SLUSE53 December   2024 BQ25751

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics (BQ25751)
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Device Power-On-Reset
      2. 7.3.2 Device Power-Up From Battery Without Input Source
      3. 7.3.3 Device Power Up from Input Source
        1. 7.3.3.1 VAC Operating Window Programming (ACUV and ACOV)
        2. 7.3.3.2 REGN Regulator (REGN LDO)
        3. 7.3.3.3 Switching Frequency and Synchronization (FSW_SYNC)
        4. 7.3.3.4 Device HIZ Mode
      4. 7.3.4 Battery Charging Management
        1. 7.3.4.1 Autonomous Charging Cycle
          1. 7.3.4.1.1 Charge Current Programming (ICHG pin and ICHG_REG)
        2. 7.3.4.2 Lead Acid Battery Charging Profile
        3. 7.3.4.3 Absorb Charge to Float Charge for Lead-Acid
        4. 7.3.4.4 CV Timer
        5. 7.3.4.5 Thermistor Qualification
          1. 7.3.4.5.1 Temperature Compensated Charging
          2. 7.3.4.5.2 Cold/Hot Temperature Window in Reverse Mode
      5. 7.3.5 Power Path Management
        1. 7.3.5.1 Dynamic Power Management: Input Voltage and Input Current Regulation
          1. 7.3.5.1.1 Input Current Regulation
            1. 7.3.5.1.1.1 ILIM_HIZ Pin
          2. 7.3.5.1.2 Input Voltage Regulation
            1. 7.3.5.1.2.1 Max Power Point Tracking (MPPT) for Solar PV Panel
      6. 7.3.6 Reverse Mode Power Direction
        1. 7.3.6.1 Auto Reverse Mode
      7. 7.3.7 Integrated 16-Bit ADC for Monitoring
      8. 7.3.8 Status Outputs (PG, STAT1, STAT2, and INT)
        1. 7.3.8.1 Power Good Indicator (PG)
        2. 7.3.8.2 Charging Status Indicator (STAT1, STAT2 Pins)
        3. 7.3.8.3 Interrupt to Host (INT)
      9. 7.3.9 Serial Interface
        1. 7.3.9.1 Data Validity
        2. 7.3.9.2 START and STOP Conditions
        3. 7.3.9.3 Byte Format
        4. 7.3.9.4 Acknowledge (ACK) and Not Acknowledge (NACK)
        5. 7.3.9.5 Target Address and Data Direction Bit
        6. 7.3.9.6 Single Write and Read
        7. 7.3.9.7 Multi-Write and Multi-Read
    4. 7.4 Device Functional Modes
      1. 7.4.1 Host Mode and Default Mode
      2. 7.4.2 Register Bit Reset
    5. 7.5 BQ25751 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application (Standalone)
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 ACUV / ACOV Input Voltage Operating Window Programming
          2. 8.2.1.2.2 Charge Voltage Selection
          3. 8.2.1.2.3 Switching Frequency Selection
          4. 8.2.1.2.4 Inductor Selection
          5. 8.2.1.2.5 Input (VAC / SYS) Capacitor
          6. 8.2.1.2.6 Output (VBAT) Capacitor
          7. 8.2.1.2.7 Sense Resistor (RAC_SNS and RBAT_SNS) and Current Programming
          8. 8.2.1.2.8 ACFETs and BATFETs Selection
          9. 8.2.1.2.9 Converter Fast Transient Response
        3. 8.2.1.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Packaging Information
    2. 13.2 Tape and Reel Information
    3. 13.3 Mechanical Data

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RRV|36
散热焊盘机械数据 (封装 | 引脚)

Reverse Mode Power Direction

The device supports boost reverse power direction to deliver power from the battery to the system when the adapter is not present. During this mode of operation, the ACFET and BATFET both remain off. The reverse mode output voltage regulation is set in VSYS_REV register bits. The reverse mode also offers output current regulation via the RAC_SNS resistor. This parameter is controlled by the IAC_REV register bits. The reverse mode operation can be enabled if the following conditions are valid:

  1. SRN above 3.8 V.
  2. DRV_SUP voltage within valid operating window (VDRV_UVP < VDRV < VDRV_OVP.
  3. VAC outside the ACOV / ACUV operating window, or VVAC < VVAC_OK, or VVAC> VVAC_INT_OV
  4. Reverse mode operation is enabled (EN_REV = 1)
  5. Voltage at TS (thermistor) pin is within range configured by Reverse Temperature Monitor as configured by BHOT and BCOLD register bits

While the reverse mode is active, the device sets the REVERSE_STAT bit to 1. Host can disable the reverse operation at any time by setting EN_REV bit to 0. The device disables the converter, and turns the BATFET on to connect the battery directly to the system.

The charger also monitors and regulates the battery discharging current in reverse mode. When the battery discharge current rises above the IBAT_REV register setting, the charger reduces the reverse mode power flow to limit the discharge current.

A minimum of 3.8 V is needed to start the reverse mode successfully. However, once already in reverse mode, the the VBAT side can be reduced up to 2.5 V before the reverse mode turns off.

Once a valid VAC voltage is detected for forward operation, the device automatically disables reverse mode (EN_REV = 0), turns on the ACFETs and proceeds to charge the battery if enabled.