ZHCUCO0 December   2024

 

  1.   1
  2.   说明
  3.   资源
  4.   特性
  5.   应用
  6.   6
  7. 1系统说明
    1. 1.1 主要系统规格
  8. 2系统概述
    1. 2.1 方框图
    2. 2.2 设计注意事项
      1. 2.2.1 小巧紧凑的尺寸
      2. 2.2.2 无变压器设计
    3. 2.3 重点产品
      1. 2.3.1  BQ25790 IIC 控制型、1-4 节电池、5A 降压/升压模式电池充电器
      2. 2.3.2  TPS3422 具有可配置延迟的低功耗按钮控制器
      3. 2.3.3  SN74LVC1G74 具有清零和预设功能的单路上升沿触发式 D 类触发器
      4. 2.3.4  TPS259470 2.7V 至 23V、5.5A、28mΩ 真正的反向电流阻断电子保险丝
      5. 2.3.5  TPS54218 2.95V 至 6V 输入、2A 同步降压 SWIFT 转换器
      6. 2.3.6  TPS54318 2.95V 至 6V 输入、3A 同步降压 SWIFT 转换器
      7. 2.3.7  LM5158 2.2MHz、宽 VIN、85V 输出升压、SEPIC 或反激式转换器
      8. 2.3.8  TPS61178 具备负载断开功能的 20V 完全集成式同步升压
      9. 2.3.9  采用 3.8mm × 3mm 封装的 LMZM23601 36V、1A 降压 DC-DC 电源模块
      10. 2.3.10 TPS7A39 双路、150mA、宽 VIN、正负低压降 (LDO) 电压稳压器
      11. 2.3.11 TPS74401 具有可编程软启动功能的 3.0A 超低压降稳压器
      12. 2.3.12 TPS7A96 2A 超低噪声、超高 PSRR RF 稳压器
      13. 2.3.13 LM3880 具有固定延时时间的三电源导轨简单电源序列发生器
      14. 2.3.14 具有非易失性内存的 DAC53401 10 位电压输出 DAC
      15. 2.3.15 INA231 具有警报功能、采用 WCSP 封装的 28V 16 位 I2C 输出电流、电压和功率监控器
  9. 3系统设计原理
    1. 3.1 输入段
      1. 3.1.1 降压/升压充电器
      2. 3.1.2 电源开启或关闭
    2. 3.2 基于高压电源的 SEPIC 和 Cuk 设计
      1. 3.2.1 SEPIC 和 Cuk 转换器的基本操作原则
      2. 3.2.2 采用具有 SEPIC 和 Cuk 的非耦合电感器的双路高压电源设计
        1. 3.2.2.1 占空比
        2. 3.2.2.2 电感器选型
        3. 3.2.2.3 功率 MOSFET 验证
        4. 3.2.2.4 输出二极管选型
        5. 3.2.2.5 耦合电容器选型
        6. 3.2.2.6 输出电容器选型
        7. 3.2.2.7 输入电容器选型
        8. 3.2.2.8 使用可调节函数对输出电压进行编程
    3. 3.3 设计低压电源
      1. 3.3.1 通过 WEBENCH Power Designer 设计 TPS54218
      2. 3.3.2 ±5V 传输电源生成
    4. 3.4 系统时钟同步
    5. 3.5 电源和数据输出连接器
    6. 3.6 系统电流和功率监控
  10. 4硬件、测试要求和测试结果
    1. 4.1 硬件要求
    2. 4.2 测试设置
    3. 4.3 测试结果
      1. 4.3.1 效率测试结果
      2. 4.3.2 线路调整测试结果
      3. 4.3.3 频谱测试结果
  11. 5设计和文档支持
    1. 5.1 设计文件
      1. 5.1.1 原理图
      2. 5.1.2 BOM
      3. 5.1.3 PCB 布局建议
        1. 5.1.3.1 高压电源布局
    2. 5.2 工具与软件
    3. 5.3 文档支持
    4. 5.4 支持资源
    5. 5.5 商标

输出电容器选型

在 SEPIC 转换器中,当功率开关 Q1 导通时,电感器处于充电状态,输出电流由输出电容器提供。因此,输出电容器会承受非常大的纹波电流。所以,所选的输出电容器必须能够处理最大均方根电流。方程式 25 会计算输出电容器中的均方根电流。

方程式 25. I C _ o u t p u t _ R M S = I o u t p u t × V o u t p u t + V D V i n p u t _ m i n

输出电容器的 ESR、ESL 和大容量电容直接控制输出纹波。假设纹波的一半是由 ESR 引起的,另一半由是电容值引起的。因此,方程式 26方程式 27 显示了计算结果。

方程式 26. E S R V r i p p l e × 0 . 5 I L 1 _ p e a k × I L 2 _ p e a k 42 m Ω
方程式 27. C o u t p u t I o u t p u t × D V r i p p l e × 0 . 5 × f s w 2 . 355 μ F

输出电容必须满足 RMS 电流、ESR 和电容要求。在表面贴装应用中,建议在输出端使用钽电容、聚合物电解电容、聚合物钽电容器或多层陶瓷电容器。