ZHCSQ43 january   2023 MCT8329A

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 引脚配置和功能
  6. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级 - 通信
    3. 6.3 建议运行条件
    4. 6.4 热性能信息 1pkg
    5. 6.5 电气特性
    6. 6.6 标准和快速模式下 SDA 和 SCL 总线的特征
    7. 6.7 典型特性
  7. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  三相 BLDC 栅极驱动器
      2. 7.3.2  栅极驱动架构
        1. 7.3.2.1 死区时间和跨导预防
      3. 7.3.3  AVDD 线性稳压器
      4. 7.3.4  DVDD 稳压器
        1. 7.3.4.1 AVDD 供电的 VREG
        2. 7.3.4.2 用于 VREG 的外部电源
        3. 7.3.4.3 用于 VREG 电源的外部 MOSFET
      5. 7.3.5  低侧电流检测放大器
      6. 7.3.6  器件接口模式
        1. 7.3.6.1 接口 - 控制和监控
        2. 7.3.6.2 I2C 接口
      7. 7.3.7  电机控制输入选项
        1. 7.3.7.1 模拟模式电机控制
        2. 7.3.7.2 PWM 模式电机控制
        3. 7.3.7.3 频率模式电机控制
        4. 7.3.7.4 基于 I2C 的电机控制
        5. 7.3.7.5 输入控制信号曲线
          1. 7.3.7.5.1 线性控制曲线
          2. 7.3.7.5.2 阶梯控制曲线
          3. 7.3.7.5.3 正向/反向曲线
        6. 7.3.7.6 在不使用分析器的情况下控制输入传递函数
      8. 7.3.8  在不同初始条件下启动电机
        1. 7.3.8.1 案例 1 – 电机静止
        2. 7.3.8.2 案例 2 – 电机正向旋转
        3. 7.3.8.3 案例 3 – 电机反向旋转
      9. 7.3.9  电机启动顺序 (MSS)
        1. 7.3.9.1 初始速度检测 (ISD)
        2. 7.3.9.2 电机重新同步
        3. 7.3.9.3 反向驱动
        4. 7.3.9.4 电机启动
          1. 7.3.9.4.1 对齐
          2. 7.3.9.4.2 双对齐
          3. 7.3.9.4.3 初始位置检测 (IPD)
            1. 7.3.9.4.3.1 IPD 操作
            2. 7.3.9.4.3.2 IPD 释放
            3. 7.3.9.4.3.3 IPD 超前角度
          4. 7.3.9.4.4 显示首个周期启动
          5. 7.3.9.4.5 开环
          6. 7.3.9.4.6 从开环转换到闭环
      10. 7.3.10 闭环运行
        1. 7.3.10.1 120o 换向
          1. 7.3.10.1.1 高侧调制
          2. 7.3.10.1.2 低侧调制
          3. 7.3.10.1.3 混合调制
        2. 7.3.10.2 可变换向
        3. 7.3.10.3 超前角控制
        4. 7.3.10.4 闭环加速
      11. 7.3.11 速度环路
      12. 7.3.12 电源环路
      13. 7.3.13 防电压浪涌 (AVS)
      14. 7.3.14 输出 PWM 开关频率
      15. 7.3.15 快速启动时间(< 50ms)
        1. 7.3.15.1 BEMF Threshold
        2. 7.3.15.2 动态去磁
      16. 7.3.16 快速减速
      17. 7.3.17 动态电压调节
      18. 7.3.18 电机停止运转选项
        1. 7.3.18.1 滑行(高阻态)模式
        2. 7.3.18.2 再循环模式
        3. 7.3.18.3 低侧制动
        4. 7.3.18.4 高侧制动
        5. 7.3.18.5 主动降速
      19. 7.3.19 FG 配置
        1. 7.3.19.1 FG 输出频率
        2. 7.3.19.2 开环中的 FG
        3. 7.3.19.3 电机停止期间的 FG
        4. 7.3.19.4 故障期间的 FG 行为
      20. 7.3.20 保护功能
        1. 7.3.20.1  PVDD 电源欠压锁定 (PVDD_UV)
        2. 7.3.20.2  AVDD 上电复位 (AVDD_POR)
        3. 7.3.20.3  GVDD 欠压锁定 (GVDD_UV)
        4. 7.3.20.4  BST 欠压锁定 (BST_UV)
        5. 7.3.20.5  MOSFET VDS 过流保护 (VDS_OCP)
        6. 7.3.20.6  VSENSE 过流保护 (SEN_OCP)
        7. 7.3.20.7  热关断 (OTSD)
        8. 7.3.20.8  逐周期 (CBC) 电流限制 (CBC_ILIMIT)
          1. 7.3.20.8.1 CBC_ILIMIT 自动恢复下一个 PWM 周期 (CBC_ILIMIT_MODE = 000xb)
          2. 7.3.20.8.2 CBC_ILIMIT 基于自动恢复阈值 (CBC_ILIMIT_MODE = 001xb)
          3. 7.3.20.8.3 CBC_ILIMIT 'n' 个 PWM 周期后自动恢复 (CBC_ILIMIT_MODE = 010xb)
          4. 7.3.20.8.4 CBC_ILIMIT 仅报告 (CBC_ILIMIT_MODE = 0110b)
          5. 7.3.20.8.5 CBC_ILIMIT 已禁用(CBC_ILIMIT_MODE = 0111b 或 1xxxb)
        9. 7.3.20.9  锁定检测电流限制 (LOCK_ILIMIT)
          1. 7.3.20.9.1 LOCK_ILIMIT 锁存关断 (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.20.9.2 LOCK_ILIMIT 自动恢复 (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.20.9.3 LOCK_ILIMIT 仅报告 (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.20.9.4 LOCK_ILIMIT 已禁用 (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.20.10 电机锁定 (MTR_LCK)
          1. 7.3.20.10.1 MTR_LCK 锁存关断 (MTR_LCK_MODE = 00xxb)
          2. 7.3.20.10.2 MTR_LCK 自动恢复 (MTR_LCK_MODE= 01xxb)
          3. 7.3.20.10.3 MTR_LCK 仅报告 (MTR_LCK_MODE = 1000b)
          4. 7.3.20.10.4 MTR_LCK 已禁用 (MTR_LCK_MODE = 1xx1b)
        11. 7.3.20.11 电机锁定检测
          1. 7.3.20.11.1 锁定 1:异常速度 (ABN_SPEED)
          2. 7.3.20.11.2 锁定 2:同步丢失 (LOSS_OF_SYNC)
          3. 7.3.20.11.3 锁定 3:无电机故障 (NO_MTR)
        12. 7.3.20.12 IPD 故障
    4. 7.4 器件功能模式
      1. 7.4.1 功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 待机模式
        3. 7.4.1.3 故障复位 (CLR_FLT)
    5. 7.5 外部接口
      1. 7.5.1 DRVOFF - 栅极驱动器关断功能
      2. 7.5.2 DAC 输出
      3. 7.5.3 电流检测放大器输出
      4. 7.5.4 振荡源
        1. 7.5.4.1 外部时钟源
    6. 7.6 EEPROM 访问和 I2C 接口
      1. 7.6.1 EEPROM 访问
        1. 7.6.1.1 EEPROM 写入
        2. 7.6.1.2 EEPROM 读取
      2. 7.6.2 I2C 串行接口
        1. 7.6.2.1 I2C 数据字
        2. 7.6.2.2 I2C 写入操作
        3. 7.6.2.3 I2C 读取操作
        4. 7.6.2.4 I2C 通信协议数据包示例
        5. 7.6.2.5 内部缓冲区
        6. 7.6.2.6 CRC 字节计算
    7. 7.7 EEPROM(非易失性)寄存器映射
      1. 7.7.1 算法配置寄存器
      2. 7.7.2 Fault_Configuration 寄存器
      3. 7.7.3 Hardware_Configuration 寄存器
      4. 7.7.4 Gate_Driver_Configuration 寄存器
    8. 7.8 RAM(易失性)寄存器映射
      1. 7.8.1 Fault_Status 寄存器
      2. 7.8.2 System_Status 寄存器
      3. 7.8.3 算法控制寄存器
      4. 7.8.4 器件控制寄存器
      5. 7.8.5 算法变量寄存器
  8. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1.      详细设计过程
      2.      自举电容器和 GVDD 电容器选型
      3. 8.2.1 VREG 电源的外部 MOSFET 选择
      4.      栅极驱动电流
      5.      栅极电阻器选型
      6.      大功率设计中的系统注意事项
      7.      电容器电压等级
      8.      外部功率级元件
      9. 8.2.2 应用曲线
        1. 8.2.2.1 电机启动
        2. 8.2.2.2 120o 和可变换向
        3. 8.2.2.3 更快的启动时间
        4. 8.2.2.4 设置 BEMF 阈值
        5. 8.2.2.5 最大速度
        6. 8.2.2.6 更快速减速
  9. 电源相关建议
    1. 9.1 大容量电容
  10. 10布局
    1. 10.1 布局指南
    2. 10.2 布局示例
    3. 10.3 散热注意事项
      1. 10.3.1 功率损耗
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 支持资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

自举电容器和 GVDD 电容器选型

自举电容器的大小必须能够维持自举电压高于欠压锁定以实现正常运行。方程式 20 用于计算自举电容器上允许的最大压降:

方程式 20. GUID-20200927-CA0I-XQLZ-MPTJ-QHB8BMDQLKGS-low.gif

ΔVBSTX = 12V – 0.85V – 4.45V = 6.7V

其中

  • VGVDD 是栅极驱动器的电源电压
  • VBOOTD 是自举二极管的正向压降
  • VBSTUV 是自举欠压锁定的阈值

在该示例中,自举电容器上允许的压降为 6.7V。通常建议应尽可能降低自举电容器和 GVDD 电容器上的纹波电压。商业、工业和汽车应用中的常用纹波值介于 0.5V 和 1V 之间。

每个开关周期所需的总电荷可以通过方程式 21 进行估算:

方程式 21. Q T O T = Q G + I L B S _ T R A N f S W

QTOT = 54nC + 115μA/20kHz = 54nC + 5.8nC = 59.8nC

其中

  • QG 是总 MOSFET 栅极电荷
  • ILBS_TRAN 是自动加载引脚漏电流
  • fSW 是 PWM 频率

假设 ΔVBSTx 为 1V,则最小自举电容器可通过以下公式进行估算:

方程式 22. GUID-20200927-CA0I-34PB-JZQV-BTKNMXGBXPBL-low.gif

CBST_MIN = 59.8nC/1V = 59.8nF

计算出的最小自举电容值为 59.8nF。请注意,这是全偏置电压条件下所需的电容值。实际应用中,自举电容值必须大于计算值,才能确保在功率级可能因各种瞬态条件而发生脉冲跳跃的情况下正常使用。在本示例中,建议使用 100nF 自举电容器。此外,还建议预留足够的裕度,并将自举电容器尽可能靠近 BSTx 和 SHx 引脚放置。

方程式 23. GUID-20201221-CA0I-JW7J-DPTD-GFN8RP35WWVZ-low.gif

CGVDD = 10*100nF = 1μF

对于该示例应用,选择 1µF CGVDD 电容器。选择电压等级至少是其将承受的最大电压两倍的电容器,因为大多数陶瓷电容器在偏置时会损失大量电容。该值还可提高系统的长期可靠性。

注: 对于需要以更长时间提供 100% 占空比支持的更高功率系统,建议使用 ≥1μF 的 CBSTx 和 ≥10μF 的 CGVDD