ZHCAAB0A April   2021  – December 2021 TMS320F2800132 , TMS320F2800133 , TMS320F2800135 , TMS320F2800137 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28374D , TMS320F28374S , TMS320F28375D , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376S , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378S , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388S , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P659DK-Q1

 

  1.   商标
  2. 1引言
  3. 2ACI 电机控制基准测试应用程序
    1. 2.1 源代码
    2. 2.2 TMS320F28004x 的 CCS 项目
    3. 2.3 TMS320F2837x 的 CCS 项目
    4. 2.4 验证应用程序行为
    5. 2.5 基准测试方法
      1. 2.5.1 使用计数器进行基准测试的详细信息
    6. 2.6 用于分析应用程序的 ERAD 模块
  4. 3实时基准测试数据分析
    1. 3.1 ADC 中断响应延迟
    2. 3.2 外设访问
    3. 3.3 TMU(数学增强)影响
    4. 3.4 闪存性能
    5. 3.5 控制律加速器 (CLA)
      1. 3.5.1 CLA 上执行的完整信号链
        1. 3.5.1.1 CLA ADC 中断响应延迟
        2. 3.5.1.2 CLA 外设访问
        3. 3.5.1.3 CLA 三角函数计算
      2. 3.5.2 将计算转移到 CLA
  5. 4C2000 价值定位
    1. 4.1 高效执行信号链,使实时响应比计算速度更高的 MIPS 器件更好
    2. 4.2 具有低延迟的出色的实时中断响应
    3. 4.3 外设紧密集成,可扩展具有大量外设访问的应用
    4. 4.4 最优三角函数引擎
    5. 4.5 多功能性能提升计算引擎 (CLA)
    6. 4.6 由于执行差异小而导致确定性执行
  6. 5总结
  7. 6参考文献
  8. 7修订历史记录

闪存性能

许多应用程序都配置为在闪存外执行。因此,闪存性能是衡量实时系统功能的关键标准。典型的基准测试通过执行合成代码来计算闪存效率,但在执行包含非线性代码流、数据表和外设访问的应用程序时,合成代码可能无法显示出性能。

F28004x 和 F2837x 具有两种构建配置:“SignalChain_RAM_TMU”和“SignalChain_FLASH_TMU”。这些配置的执行时间如图 3-6图 3-7 所示。

GUID-20210205-CA0I-T0N9-P752-L9HHV8LWLPGL-low.png图 3-6 TMS320F28004x 从 RAM 和闪存执行 的时间
GUID-20210205-CA0I-0VKK-M9BD-KFVXH3KZLGGK-low.png图 3-7 TMS320F2837x从 RAM 和闪存执行的时间

表 3-3 列出了根据总平均执行周期基准测试数据得出的闪存性能。

表 3-3 闪存执行性能与 RAM 执行性能的比较
RAM 执行(周期数) 闪存执行(周期数) 闪存相对性能
(RAM_cycles * 100 / Flash_cycles)
闪存技术
TMS320F28004x 529 648 82%
  • 100MHz CPU 时钟
  • 20MHz 闪存速度
  • 4 个等待状态
TMS320F2837x 537 582 92%
  • 200MHz CPU 时钟
  • 50MHz 闪存速度
  • 3 个等待状态

从表中的数据可以看出,与 RAM 性能相比,C2000器件在ACI 电机控制等实际应用中的闪存性能非常好(大约为 80-90%)。