ZHCSMQ8E june   2006  – october 2020 SN65LVDS302

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Input Electrical Characteristics
    7. 6.7  Output Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Device Power Dissipation
    11.     Typical Characteristics
  8. Parameter Measurement Information
    1.     20
    2. 7.1 Power Consumption Tests
    3. 7.2 Typical IC Power Consumption Test Pattern
    4. 7.3 Maximum Power Consumption Test Pattern
    5. 7.4 Output Skew Pulse Position and Jitter Performance
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Swap Pin Functionality
      2. 8.3.2 Parity Error Detection and Handling
    4. 8.4 Device Functional Modes
      1. 8.4.1 Deserialization Modes
        1. 8.4.1.1 1-Channel Mode
        2. 8.4.1.2 2-Channel Mode
        3. 8.4.1.3 3-Channel Mode
      2. 8.4.2 Powerdown Modes
        1. 8.4.2.1 Shutdown Mode
        2. 8.4.2.2 Standby Mode
      3. 8.4.3 Active Modes
        1. 8.4.3.1 Acquire Mode (PLL Approaches Lock)
        2. 8.4.3.2 Receive Mode
      4. 8.4.4 Status Detect and Operating Modes Flow
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Application Information
      2. 9.1.2 Preventing Increased Leakage Currents in Control Inputs
      3. 9.1.3 Calculation Example: HVGA Display
      4. 9.1.4 How to Determine Interconnect Skew and Jitter Budget
      5. 9.1.5 F/S Pin Setting and Connecting the SN65LVDS302 to an LCD Driver
      6. 9.1.6 How to Determine the LCD Driver Timing Margin
      7. 9.1.7 Typical Application Frequencies
    2. 9.2 Typical Applications
      1. 9.2.1 VGA Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Power-Up and Power-Down Sequences
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Dual LCD-Display Application
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Application Curve
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
  13. 12Device and Documentation Support
    1. 12.1 Community Resource
    2. 12.2 Trademarks
  14. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
Power-Up and Power-Down Sequences

The SN65LVDS302 does not require a specific power up sequence for the voltage lines. However, TI recommends using the power-up and power-down sequences detailed below.

Power-up sequence (SN65LVDS301 RXEN input initially low):

  1. Ramp up LCD power and SN65LVDS302 (approximately 0.5 ms to 10 ms) but keep the backlight turned off.
  2. Wait for an additional 0 ms to 200 ms to ensure display noise does not occur.
  3. Enable video source output; start sending black video data.
  4. Toggle SN65LVDS301 TXEN = VIH.
  5. Toggle SN65LVDS302 RXEN = VIH.
  6. Send at least 1 ms of black video data. This allows the SN65LVDS301 to be phase locked, and the display to show black data first.
  7. Start sending true image data.
  8. Enable backlight.

Power-down sequence (SN65LVDS301 RXEN input initially high):

  1. Disable LCD backlight and wait for the minimum time specified in the LCD datasheet for the backlight to go low.
  2. Switch the video source output from active video data to black image data (all visible pixels turn black) for at least 2 frame times.
  3. Set SN65LVDS301 TXEN = GND and wait for 250 ns.
  4. Set SN65LVDS302 RXEN = GND and wait for 250 ns.
  5. Disable the video output of the video source.
  6. Remove power from the LCD panel for lowest system power.