ZHCAA26B June   2009  – August 2020 LFC789D25 , LM237 , LM317 , LM317L , LM317M , LM317MQ , LM337 , LP2950 , LP2951 , LP2981 , LP2981A , LP2985 , MC79L , REG101 , REG102 , REG103 , REG104 , REG1117 , REG1117A , REG1118 , REG113 , SN105125 , TL1963A , TL317 , TL5209 , TL720M05-Q1 , TL750L , TL750M , TL750M-Q1 , TL751L , TL760M33-Q1 , TL780 , TL783 , TLE4275-Q1 , TLV1117 , TLV1117LV , TLV2217 , TLV700-Q1 , TLV70012-Q1 , TPPM0110 , TPPM0111 , TPPM0301 , TPPM0302 , TPPM0303 , TPS51100 , TPS51103 , TPS51200 , TPS61100 , TPS61107 , TPS61120 , TPS61121 , TPS61122 , TPS65020 , TPS65021 , TPS65022 , TPS650231 , TPS65023B , TPS65050 , TPS657052 , TPS65708 , TPS657095 , TPS701 , TPS70175-Q1 , TPS702 , TPS703 , TPS70345-EP , TPS704 , TPS707 , TPS70751-EP , TPS708 , TPS71 , TPS71025 , TPS712 , TPS71202-EP , TPS713 , TPS715 , TPS715-Q1 , TPS71501-EP , TPS715A , TPS715A-NM , TPS718 , TPS719 , TPS71H01 , TPS72 , TPS720 , TPS721 , TPS72118-EP , TPS722 , TPS723 , TPS725 , TPS726 , TPS727 , TPS728 , TPS73 , TPS730 , TPS731 , TPS73101-EP , TPS731125-EP , TPS73115-EP , TPS73118-EP , TPS73125-EP , TPS73130-EP , TPS73132-EP , TPS73133-EP , TPS73150-EP , TPS732 , TPS732-Q1 , TPS73201-EP , TPS73215-EP , TPS73216-EP , TPS73218-EP , TPS73225-EP , TPS73230-EP , TPS73233-EP , TPS73250-EP , TPS734 , TPS735 , TPS736 , TPS73601-EP , TPS73615-EP , TPS73618-EP , TPS73625-EP , TPS73630-EP , TPS73632-EP , TPS73633-EP , TPS737 , TPS737-Q1 , TPS73HD3 , TPS74 , TPS74201 , TPS74301 , TPS74401 , TPS74701 , TPS74801 , TPS74901 , TPS751 , TPS75103 , TPS75105 , TPS75125-EP , TPS752 , TPS752-Q1 , TPS75201-EP , TPS75201M-EP , TPS75215-EP , TPS75218-EP , TPS75225-EP , TPS75233-EP , TPS753 , TPS75301-EP , TPS75318-EP , TPS75325-EP , TPS75333-EP , TPS754 , TPS755 , TPS756 , TPS757 , TPS758 , TPS759 , TPS760 , TPS76201 , TPS763-Q1 , TPS766 , TPS767 , TPS767-Q1 , TPS76701-EP , TPS76715-EP , TPS76718-EP , TPS76725-EP , TPS76733-EP , TPS767D3 , TPS767D3-Q1 , TPS767D301-EP , TPS768 , TPS768-Q1 , TPS76801-EP , TPS76815-EP , TPS76818-EP , TPS76825-EP , TPS76833-EP , TPS76850-EP , TPS769 , TPS769-Q1 , TPS76901-HT , TPS770 , TPS77101-Q1 , TPS773 , TPS774 , TPS77401-EP , TPS775 , TPS775-Q1 , TPS77501-EP , TPS77515-EP , TPS77518-EP , TPS77525-EP , TPS77533-EP , TPS776 , TPS776-Q1 , TPS77601-EP , TPS77615-EP , TPS77618-EP , TPS77625-EP , TPS77633-EP , TPS777 , TPS778 , TPS779 , TPS780 , TPS781 , TPS782 , TPS786 , TPS789 , TPS790 , TPS791-Q1 , TPS79101-EP , TPS79133-EP , TPS79147-EP , TPS793-Q1 , TPS79301-EP , TPS79318-EP , TPS79333-EP , TPS793475-EP , TPS794 , TPS797 , TPS797-Q1 , TPS79718-EP , TPS79730-EP , TPS799 , TPS799-Q1 , TPS7A45 , TPS7A47 , UA723 , UA78 , UA78L , UA78M , UA78M-Q1 , UA79 , UA79M , UC1832 , UC1832-SP , UC1834 , UC1834-SP , UC1836 , UC282 , UC2832 , UC2832-EP , UC2833 , UC2834 , UC2834M , UC2835 , UC2836 , UC285 , UC382 , UC3832 , UC3833 , UC3834 , UC3836 , UC385 , UCC281 , UCC283 , UCC2837 , UCC284 , UCC381 , UCC383 , UCC384

 

  1.   商标
  2. 1LDO 噪声和 PSRR
  3. 2LDO 噪声类型
  4. 3LDO 数据表中的噪声规格
  5. 4哪种规格适合您的应用?
  6. 5如何降低 LDO 噪声?
  7. 6LDO 噪声的影响
  8. 7修订历史记录

哪种规格适合您的应用?

用户应该了解具体应用需要哪种 LDO 噪声规格,因为有些应用与频谱噪声密度相关,而某些应用可以利用总(积分)噪声。以下示例对此进行了说明。

  1. 考虑一个射频系统中 LDO 为压控振荡器 (VCO) 供电的例子。VCO 接收两个输入信号并将其混合为一个信号。如果两个信号为 sin(ω1t) 和 sin(ω2)t,则混合后输出 sin((ω1–ω2)t)、sin((ω1+ω2)t) 和谐波信号。射频信号链通过 VCO 后,一般会进入仅针对一种频率调优的带通系统,即信号混合后,只有较高频率的信号不会通过。大多数宽带应用都对每个频带的频谱和功率进行非常严格地调节。任何频带的寄生噪声均须通过控制来满足所谓的“传输掩模”要求。传输掩模对于最终产品的机构认证而言非常重要。本底噪声在较高频率下产生的任何峰值,都可能导致传输信号超出传输掩模范围,从而无法通过认证测试。

    如果供电导体或 LDO 输出中出现噪声,在 FR 频率下的这一噪声与载波频率信号混合后,会产生两个边带,如图 4-1 所示。噪声太高时,会使因噪声而产生的边带超出传输掩模范围,进而导致系统故障。

    GUID-AF1AE635-7AB7-472D-BA41-4A34D71C66F5-low.png图 4-1 传输掩模和因噪声产生的边带

    同样,假设射频系统在 2.4GHz 频率下工作,那么 LDO 噪声会将 2.4GHz 上下的 VCO 噪声频谱提高至 LDO 带宽。在 VCO 原始噪声图中加入图 2-1 所示的 LDO 噪声后,中心频率附近的 VCO 本底噪声等级提高。

    GUID-3E9D0B86-BC0C-4E98-B551-A99604CDF29A-low.png图 4-2 LDO 噪声提高了 VCO 本底噪声

    因此,在射频应用中,用户应使用频谱噪声密度曲线。因为单一噪声无频率相关性,不会准确地表示最终输出。

  2. 假设在一个系统中 LDO 为 ADC 或 DAC 供电。任何采样系统由于混叠现象都会使高频噪声的频率降低。例如,如果采样频率为 100kHz,LDO 产生的噪声为 90kHz 和 110kHz、190kHz 和 210kHz 等,则所有噪声将折返至拍频 10kHz。任何频率的输出噪声都会出现这种情况,因此所有 LDO 噪声都会折返至采样系统的带宽范围内。这相当于对系统的直流噪声到带宽噪声进行积分,然后计算总噪声。LDO 的总(积分)噪声较高时,会影响 ADC/DAC 的性能。 图 4-3 下面显示了 LDO 噪声混叠是如何发生的。第一个图是由理想 LDO 供电的系统,第二个图是由具有热噪声的 LDO 供电的系统(热噪声使本底噪声增加),第三个图是由具有高频噪声的 LDO 供电的系统(因混叠现象使频率降低)。
    GUID-5C333469-044D-4B83-95DD-EA5C2BD9FD7E-low.gif图 4-3 LDO 噪声混叠

由于系统会使所有噪声的频率降低,并对噪声进行积分,因此,用户在此应用中应使用总(积分)输出噪声。