ZHCSNO0B April   2021  – November 2021 DP83561-SP

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Pin States
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
      1. 6.6.1 Timing Requirement Diagrams
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Engineering Model (Parts With /EM Suffix)
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Copper Ethernet
        1. 7.3.1.1 1000BASE-T
        2. 7.3.1.2 100BASE-TX
        3. 7.3.1.3 10BASE-Te
      2. 7.3.2 MAC Interfaces
        1. 7.3.2.1 Reduced GMII (RGMII)
          1. 7.3.2.1.1 RGMII-TX Requirements
          2. 7.3.2.1.2 RGMII-RX Requirements
          3. 7.3.2.1.3 1000-Mbps Mode Operation
          4. 7.3.2.1.4 1000-Mbps Mode Timing
          5. 7.3.2.1.5 10- and 100-Mbps Mode
        2. 7.3.2.2 Media Independent Interface (MII)
      3. 7.3.3 Auto-Negotiation
        1. 7.3.3.1 Speed and Duplex Selection - Priority Resolution
        2. 7.3.3.2 Master and Slave Resolution
        3. 7.3.3.3 Pause and Asymmetrical Pause Resolution
        4. 7.3.3.4 Next Page Support
        5. 7.3.3.5 Parallel Detection
        6. 7.3.3.6 Restart Auto-Negotiation
        7. 7.3.3.7 Enabling Auto-Negotiation Through Software
        8. 7.3.3.8 Auto-Negotiation Complete Time
        9. 7.3.3.9 Auto-MDIX Resolution
      4. 7.3.4 Speed Optimization
      5. 7.3.5 Radiation Performance
        1. 7.3.5.1 Total Ionizing Dose (TID)
        2. 7.3.5.2 Single-Event Effects (SEE)
        3. 7.3.5.3 Single Event Functional Interrupt (SEFI) Monitor Suite
          1. 7.3.5.3.1 PCS State Machine Monitors
          2. 7.3.5.3.2 Configuration Register Monitors
          3. 7.3.5.3.3 Temperature Monitor
          4. 7.3.5.3.4 PLL Lock Monitor
      6. 7.3.6 WoL (Wake-on-LAN) Packet Detection
        1. 7.3.6.1 Magic Packet Structure
        2. 7.3.6.2 Magic Packet Example
        3. 7.3.6.3 Wake-on-LAN Configuration and Status
      7. 7.3.7 Start of Frame Detect for IEEE 1588 Time Stamp
        1. 7.3.7.1 SFD Latency Variation and Determinism
          1. 7.3.7.1.1 1000M SFD Variation in Master Mode
          2. 7.3.7.1.2 1000M SFD Variation in Slave Mode
          3. 7.3.7.1.3 100M SFD Variation
      8. 7.3.8 Cable Diagnostics
        1. 7.3.8.1 TDR
        2. 7.3.8.2 Fast Link Drop
        3. 7.3.8.3 Fast Link Detect
        4. 7.3.8.4 Energy Detect
        5. 7.3.8.5 IEEE 802.3 Test Modes
        6. 7.3.8.6 Jumbo Frames
      9. 7.3.9 Clock Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 Mirror Mode
      2. 7.4.2 Loopback Mode
        1. 7.4.2.1 Near-End Loopback
          1. 7.4.2.1.1 MII Loopback
          2. 7.4.2.1.2 PCS Loopback
          3. 7.4.2.1.3 Digital Loopback
          4. 7.4.2.1.4 Analog Loopback
          5. 7.4.2.1.5 External Loopback
          6. 7.4.2.1.6 Far-End (Reverse) Loopback
        2. 7.4.2.2 Loopback Availability Exception
      3. 7.4.3 Power-Saving Modes
        1. 7.4.3.1 IEEE Power Down
        2. 7.4.3.2 Deep Power-Down Mode
        3. 7.4.3.3 Active Sleep
        4. 7.4.3.4 Passive Sleep
    5. 7.5 Programming
      1. 7.5.1 Serial Management Interface
        1. 7.5.1.1 Extended Address Space Access
          1. 7.5.1.1.1 Write Address Operation
          2. 7.5.1.1.2 Read Address Operation
          3. 7.5.1.1.3 Write (No Post Increment) Operation
          4. 7.5.1.1.4 Read (No Post Increment) Operation
          5. 7.5.1.1.5 Write (Post Increment) Operation
          6. 7.5.1.1.6 Read (Post Increment) Operation
          7. 7.5.1.1.7 Example of Read Operation Using Indirect Register Access
          8. 7.5.1.1.8 Example of Write Operation Using Indirect Register Access
      2. 7.5.2 Interrupt
      3. 7.5.3 BIST Configuration
      4. 7.5.4 Strap Configuration
      5. 7.5.5 LED Configuration
      6. 7.5.6 LED Operation From 1.8-V I/O VDD Supply
      7. 7.5.7 Reset Operation
        1. 7.5.7.1 Hardware Reset
        2. 7.5.7.2 IEEE Software Reset
        3. 7.5.7.3 Global Software Reset
        4. 7.5.7.4 Global Software Restart
        5. 7.5.7.5 PCS Restart
    6. 7.6 Register Maps
      1. 7.6.1 DP83561SP Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Clock Input
          1. 8.2.2.1.1 Crystal Recommendations
          2. 8.2.2.1.2 External Clock Source Recommendations
        2. 8.2.2.2 MAC Interface
          1. 8.2.2.2.1 RGMII Layout Guidelines
          2. 8.2.2.2.2 MII Layout Guidelines
        3. 8.2.2.3 Media Dependent Interface (MDI)
          1. 8.2.2.3.1 MDI Layout Guidelines
        4. 8.2.2.4 Magnetics Requirements
          1. 8.2.2.4.1 Magnetics Connection
  9. Power Supply Recommendations
    1. 9.1 Two-Supply Configuration
    2. 9.2 Three-Supply Configuration
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Signal Traces
      2. 10.1.2 Return Path
      3. 10.1.3 Transformer Layout
      4. 10.1.4 Metal Pour
      5. 10.1.5 PCB Layer Stacking
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

SFD Latency Variation and Determinism

Time stamping packet transmission and reception using the RX_CTRL and TX_CTRL signals of RGMII is not accurate enough for latency sensitive protocols. SFD pulses offers system designers a method to improve the accuracy of packet time stamping. The SFD pulse, while varying less than RGMII signals inherently, still exhibits latency variation due to the defined architecture of 1000BASE-T. This section provides a method to determine when an SFD latency variation has occurred and how to compensate for the variation in system software to improve timestamp accuracy.

In the following section the terms baseline latency and SFD variation are used. Baseline latency is the time measured between the TX_SFD pulse to the RX_SFD pulse of a connected link partner, assuming an Ethernet cable with all 4 pairs perfectly matched in propagation time. In the scenario where all 4 pairs being perfectly matched, a 1000BASE-T PHY will not have to align the 4 received symbols on the wire and will not introduce extra latency due to alignment.

Figure 7-8 Baseline Latency and SFD Variation in Latency Measurement

SFD variation is additional time added to the baseline latency before the RX_SFD pulse when the PHY must introduce latency to align the 4 symbols from the Ethernet cable. Variation can occur when a new link is established either by cable connection, auto-negotiation restart, PHY reset, or other external system effects. During a single, uninterrupted link, the SFD variation will remain constant.

The DP83561-SP can limit and report the variation applied to the SFD pulse while in the 1000M operating mode. Before a link is established in 1000M mode, the Sync FIFO Control Register (register address 0x00E9) must be set to value 0xDF22. The below SFD variation compensation method can only be applied after the Sync FIFO Control Register has been initialized and a new link has been established. It is acceptable to set the Sync FIFO Control register value and then perform a software restart by setting the SW_RESTART bit[14] in the Control Register (register address 0x001F) if a link is already present.