ZHCSCA8A March   2014  – April 2019 TPS65286

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
      2.      效率
        1.       修订历史记录
  4. Pin Configuration and Functions
    1.     Pin Functions
  5. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Switch
        1. 6.3.1.1 Over Current Condition
        2. 6.3.1.2 Reverse Current and Voltage Protection
        3. 6.3.1.3 nFAULT1/2 Response
        4. 6.3.1.4 Under-Voltage Lockout (UVLO)
        5. 6.3.1.5 Enable and Output Discharge
        6. 6.3.1.6 Power Switch Input and Output Capacitance
        7. 6.3.1.7 Programming the Current-Limit Threshold
      2. 6.3.2 Buck DCDC Converter
        1. 6.3.2.1  Output Voltage
        2. 6.3.2.2  Clock Synchronization
        3. 6.3.2.3  Error Amplifier
        4. 6.3.2.4  Slope Compensation
        5. 6.3.2.5  Enable and Adjusting Under-Voltage Lockout
        6. 6.3.2.6  Soft-Start Time
        7. 6.3.2.7  Internal V7V Regulator
        8. 6.3.2.8  Hard Short Circuit Protection
        9. 6.3.2.9  Bootstrap Voltage (BST) and Low Dropout Operation
        10. 6.3.2.10 Thermal Performance
        11. 6.3.2.11 Loop Compensation
    4. 6.4 Device Functional Modes
      1. 6.4.1 Pulse Skipping Mode Operation
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Step by Step Design Procedure
        2. 7.2.2.2 Related Parts
        3. 7.2.2.3 Inductor Selection
        4. 7.2.2.4 Output Capacitor Selection
        5. 7.2.2.5 Input Capacitor Selection
        6. 7.2.2.6 Soft-Start Capacitor Selection
        7. 7.2.2.7 Minimum Output Voltage
        8. 7.2.2.8 Compensation Component Selection
        9. 7.2.2.9 Auto-Retry Functionality of USB Switches
      3. 7.2.3 Application Performance Plots
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 第三方产品免责声明
    2. 10.2 接收文档更新通知
    3. 10.3 社区资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  11. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Compensation Component Selection

There are several industry techniques used to compensate DC/DC regulators. The method presented here is easy to calculate and yields high phase margins. For most conditions, the regulator has a phase margin between 60° and 90°. The method presented here ignores the effects of the slope compensation that is internal to the TPS65286. Since the slope compensation is ignored, the actual cross over frequency is usually lower than the cross over frequency used in the calculations. Use SwitcherPro software for a more accurate design.

First, the modulator pole, fpmod, and the esr zero, fzmod must be calculated using Equation 23 and Equation 24. For Cout, use a derated value of 22.4 μF. Use Equation 25 and Equation 26 to estimate a starting point for the closed loop crossover frequency fco. Then the required compensation components may be derived. For this design example, fpmod is 12.9 kHz and fzmod is 2730 kHz. Equation 23 is the geometric mean of the modulator pole and the ESR zero and Equation 24 is the geometric mean of the modulator pole and one half the switching frequency. Use a frequency near the lower of these two values as the intended crossover frequency fco. In this case, Equation 23 yields 175 kHz and Equation 24 yields 55.7 kHz. The lower value is 55.7 kHz. A slightly higher frequency of 60.5 kHz is chosen as the intended crossover frequency.

Equation 23. TPS65286 eq23_fpmod_slvsca4.gif
Equation 24. TPS65286 eq24_fzmod_slvsca4.gif
Equation 25. TPS65286 eq25_fco_slvsca4.gif
Equation 26. TPS65286 eq26_fco_slvsca4.gif

Now the compensation components can be calculated. First calculate the value for Rc which sets the gain of the compensated network at the crossover frequency. Use Equation 27 to determine the value of RC.

Equation 27. TPS65286 eq27_Rc_slvsca4.gif

Next calculate the value of CC. Together with RC, CC places a compensation zero at the modulator pole frequency. Equation 28 to determine the value of C3.

Equation 28. TPS65286 eq28_Cc_slvsca4.gif

An additional high frequency pole can be used if necessary by adding a capacitor in parallel with the series combination of R4 and C4. The pole frequency can be placed at the ESR zero frequency of the output capacitor as given by Equation 24. Use Equation 29 to calculate the required capacitor value for Cb.

Equation 29. TPS65286 eq29_Cb_slvsca4.gif