ZHCSZ33 October   2025 DRV8311-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 SPI 时序要求
    7. 6.7 SPI 次级器件模式时序
    8. 6.8 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  输出级
      2. 7.3.2  控制模式
        1. 7.3.2.1 6x PWM 模式(仅限 DRV8311S-Q1 和 DRV8311H-Q1 型号)
        2. 7.3.2.2 3x PWM 模式(仅限 DRV8311S-Q1 和 DRV8311H-Q1 型号)
        3. 7.3.2.3 PWM 生成模式(DRV8311S-Q1 和 DRV8311P-Q1 型号)
      3. 7.3.3  器件接口模式
        1. 7.3.3.1 串行外设接口 (SPI)
        2. 7.3.3.2 硬件接口
      4. 7.3.4  AVDD 线性稳压器
      5. 7.3.5  电荷泵
      6. 7.3.6  压摆率控制
      7. 7.3.7  跨导(死区时间)
      8. 7.3.8  传播延迟
      9. 7.3.9  引脚图
        1. 7.3.9.1 逻辑电平输入引脚(内部下拉)
        2. 7.3.9.2 逻辑电平输入引脚(内部上拉)
        3. 7.3.9.3 开漏引脚
        4. 7.3.9.4 推挽引脚
        5. 7.3.9.5 四电平输入引脚
      10. 7.3.10 电流检测放大器
        1. 7.3.10.1 电流检测放大器操作
        2. 7.3.10.2 电流检测放大器失调电压校正
      11. 7.3.11 保护功能
        1. 7.3.11.1 VM 电源欠压锁定 (NPOR)
        2. 7.3.11.2 欠压保护 (UVP)
        3. 7.3.11.3 过流保护 (OCP)
          1. 7.3.11.3.1 OCP 锁存关断 (OCP_MODE = 010b)
          2. 7.3.11.3.2 OCP 自动重试(OCP_MODE = 000b 或 001b)
          3. 7.3.11.3.3 OCP 仅报告 (OCP_MODE = 011b)
          4. 7.3.11.3.4 OCP 已禁用 (OCP_MODE = 111b)
        4. 7.3.11.4 过热保护
          1. 7.3.11.4.1 热警告 (OTW)
          2. 7.3.11.4.2 热关断 (OTSD)
    4. 7.4 器件功能模式
      1. 7.4.1 功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 运行模式
        3. 7.4.1.3 故障复位(CLR_FLT 或 nSLEEP 复位脉冲)
    5. 7.5 SPI 通信
      1. 7.5.1 编程
        1. 7.5.1.1 SPI 和 tSPI 格式
  9. DRV8311-Q1 寄存器
  10. 应用和实施
    1. 9.1 应用信息
    2. 9.2 典型应用
      1. 9.2.1 三相无刷直流电机控制
        1. 9.2.1.1 详细设计过程
          1. 9.2.1.1.1 电机电压
        2. 9.2.1.2 驱动器传播延迟和死区时间
        3. 9.2.1.3 延迟补偿
        4. 9.2.1.4 电流检测和输出滤波
        5. 9.2.1.5 应用曲线
    3. 9.3 三相无刷直流 tSPI 电机控制
      1. 9.3.1 详细设计过程
    4. 9.4 备选应用
    5. 9.5 电源相关建议
      1. 9.5.1 大容量电容
    6. 9.6 布局
      1. 9.6.1 布局指南
      2. 9.6.2 布局示例
      3. 9.6.3 散热注意事项
        1. 9.6.3.1 功率损耗和结温估算
  11. 10器件和文档支持
    1. 10.1 支持资源
    2. 10.2 商标
    3. 10.3 静电放电警告
    4. 10.4 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

电流检测放大器操作

该器件上的 SOx 引脚输出的模拟电压与低侧 FET (IOUTx) 中流动的电流和增益设置 (GCSA) 的乘积成比例。增益设置可在四个不同级别之间调节,可通过 GAIN 引脚(硬件器件型号)或 CSA_GAIN 位(SPI 或 tSPI 器件型号)设置这些级别。

图 7-28 显示了电流检测放大器的内部架构。电流检测是通过器件的每个低侧 FET 上的检测 FET 实施的。该电流信息转换为一个电压,进而根据 CSAREF 引脚上的电压 (VREF) 和增益设置在 SOx 引脚上生成 CSA 输出电压。CSA 输出电压可使用方程式 15 计算

方程式 2. SOx= VREF2±(GCSA×IOUTx)
DRV8311-Q1 集成电流检测放大器图 7-28 集成电流检测放大器

图 7-29图 7-30 显示了放大器工作范围的详细信息。在双向运行中,0V 输入的放大器输出设置为 VREF/2。差分输入的任何变化都会导致输出与 GCSA 因子的乘积发生相应的变化。放大器有一个定义的线性区域,在该区域内放大器可以保持运行。

DRV8311-Q1 双向电流检测输出图 7-29 双向电流检测输出
DRV8311-Q1 双向电流检测区域图 7-30 双向电流检测区域
注: 电流检测放大器使用在 CSAREF 引脚上提供的外部电压基准 (VREF)。