ZHCUCO0 December   2024

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
      1. 2.2.1 小巧紧凑的尺寸
      2. 2.2.2 无变压器设计
    3. 2.3 重点产品
      1. 2.3.1  BQ25790 IIC 控制型、1-4 节电池、5A 降压/升压模式电池充电器
      2. 2.3.2  TPS3422 具有可配置延迟的低功耗按钮控制器
      3. 2.3.3  SN74LVC1G74 具有清零和预设功能的单路上升沿触发式 D 类触发器
      4. 2.3.4  TPS259470 2.7V 至 23V、5.5A、28mΩ 真正的反向电流阻断电子保险丝
      5. 2.3.5  TPS54218 2.95V 至 6V 输入、2A 同步降压 SWIFT 转换器
      6. 2.3.6  TPS54318 2.95V 至 6V 输入、3A 同步降压 SWIFT 转换器
      7. 2.3.7  LM5158 2.2MHz、宽 VIN、85V 输出升压、SEPIC 或反激式转换器
      8. 2.3.8  TPS61178 具备负载断开功能的 20V 完全集成式同步升压
      9. 2.3.9  采用 3.8mm × 3mm 封装的 LMZM23601 36V、1A 降压 DC-DC 电源模块
      10. 2.3.10 TPS7A39 双路、150mA、宽 VIN、正负低压降 (LDO) 电压稳压器
      11. 2.3.11 TPS74401 具有可编程软启动功能的 3.0A 超低压降稳压器
      12. 2.3.12 TPS7A96 2A 超低噪声、超高 PSRR RF 稳压器
      13. 2.3.13 LM3880 具有固定延时时间的三电源导轨简单电源序列发生器
      14. 2.3.14 具有非易失性内存的 DAC53401 10 位电压输出 DAC
      15. 2.3.15 INA231 具有警报功能、采用 WCSP 封装的 28V 16 位 I2C 输出电流、电压和功率监控器
  9. 3系统设计原理
    1. 3.1 输入段
      1. 3.1.1 降压/升压充电器
      2. 3.1.2 电源开启或关闭
    2. 3.2 基于高压电源的 SEPIC 和 Cuk 设计
      1. 3.2.1 SEPIC 和 Cuk 转换器的基本操作原则
      2. 3.2.2 采用具有 SEPIC 和 Cuk 的非耦合电感器的双路高压电源设计
        1. 3.2.2.1 占空比
        2. 3.2.2.2 电感器选型
        3. 3.2.2.3 功率 MOSFET 验证
        4. 3.2.2.4 输出二极管选型
        5. 3.2.2.5 耦合电容器选型
        6. 3.2.2.6 输出电容器选型
        7. 3.2.2.7 输入电容器选型
        8. 3.2.2.8 使用可调节函数对输出电压进行编程
    3. 3.3 设计低压电源
      1. 3.3.1 通过 WEBENCH Power Designer 设计 TPS54218
      2. 3.3.2 ±5V 传输电源生成
    4. 3.4 系统时钟同步
    5. 3.5 电源和数据输出连接器
    6. 3.6 系统电流和功率监控
  10. 4硬件、测试要求和测试结果
    1. 4.1 硬件要求
    2. 4.2 测试设置
    3. 4.3 测试结果
      1. 4.3.1 效率测试结果
      2. 4.3.2 线路调整测试结果
      3. 4.3.3 频谱测试结果
  11. 5设计和文档支持
    1. 5.1 设计文件
      1. 5.1.1 原理图
      2. 5.1.2 BOM
      3. 5.1.3 PCB 布局建议
        1. 5.1.3.1 高压电源布局
    2. 5.2 工具与软件
    3. 5.3 文档支持
    4. 5.4 支持资源
    5. 5.5 商标

系统时钟同步

仅当外部时钟信号的占空比大于控制器本身的占空比(大于 93%)时,图 3-11 中显示的原理图才可与外部时钟信号同步。通过实施 图 3-18 中所示的设计,此设计可与占空比为 50% 的外部时钟同步。各种负载端电源可以与外部时钟同步,外部时钟可通过电源连接器获得,具体内容如 节 3.5 中所述。来自时钟源引脚 DC_DC_CLK_1 的信号会进一步分频并分配到相应的电源和开关频率。图 3-18 显示了该实施的原理图。首先,源时钟作为输入信号提供给 9 通道集成时钟缓冲器和分频器器件 CDCE949。八个输出信号分别为 500kHz,供七个 TPS54218 降压器使用,另一个 TPS61178 用于 5V 电源导轨,第九个输出为 250kHz,用于高压电路。器件 CDCE949 的配置可存储在集成的 EEPROM CDCEL9XXPROGEVM 中,或通过 I2C 总线进行配置。如果使用 CDCEL9XXPROGEVM,则可以在设计文件中找到配置文件。

TIDA-010269 外部时钟同步实施原理图图 3-18 外部时钟同步实施原理图

高压电路可以与具有 50% 占空比的外部时钟同步。升压稳压器 (LM5158) 对占空比时钟脉冲宽度施加了限制,要求其大于电源的占空比,该占空比在电流实施中非常高。图 3-18 显示了该实施的原理图。