ZHCADR5B June   2014  – October 2025 DS90UB913A-Q1 , DS90UB954-Q1 , DS90UB960-Q1 , DS90UB9702-Q1

 

  1.   1
  2.   摘要
  3.   商标
  4. 1简介
  5. 2同轴电缆供电的工作原理
    1. 2.1 电感器特性
    2. 2.2 电容器特性
    3. 2.3 电感器与铁氧体磁珠的对比
  6. 3设计注意事项
    1. 3.1 频率范围
    2. 3.2 电源注意事项
    3. 3.3 电阻注意事项
    4. 3.4 电感器尺寸注意事项
    5. 3.5 布局布线注意事项
  7. 4FPD-Link PoC 要求
    1. 4.1 通道要求
  8. 5PoC 噪声
    1. 5.1 PoC 噪声要求
    2. 5.2 测量 VPoC 噪声和脉冲
      1. 5.2.1 要求
      2. 5.2.2 测量步骤
    3. 5.3 测量 RIN+ 噪声
      1. 5.3.1 要求
      2. 5.3.2 测量步骤
    4. 5.4 产生 PoC 噪声的原因
    5. 5.5 噪声测量最佳实践
    6. 5.6 减少 PoC 噪声的影响
  9. 6TI 审核的 PoC 网络
    1. 6.1 FPD-Link III 数据表中的 PoC 网络
    2. 6.2 Murata FPD3 网络
      1. 6.2.1 Murata FPD3 设计 1
      2. 6.2.2 Murata FPD3 设计 2
      3. 6.2.3 Murata FPD3 设计 3
      4. 6.2.4 Murata FPD3 设计 4
      5. 6.2.5 Murata FPD3 设计 5
      6. 6.2.6 Murata FPD3 设计 6
    3. 6.3 TDK FPD3 网络
      1. 6.3.1 TDK FPD3 设计 1
      2. 6.3.2 TDK FPD3 设计 2
      3. 6.3.3 TDK FPD3 设计 3
      4. 6.3.4 TDK FPD3 设计 4
      5. 6.3.5 TDK FPD3 设计 5
      6. 6.3.6 TDK FPD3 设计 6
      7. 6.3.7 TDK FPD3 设计 7
      8. 6.3.8 TDK FPD3 设计 8
    4. 6.4 Coilcraft FPD3 网络
      1. 6.4.1 Coilcraft FPD3 设计 1
      2. 6.4.2 Coilcraft FPD3 设计 2
      3. 6.4.3 Coilcraft FPD3 设计 3
      4. 6.4.4 Coilcraft FPD3 设计 4
      5. 6.4.5 Coilcraft FPD3 设计 5
      6. 6.4.6 Coilcraft FPD3 设计 6
      7. 6.4.7 Coilcraft FPD3 设计 7
      8. 6.4.8 Coilcraft FPD3 设计 8
      9. 6.4.9 Coilcraft FPD3 设计 9
    5. 6.5 Murata FPD4 网络
      1. 6.5.1  设计 1
      2. 6.5.2  设计 2
      3. 6.5.3  设计 3
      4. 6.5.4  设计 4
      5. 6.5.5  设计 5
      6. 6.5.6  设计 6
      7. 6.5.7  设计 7
      8. 6.5.8  设计 8
      9. 6.5.9  设计 9
      10. 6.5.10 设计 10
      11. 6.5.11 设计 11
      12. 6.5.12 设计 12
      13. 6.5.13 设计 13
      14. 6.5.14 设计 14
      15. 6.5.15 设计 15
      16. 6.5.16 设计 16
      17. 6.5.17 设计 17
      18. 6.5.18 设计 18
      19. 6.5.19 设计 19
      20. 6.5.20 设计 20
      21. 6.5.21 设计 21
      22. 6.5.22 设计 22
      23. 6.5.23 设计 23
      24. 6.5.24 设计 24
      25. 6.5.25 设计 25
      26. 6.5.26 设计 26
      27. 6.5.27 设计 27
      28. 6.5.28 设计 28
      29. 6.5.29 设计 29
    6. 6.6 TDK FPD4 网络
      1. 6.6.1  设计 1
      2. 6.6.2  设计 2
      3. 6.6.3  设计 3
      4. 6.6.4  设计 4
      5. 6.6.5  设计 5
      6. 6.6.6  设计 6
      7. 6.6.7  设计 7
      8. 6.6.8  设计 8
      9. 6.6.9  设计 9
      10. 6.6.10 设计 10
      11. 6.6.11 设计 11
      12. 6.6.12 设计 12
      13. 6.6.13 设计 13
      14. 6.6.14 设计 14
      15. 6.6.15 设计 15
      16. 6.6.16 设计 16
      17. 6.6.17 设计 17
      18. 6.6.18 设计 18
      19. 6.6.19 设计 19
      20. 6.6.20 设计 20
      21. 6.6.21 设计 21
      22. 6.6.22 设计 22
      23. 6.6.23 设计 23
    7. 6.7 Coilcraft FPD4 网络
      1. 6.7.1  设计 1
      2. 6.7.2  设计 2
      3. 6.7.3  设计 3
      4. 6.7.4  设计 4
      5. 6.7.5  设计 5
      6. 6.7.6  设计 6
      7. 6.7.7  设计 7
      8. 6.7.8  设计 8
      9. 6.7.9  设计 9
      10. 6.7.10 设计 10
      11. 6.7.11 设计 11
      12. 6.7.12 设计 12
      13. 6.7.13 设计 13
      14. 6.7.14 设计 14
      15. 6.7.15 设计 15
  10. 7总结
  11. 8参考资料
  12. 9修订历史记录

电阻注意事项

PoC 电源路径中的电阻会导致显著的功率损耗,尤其是在系统消耗大量电流时。通过增加 PoC 电压电平并减少通过 PoC 网络的电流量,可以更大限度地降低功率损耗。但是,对于没有高压轨或不包含可处理高电压的元件的应用,可能无法减少电流消耗。唯一的替代方法是减小 PoC 电源路径中的电阻。

造成电源路径电阻的主要因素有三个。

  1. PoC 网络中电感器的直流电阻 (DCR)
  2. 电缆的电阻
  3. PCB 布线的电阻

每个电感器都在数据表中具有最大 DCR 规格。在一个完整系统中使用的两个 PoC 网络之间,此直流电阻会累积形成一个相当大的总电阻。通常,较小的电感器具有比较大的电感器更高的 DCR。请查看每个电感器的数据表,并选择在整个 PoC 网络的所需尺寸与整个电源系统中允许损耗之间取得平衡的元件。有关 TI 审核的 PoC 网络和电感器列表,请参阅 节 6

电缆会在总电源路径中引入少量电阻。电缆数据表量化电阻,单位为欧姆/公里。根据电缆类型和电缆长度、可以计算出电缆的总电阻。通常,与较薄的电缆相比,较粗的电缆每公里的电阻更小。详细信息,请参阅电缆数据表。

PCB 布线还会在电源路径中增加少量电阻。下面的公式可用于估算系统中 PCB 部分的电阻:

方程式 3. Rref=(ρ * L) / (t * W)
方程式 4. Rop=Rref * [1 + α * (Top - Tref)]

Rref = PCB 布线的总电阻(假设在 20°C 室温条件下工作)

ρ = 导电材料的固有电阻率。该特性受温度的影响。在 20°C 时,铜的电阻率通常为 1.68x 10⁻⁸ Ω·m。

L = 布线长度(米)

t = 布线厚度。1 盎司的铜厚度通常为 35μm(0.000035 米)

W = 布线宽度(米)

Rop = 特定工作温度下 PCB 布线的总电阻。

α = 导电材料的电阻率温度系数(铜为 0.00393)

Top = 系统的工作温度

Tref = 参考温度(室温为 20°C)