SPRADP4 February   2025 AM620-Q1 , AM623 , AM625 , AM625-Q1 , AM62A3 , AM62A3-Q1 , AM62A7 , AM62A7-Q1 , AM62P , AM62P-Q1 , AM67 , AM68A , AM69A , DRA821U , TDA4AEN-Q1 , TDA4AH-Q1 , TDA4AL-Q1 , TDA4AP-Q1 , TDA4VE-Q1 , TDA4VEN-Q1 , TDA4VH-Q1 , TDA4VL-Q1 , TDA4VM , TDA4VM-Q1 , TDA4VP-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2MCAN Features
  6. 3MCAN Software Configuration
    1. 3.1 Filter Configuration
    2. 3.2 Transmitter Delay Compensation
    3. 3.3 MCAN Bit Timing Parameters
  7. 4Debug Tips to Resolve MCAN Communication Issues
    1. 4.1 Debugging the MCAN Hardware
    2. 4.2 Debugging using MCAN registers
      1. 4.2.1 MCAN Protocol Status Register
      2. 4.2.2 MCAN Error Counter Register
    3. 4.3 Understanding MCAN applications in TI SDKs
      1. 4.3.1 MCU PLUS SDK
      2. 4.3.2 Linux SDK
      3. 4.3.3 MCAL SDK
      4. 4.3.4 PDK
    4. 4.4 Other Common Issues
  8. 5Related FAQs
  9. 6Summary
  10. 7References

Introduction

CAN is a serial communication protocol that was originally developed for automotive applications. Due to the robustness and reliability, CAN is pertinent to applications in diverse areas such as industrial equipment, medical electronics, trains, aircraft, and so forth. CAN protocol features sophisticated error detection and confinement mechanisms and has simple wiring at the physical level. The original CAN protocol standard is now referred to as classical CAN to distinguish from the more recent CAN FD standard. CAN Flexible Data Rate (CAN FD) is an enhancement to the classical CAN in terms of higher bit rates and the number of bytes transferred in one frame, thus increasing the effective throughput of communication. While classical CAN supports bit rates up to 1Mbps and a payload size of 8 bytes per frame, CAN FD supports bit-rates up to 5Mbps and a payload size of up to 64 bytes per frame.