pin (12 V maximum) and greater than the overvoltage detection voltage (VSYS_OVP_Rising of 6.2 V) at all times for proper protection. Choose the protection resistors values to assure that the voltage across the Zener diode remains within those two boundaries and that the current is not greater than the Zener diode maximum current for the full desired input voltage protection range. For increased reliability, two resistors with 90° physical orientation offset are recommended to reduce risk of a single point short resulting in IC damage.

Finally, choose the protection NMOS FET with sufficient current and voltage ratings for the application with minimal gate charge values. The turn-on and turn-off time of the protection FET is generally very fast relative to the detection time, so gate charge is not as critical as RDSON in general. The components chosen for the evaluation module to cover a broad set of applications are shown in Table 9-1. To determine the required minimum FET RDS(ON), the maximum input current is first measured or calculated based on output current requirements multiplied by the duty cycle (VOUT / VIN) and then divided by the buck efficiency. Next, determine the VCCAUV_TH from the VCCA_PG_WINDOW. VCCA_UV_THR register setting. The RDS(ON) maximum must be less than the VCCAUV_TH minimum divided by the input current maximum to ensure that VCCA does not drop below VCCAUV_TH at maximum loading. From there, the second factor to consider is to minimize the QGS for faster FET turn off time.

For cases where input voltage protection is not required, ground VSYS_SENSE, float OVPGDRV, and the protection diode and FET are not needed.

Table 9-1 Recommended VCCA, VSYS_SENSE, and OVPGDRV Components
COMPONENT MANUFACTURER PART NUMBER VALUE EIA SIZE CODE SIZE (mm) USED for VALIDATION
Capacitor Murata GCM155C71A474KE36 0.47 µF, 10 V, X7R 0402 1.0 × 0.5 Yes
Capacitor TDK CGA2B3X7S1A474K050BB 0.47 µF, 10 V, X7R 0402 1.0 × 0.5
Zener Diode ON Semiconductor MM3Z10VST1G 10 V, 300 mW SOD-323 2.5 × 1.25 × 0.9 Yes
Zener Diode Vishay-Dale BZX84B10-G3-08 10 V, 300 mW SOT-23-3 3.1 × 2.6 × 1.15
Resistor(1) Vishay-Dale CRCW0402240RJNED 240 Ω 0402 1.0 × 0.5 Yes
NMOS FET On Semiconductor NVMFS4C05N 30 V, 4.0 mΩ, 127 A 5.15 × 6.15 × 1.0 Yes
NMOS FET Diodes Incorporated DMNH3010LK3 30 V, 11.5 mΩ, 50 A 6.70 × 10.41 × 2.39
Two resistors are used in series to create an effective 480 Ω total resistance.