ZHCAEN0A October   2024  – November 2025 MSPM0C1103 , MSPM0C1103-Q1 , MSPM0C1104 , MSPM0C1104-Q1 , MSPM0C1105 , MSPM0C1106 , MSPM0C1106-Q1 , MSPM0G1105 , MSPM0G1106 , MSPM0G1107 , MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3105 , MSPM0G3105-Q1 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3505 , MSPM0G3505-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , MSPM0H3216 , MSPM0H3216-Q1 , MSPM0L1105

 

  1.   1
  2.   摘要
  3.   商标
  4. 1ADC 简介
    1. 1.1 SAR ADC 工作原理
    2. 1.2 ADC 参数
      1. 1.2.1 静态参数
      2. 1.2.2 动态参数
        1. 1.2.2.1 交流参数
        2. 1.2.2.2 直流参数
  5. 2ADC 噪声分析
    1. 2.1 ADC 噪声分类
      1. 2.1.1 ADC 噪声
      2. 2.1.2 基准噪声
      3. 2.1.3 电源噪声
      4. 2.1.4 ADC 输入噪声
      5. 2.1.5 时钟抖动
    2. 2.2 如何降低噪声
      1. 2.2.1 通过 RC 滤波降低输入噪声
      2. 2.2.2 布局建议
      3. 2.2.3 提高信噪比
      4. 2.2.4 选择合适的基准电压源
      5. 2.2.5 软件降噪法
  6. 3ADC 过采样
    1. 3.1 采样速率
    2. 3.2 提取法
    3. 3.3 应用条件
  7. 4基于 MSPM0 的 ADC 应用
    1. 4.1 MSPM0 的 ADC 配置
    2. 4.2 基于 MSPM0G3507 ADC EVM 板的 ADC 直流测试
      1. 4.2.1 软件/硬件配置
        1. 4.2.1.1 硬件
        2. 4.2.1.2 软件
      2. 4.2.2 测试结果
      3. 4.2.3 结果分析和结论
  8. 5修订历史记录

SAR ADC 工作原理

图 1-1 展示了 SAR ADC 的系统原理图。SAR ADC 通过控制多个开关(本例中为 12 个开关)的切换,对基准电压 (VREF) 进行电容分压,从而获得不同的模拟电压输出结果。将模拟电压与输入采样信号进行比较,而比较器的输出用于调整开关的开/关状态,最终使通过 VREF 分压获得的模拟电压尽可能接近输入电压。实际的比较过程是通过使用二进制逼近法将 VREF 分压值逼近 VIN,因此需要 12 个时钟周期完成一次数据转换。考虑到 ADC 的触发、信号采样和保持时间,实际的 SAR ADC 转换过程耗时多于 12 个周期(在 MSPM0 G 系列中为 14 个转换周期)。


 基于 CDAC 的 SAR ADC 原理方框图

图 1-1 基于 CDAC 的 SAR ADC 原理方框图